
Metamodeling and Metaprogramming Seminar

1. Introduction

Prof. O. Nierstrasz
Spring Semester 2008



© Oscar Nierstrasz

1. Introduction

1.2

Metamodeling and Metaprogramming
Seminar

scg.unibe.ch/Teaching/MMWWW:
David RöthlisbergerAssistant:

Oscar Nierstrasz
www.iam.unibe.ch/~oscarLecturer:



© Oscar Nierstrasz

1. Introduction

1.3

Roadmap

> Goals of this seminar
> Seminar topics
> Historical perspective



© Oscar Nierstrasz

1. Introduction

1.4

Roadmap

> Goals of this seminar
> Seminar topics
> Historical perspective



© Oscar Nierstrasz

1. Introduction

1.5

Goals

Learn about:
> Models and metamodels
> Metaprogramming
> Reflection:

— introspection and intercession
— structural and behavioural reflection

Get experience with:
> Reflective programming languages
> Manipulating models at runtime
> Modern model-driven technology
> Researching a topic and presenting it (in English!)



© Oscar Nierstrasz

1. Introduction

1.6

Roadmap

> Goals of this seminar
> Seminar topics
> Historical perspective



© Oscar Nierstrasz

1. Introduction

1.7

Planned lecture topics

> FAME (AA+TV)
> Traversals (AA)
> Magritte (LR)
> Geppetto and sub-method reflection (MD)
> …

I.e., lectures that we will do.



© Oscar Nierstrasz

1. Introduction

1.8

Seminar topics (suggestions)

> UML OCL (TV)
> MDE Case Study (ON, TV)
> Business Rule Modeling (OG)
> Transformation Languages (LR)
> DSLs (TG, LR)
> CLOS Metaprogramming (TV)
> AOP (OG)
> Business Process Modeling (AA)
> EMF / eCore in eclipse (AA)
> GMF (Graphical Modeling Framework) (LR)
> Template Metaprogramming (ON)
> Naked Objects (ON)
> Self (ON)
> …

I.e., seminars that
you will prepare!



© Oscar Nierstrasz

1. Introduction

1.9

Deliverables

> Presentation
— Talk
— Cheat Sheet

> Demo
— Presentation
— Quick Start

> Draft exam questions
Your final grade will be
based 50% on your
seminar plus 50% on the
final exam (all topics).



© Oscar Nierstrasz

1. Introduction

1.10

Roadmap

> Goals of this seminar
> Seminar topics
> Historical perspective

— What is a model? A meta-model?
— Reflection and reification
— Reflection in programming languages
— Model-driven engineering



© Oscar Nierstrasz

1. Introduction

1.11

Roadmap

> Goals of this seminar
> Seminar topics
> Historical perspective

— What is a model? A meta-model?
— Reflection and reification
— Reflection in programming languages
— Model-driven engineering



© Oscar Nierstrasz

1. Introduction

1.12

What is a model?
This slide intentionally left blank

> Description/abstraction of real world things
> Something with a meta description of how it should be structured
> Objects & relationships (a graph?)
> Whatʼs a supermodel?
> Composition of models — cars & traffic
> Could be abstraction of something imaginary
> For reasoning
> Abstract representation that can be manipulated by a program
> Can be easier to modify or work with
> Simulation (cost)
> Abstraction of a process
> Abstraction of something that does not exist yet



© Oscar Nierstrasz

1. Introduction

1.13

What is a meta-model?

This slide intentionally left blank



© Oscar Nierstrasz

1. Introduction

1.14

Example from databases

Model

System

Meta-model

Meta-meta-model Relational data model:
Tables, attributes, tuples

Database schema:
Student, Course, Enrolment …

Database tables of tuples:
(andreas, muster, 07-123-123), …

Real world:
You, MMS, …

«represented-by»

«instance-of»

«instance-of»



© Oscar Nierstrasz

1. Introduction

1.15

Programming is Modeling

Programs are models … so they
should look and behave like models!



© Oscar Nierstrasz

1. Introduction

1.16

Roadmap

> Goals of this seminar
> Seminar topics
> Historical perspective

— What is a model? A meta-model?
— Reflection and reification
— Reflection in programming languages
— Model-driven engineering



© Oscar Nierstrasz

1. Introduction

1.17

Metaprogramming

> A metaprogram is a program that manipulates a
program (possibly itself)



© Oscar Nierstrasz

1. Introduction

1.18

Reflection

> “Reflection is the ability of a program to manipulate as data
something representing the state of the program during its own
execution.

— Introspection is the ability for a program to observe and therefore
reason about its own state.

— Intercession is the ability for a program to modify its own execution
state or alter its own interpretation or meaning.

Both aspects require a mechanism for encoding execution state as
data: this is called reification.”

