
7. Just In Time Compilation

Prof. O. Nierstrasz
Jan Kurs

© Oscar Nierstrasz

Just-In-Time Compilation

2

Roadmap

> What is Just-In-Time Compilation (JIT)?

> History of JIT

> JIT Overhead

> Optimization Techniques in JIT

© Oscar Nierstrasz

Just-In-Time Compilation

3

Roadmap

> What is Just-In-Time Compilation (JIT)?

> History of JIT

> JIT Overhead

> Optimization Techniques in JIT

© Oscar Nierstrasz

Just-In-Time Compilation

4

Compilation vs Interpretation

Pros
> Programs run faster

Cons
> Compilation overhead
> Programs are typically

bigger
> Programs are not portable
> No run-time information

Compilation

Pros
> Programs are typically

smaller
> Programs tend to be more

portable
> Access to run-time

information

Cons
> Programs run slower

Interpretation

What is Just-In-Time Compilation?

© Oscar Nierstrasz

Just-In-Time Compilation

5

Dynamic Translation: Compilation done during execution
of a program – at run time – rather than prior to execution

Compilation InterpretationJIT

What is Just-In-Time Compilation?

© Oscar Nierstrasz

Just-In-Time Compilation

6

Is Just-In-Time
> dead code elimination during program execution?
> generation of native code during program

execution?
> static analysis and subsequent optimization?
> compile-time generation of native code?
> Is JIT compile-time optimization based on previous

program execution?

Why Just-In-Time Compilation?

© Oscar Nierstrasz

Just-In-Time Compilation

7

Improve time and space efficiency of programs
utilizing:

> portable and space-efficient byte-code
> run-time information → feedback directed optimizations
> speculative optimization

Why Just-In-Time Compilation?

© Oscar Nierstrasz

Just-In-Time Compilation

8

© Oscar Nierstrasz

Just-In-Time Compilation

9

Roadmap

> What is Just-In-Time Compilation (JIT)?

> History of JIT

> JIT Overhead

> Optimization Techniques in JIT

History of Just-In-time

© Oscar Nierstrasz

Just-In-Time Compilation

10

First Just-In-Time
> 1960
> McCarthy's LISP paper about dynamic compilation
Fortran
> 1974

> Optimization of “hot spots”
Smalltalk

> 1980 – 1984
> Bytecode to native code translation
> First modern VM

History of Just-In-time

© Oscar Nierstrasz

Just-In-Time Compilation

11

Self
> 1986 – 1994
> New Advanced VM techniques
Java
> 1995 – present

> First VM with mainstream market penetration
Android RunTime (ART)

> 2014
> No JIT ;-)

© Oscar Nierstrasz

Just-In-Time Compilation

12

Roadmap

> What is Just-In-Time Compilation (JIT)?

> History of JIT

> JIT Overhead

> Optimization Techniques in JIT

© Oscar Nierstrasz

Just-In-Time Compilation

13

Just-In-Time Overhead

Matthew Arnold, Stephen Fink, David Grove, and Michael Hind, ACACES'06, 2006

JIT: 4x speedup, but 20x initial overhead

© Oscar Nierstrasz

Just-In-Time Compilation

14

Selective Optimization

> Start program in interpreted mode
> Find “hot spots”
> compile only hot spots

© Oscar Nierstrasz

Just-In-Time Compilation

15

Selective Optimization

Matthew Arnold, Stephen Fink, David Grove, and Michael Hind, ACACES'06, 2006

> JIT1, JIT2 and JIT3: the better startup, the worse steady
state performance.

> Selective optimization with JIT3: reaches best startup
and best steady state performance

© Oscar Nierstrasz

Just-In-Time Compilation

16

NB: Java Virtual Machine

> HotSpot
> server mode (-server)
— aggressive and complex optimizations

— slow startup

— fast execution

> client mode (-client)
— less optimizations

— fast startup

— slower execution

© Oscar Nierstrasz

Just-In-Time Compilation

17

What To Optimize

> Method Counters
> Call Stack Sampling

© Oscar Nierstrasz

Just-In-Time Compilation

18

What To Optimize: Method Counters

> Approximation of time spent in each method
> Popular
> Might have significant overhead

public void foo() {
 fooCounter++;
 if (fooCounter > threshold) {
 recompile();
 }
}

public void foo() {
 fooCounter++;
 if (fooCounter > threshold) {
 recompile();
 }
}

© Oscar Nierstrasz

Just-In-Time Compilation

19

What To Optimize: Call Stack Sampling

> Call stack inspected in regular intervals as the
program is running

> Approximation of time spent in each method
> Not deterministic

© Oscar Nierstrasz

Just-In-Time Compilation

20

Roadmap

> What is Just-In-Time Compilation (JIT)?

