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Compilation vs Interpretation

Pros
> Programs run faster

Cons
> Compilation overhead
> Programs are typically 

bigger
> Programs are not  portable
> No run-time information

Compilation

Pros
> Programs are typically 

smaller
> Programs tend to be more 

portable
> Access to run-time 

information

Cons
> Programs run slower

Interpretation
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Dynamic Translation: Compilation done during execution 
of a program – at run time – rather than prior to execution

Compilation InterpretationJIT
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Is Just-In-Time
> dead code elimination during program execution?
> generation of native code during program 

execution?
> static analysis and subsequent optimization?
> compile-time generation of native code?
> Is JIT compile-time optimization based on previous 

program execution?
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Improve time and space efficiency of programs 
utilizing:

> portable and space-efficient byte-code
> run-time information → feedback directed optimizations
> speculative optimization
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First Just-In-Time
> 1960
> McCarthy's LISP paper about dynamic compilation
Fortran
> 1974

> Optimization of “hot spots”
Smalltalk

> 1980 – 1984
> Bytecode to native code translation
> First modern VM
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Self
> 1986 – 1994
> New Advanced VM techniques
Java
> 1995 – present

> First VM with mainstream market penetration
Android RunTime (ART)

> 2014 
> No JIT ;-)
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Just-In-Time Overhead

Matthew Arnold, Stephen Fink, David Grove, and Michael Hind, ACACES'06, 2006

JIT: 4x speedup, but 20x initial overhead
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Selective Optimization

> Start program in interpreted mode
> Find “hot spots”
> compile only hot spots
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Selective Optimization

Matthew Arnold, Stephen Fink, David Grove, and Michael Hind, ACACES'06, 2006

> JIT1, JIT2 and JIT3: the better startup, the worse steady 
state performance. 

> Selective optimization with JIT3: reaches best startup 
and best steady state performance
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NB: Java Virtual Machine

> HotSpot
> server mode (-server)
— aggressive and complex optimizations

— slow startup

— fast execution

> client mode (-client)
— less optimizations

— fast startup

— slower execution
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What To Optimize

> Method Counters
> Call Stack Sampling
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What To Optimize: Method Counters

> Approximation of time spent in each method
> Popular
> Might have significant overhead

public void foo() {
    fooCounter++;
    if (fooCounter > threshold) { 
        recompile(); 
    } 
}

public void foo() {
    fooCounter++;
    if (fooCounter > threshold) { 
        recompile(); 
    } 
}
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What To Optimize: Call Stack Sampling

> Call stack inspected in regular intervals as the 
program is running

> Approximation of time spent in each method
> Not deterministic
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Optimization Techniques

> Loop Unrolling

> Register Allocation

> Global Code Motion

> Machine Code Generation

> Inlining

> Code Positioning

> Multi-Versioning

> Dynamic Class Hierarchy Mutation
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Standard Techniques Revised

> Loop Unrolling
— unroll “hot” loops only

> Register Allocation
— assign register to “hot path” variables first

> Global Code Motion
— move code from “hot” block

> Machine Code Generation
— generate code for the particular architecture
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Inlining (Pros & Cons)

> Pros
— removes cost of a function call and return instruction

— improves locality of code

— once performed, additional optimizations can become possible

> Cons
— may degrade performance (code size overflows cache)

— increases code size
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Speculative Inlining

> Inline Circle.computeArea()
> Monitor class hierarchy
> Recompile if Shape has more subclasses

for (Shape shape : shapes) {
    shape.computeArea();
}

for (Shape shape : shapes) {
    shape.computeArea();
}

Shape

Circle
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On Stack Replacement (OSR)

for (Shape shape : shapes) { 
    area = ((Circle)shape).r() * pi^2;
}

Square appears in the shapes.
We cannot wait for loop to finish.

Transfers execution from code A to code B even 
while code1 runs somewhere.
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On Stack Replacement Applications

> Invalidation of speculative optimization
> De-optimization for debugging
> Runtime optimization of long-running activations
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Multiversioning

> Multiple implementations of a code
> The best implementation is chosen at runtime

for (Shape shape : shapes) { 
    area = shape.area();
}

for (Shape shape : shapes) { 
    area = ((Circle)shape).r() * pi^2;
}

for (Shape shape : shapes) { 
    area = shape.area();
}

homogeneous

heterogeneous
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Code Positioning

> Linearizes the most 
common path

> Improves code locality
> Eliminates jumps
> Improves cache 

performance
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Inline Caches (ILC)

> Improves performance by remembering the result of 
previous method lookup at the call site.

Object[] values = 
    { 1, "a", 2, "b"};

values[0].toString();
values[1].toString();

for (val : values) {
    val.toString();
}

if (receiver.class == Integer)
    invoke #Integer.toString
else 
    invokevirtual values[0] #toString

IC1

if (receiver.class == String)
    invoke #String.toString
else 
    invokevirtual values[1] #toString

IC2

if (receiver.class == Integer)
    invoke #Integer.toString
else
    invokevirtual val #toString

IC3
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Instruction Scheduling

> Improves Performance with instruction pipelines
> Heavily dependent on underlying architecture

load r1
load r2
add  r3

load r1
add  r3
load r2
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What Should You Know!

 What is and what is not Just-In-Time?
 What are advantages of JIT?
 What are drawbacks of JIT?
 What techniques can you use to reduce a JIT 

compilation overhead?
 What extra information does the JIT compiler have 

compared to static compiler?
 What is speculative inlining?
 What is code positioning? 
 What is On Stack Replacement?
 What is Inline Cache?
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Can You Answer These Questions?

 When would you prefer not to use a JIT compiler?
 Why can JIT compiler generate faster code than static 

compiler?
 How does code positioning improve performance?
 Why is OSR important for speculative optimizations?
 What happens if you dynamically load class in Java 

(from optimizations point of view)?
 What is is a time overhead of dynamic dispatch? 
 What is the time overhead of dynamic dispatch with 

ILC?
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License

> http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting 
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.