— Bobrow, Gabriel & White, “CLOS in Context”, 1993



© Oscar Nierstrasz

1. Introduction

1.19

Why we need reflection

“As a programming language becomes higher and
higher level, its implementation in terms of underlying
machine involves more and more tradeoffs, on the part
of the implementor, about what cases to optimize at the
expense of what other cases. … the ability to cleanly
integrate something outside of the languageʼs scope
becomes more and more limited”

Kiczales, in Paepcke 1993



© Oscar Nierstrasz

1. Introduction

1.20

Reflection and Reification

Metamodel

Model

Object

Object class

anObject

«instance of»

«reification»

«introspection»
(reflection)

«intercession»
(reflection)

«modification»



© Oscar Nierstrasz

1. Introduction

1.21

Causal connection

> “A system having itself as application domain and that is
causally connected with this domain can be qualified as
a reflective system”

— Maes, OOPSLA 1987

— A reflective system has an internal representation of itself.
— A reflective system is able to act on itself with the ensurance

that its representation will be causally connected (up to date).
— A reflective system has some static capacity of self-

representation and dynamic self-modification in constant
synchronization



© Oscar Nierstrasz

1. Introduction

1.22

Roadmap

> Goals of this seminar
> Seminar topics
> Historical perspective

— What is a model? A meta-model?
— Reflection and reification
— Reflection in programming languages
— Model-driven engineering



© Oscar Nierstrasz

1. Introduction

1.23

Reflection in programming languages

> Assembler
> Lisp
> Scheme
> Smalltalk
> CLOS
> Java
> C++
> Generative programming



© Oscar Nierstrasz

1. Introduction

1.24

Structural and behavioral reflection

> Structural reflection lets you reify and reflect on
— the program currently executed
— its abstract data types.

> Behavioral reflection lets you reify and reflect on
— the language semantics and implementation (processor)
— the data and implementation of the run-time system.

Malenfant et al., A Tutorial on Behavioral
Reflection and its Implementation, 1996



© Oscar Nierstrasz

1. Introduction

1.25

Introspection in Java

// Without introspection
World world = new World();
world.hello();

// With introspection
Class cls = Class.forName("World");
Method method = cls.getMethod("hello", null);
method.invoke(cls.newInstance(), null);



© Oscar Nierstrasz

1. Introduction

1.26

Reflection in Smalltalk



© Oscar Nierstrasz

1. Introduction

1.27

Meta Programming in Programming
Languages
> The meta-language and the language can be different:

— Scheme and an OO language
> The meta-language and the language can be same:

— Smalltalk, CLOS
— In such a case this is a metacircular architecture



© Oscar Nierstrasz

1. Introduction

1.28

Three approaches

1. Tower of meta-circular interpreters
2. Reflective languages
3. Open implementation



© Oscar Nierstrasz

1. Introduction

1.29

1. Tower of meta-circular interpreters

> Each level interprets and controls the next
— 3-Lisp, Scheme

> “Turtles all the way down” [up]
— In practice, levels are reified on-demand



© Oscar Nierstrasz

1. Introduction

1.30

2. Reflective languages

> Meta-entities control base entities
— Smalltalk, Self
— Language is written in itself



© Oscar Nierstrasz

1. Introduction

1.31

3. Open implementation

> Meta-object protocols provide an interface to access and
modify the implementation and semantics of a language
— CLOS

> More efficient, less expressive than infinite towers



© Oscar Nierstrasz

1. Introduction

1.32

Roadmap

> Goals of this seminar
> Seminar topics
> Historical perspective

— What is a model? A meta-model?
— Reflection and reification
— Reflection in programming languages
— Model-driven engineering



© Oscar Nierstrasz

1. Introduction

1.33

Models and metamodels in software

> Databases
> Model-driven engineering (MDE/MDA)
> XML
> Domain specific languages
> Round-trip engineering



© Oscar Nierstrasz

1. Introduction

1.34

Université de NANTES

M1, M2 & M3 spaces

M3

M2

M1

M2

M1

M2

M1 M1M1

M1

M2

M3

MDA in a nutshell

 - One unique Metametamodel (the MOF)
 - An important library of compatible Metamodels,

each defining a DSL
 - Each of the models is defined in the language of

its unique metamodel



© Oscar Nierstrasz

1. Introduction

1.35

The OMG/MDA Stack

the UML MetaModel

Class Attribute*
1

a UML Model

Client

Name : String

M2

M1

the MOF

Class Association
source

destination
M3

c2

c2

c2

µµ µ

µµ

metamodel

model

"the real world"

meta-meta
model

The MOF

The UML metamodel ++

Some UML Models ++

Various usages
of these modelsM0

M1

M2

M3

µ

µ



© Oscar Nierstrasz

1. Introduction

1.36

The Vision of MDA

software
developer

Platform
Independent
Model

automatic
translation



© Oscar Nierstrasz

1. Introduction

1.37

PyPy — model-driven language
implementation



© Oscar Nierstrasz

1. Introduction

1.38

What you should know!

✎ What is the relationship between a model and its meta-model?
✎ How is a meta-model also a model?
✎ What is the difference between descriptive and prescriptive models?
✎ Do we need meta-meta-models?
✎ How is programming like modeling?
✎ What is the difference between introspection and intercession?
✎ What is reification and what is it for?
✎ What is the difference between structural and behavioural reflection?
✎ What are M0, M1, M2 and M3 in MDA?



© Oscar Nierstrasz

1. Introduction

1.39

Can you answer these questions?

✎ What kind of reflection does Java support? C++?
✎ What would it mean to turn Pascal into a reflective

language?
✎ What exactly is “meta-circular” about a “meta-circular

architecture” mean?
✎ In practice, how would you implement a programming

language as an infinite tower of meta-circular
interpreters?

✎ What are M1, M2 and M3 in relational databases?
✎ When does MDA/MDE pay off in practice?



© Oscar Nierstrasz

1. Introduction

1.40

License

> http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.