> History of JIT

> JIT Overhead

> Optimization Techniques in JIT

© Oscar Nierstrasz

Just-In-Time Compilation

21

Optimization Techniques

> Loop Unrolling

> Register Allocation

> Global Code Motion

> Machine Code Generation

> Inlining

> Code Positioning

> Multi-Versioning

> Dynamic Class Hierarchy Mutation

© Oscar Nierstrasz

Just-In-Time Compilation

22

Standard Techniques Revised

> Loop Unrolling
— unroll “hot” loops only

> Register Allocation
— assign register to “hot path” variables first

> Global Code Motion
— move code from “hot” block

> Machine Code Generation
— generate code for the particular architecture

© Oscar Nierstrasz

Just-In-Time Compilation

23

Inlining (Pros & Cons)

> Pros
— removes cost of a function call and return instruction

— improves locality of code

— once performed, additional optimizations can become possible

> Cons
— may degrade performance (code size overflows cache)

— increases code size

© Oscar Nierstrasz

Just-In-Time Compilation

24

Speculative Inlining

> Inline Circle.computeArea()
> Monitor class hierarchy
> Recompile if Shape has more subclasses

for (Shape shape : shapes) {
 shape.computeArea();
}

for (Shape shape : shapes) {
 shape.computeArea();
}

Shape

Circle

© Oscar Nierstrasz

Just-In-Time Compilation

25

On Stack Replacement (OSR)

for (Shape shape : shapes) {
 area = ((Circle)shape).r() * pi^2;
}

Square appears in the shapes.
We cannot wait for loop to finish.

Transfers execution from code A to code B even
while code1 runs somewhere.

© Oscar Nierstrasz

Just-In-Time Compilation

26

On Stack Replacement Applications

> Invalidation of speculative optimization
> De-optimization for debugging
> Runtime optimization of long-running activations

© Oscar Nierstrasz

Just-In-Time Compilation

27

Multiversioning

> Multiple implementations of a code
> The best implementation is chosen at runtime

for (Shape shape : shapes) {
 area = shape.area();
}

for (Shape shape : shapes) {
 area = ((Circle)shape).r() * pi^2;
}

for (Shape shape : shapes) {
 area = shape.area();
}

homogeneous

heterogeneous

© Oscar Nierstrasz

Just-In-Time Compilation

28

Code Positioning

> Linearizes the most
common path

> Improves code locality
> Eliminates jumps
> Improves cache

performance

F

E

D

CB

A
800

42

100

100

700

700

500

F

D

B

A

C

E

© Oscar Nierstrasz

Just-In-Time Compilation

29

Inline Caches (ILC)

> Improves performance by remembering the result of
previous method lookup at the call site.

Object[] values =
 { 1, "a", 2, "b"};

values[0].toString();
values[1].toString();

for (val : values) {
 val.toString();
}

if (receiver.class == Integer)
 invoke #Integer.toString
else
 invokevirtual values[0] #toString

IC1

if (receiver.class == String)
 invoke #String.toString
else
 invokevirtual values[1] #toString

IC2

if (receiver.class == Integer)
 invoke #Integer.toString
else
 invokevirtual val #toString

IC3

© Oscar Nierstrasz

Just-In-Time Compilation

Instruction Scheduling

> Improves Performance with instruction pipelines
> Heavily dependent on underlying architecture

load r1
load r2
add r3

load r1
add r3
load r2

© Oscar Nierstrasz

Just-In-Time Compilation

What Should You Know!

 What is and what is not Just-In-Time?
 What are advantages of JIT?
 What are drawbacks of JIT?
 What techniques can you use to reduce a JIT

compilation overhead?
 What extra information does the JIT compiler have

compared to static compiler?
 What is speculative inlining?
 What is code positioning?
 What is On Stack Replacement?
 What is Inline Cache?

© Oscar Nierstrasz

Just-In-Time Compilation

Can You Answer These Questions?

 When would you prefer not to use a JIT compiler?
 Why can JIT compiler generate faster code than static

compiler?
 How does code positioning improve performance?
 Why is OSR important for speculative optimizations?
 What happens if you dynamically load class in Java

(from optimizations point of view)?
 What is is a time overhead of dynamic dispatch?
 What is the time overhead of dynamic dispatch with

ILC?

© Oscar Nierstrasz

Just-In-Time Compilation

33

License

> http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

