A Guide to JPiccola

Oscar Nierstrasz Franz Achermann
Stefan Kneubuehl

Institut fiir Informatik und Angewandte Mathematik
University of Bern, Switzerland

TAM-03-003

Version 1.1—June 21, 2003

Abstract

Piccola is small, experimental composition language — a language for building applications from
software components implemented in another, host programming language. This document de-
scribes JPiccola, the implementation of Piccola for the Java host language.

Chapter 1 (“Piccola in a Nutshell”) presents a small example that illustrates the key concepts
of Piccola. Chapter 2 presents a step-by-step tutorial of JPiccola including exercises that can be
carried out with JPiccola version 3.7a.

Chapter 3 presents the interfaces of the standard Piccola libraries. Chapter 4 presents the
syntax and informal semantics of Piccola.

Chapter 5 outlines the history of the Piccola project, and provides an annotated guide to the
Piccola publications. Chapter 6 contains a list of Frequently Asked Questions (and Answers).

CR Categories and Subject Descriptors: D.2.11[Software Engineering]: Software Architec-
tures—Languages; D.3.0 [Programming Languages|: Standards; D.3.2 [Programming Languages|:
Language Classifications— Very high-level languages

General Terms: Software Components, architectural styles.

Additional Keywords: Composition language, Java, m-calculus.

Contents

1 Piccola In a Nutshell

2 A Small Piccola Tutorial

2.1 Quick Start
2.2 Forms
2.2.1 Immutability oo
2.2.2 Theempty form L
223 Root e
2.24 Extending root e
2.2.5 Quote and double quote
2.3 SErVICES e
2.3.1 Anonymous Services
2.3.2 Recursive Services o e e
2.3.3 Caveat: recursive formso
2.3.4 Default arguments 0L
2.3.50 Built-in typeso
2.3.6 Language bridging L
2.3.7 Inheritance by composition Lo
2.3.8 Control structures Lo
2.3.9 Dynamic scopingo
2.4 CONCUITENCY .+ v« v v v v e e e e e e e e e e e e e e e e e e
2401 Agents e
2.4.2 Channels e e
2.4.3 Variables
2.5 Imtrospection
2.6 Evaluating scripts L
2.6.1 Loading scripts L
2.7 Testing
2.7.1 Exceptions
2.7.2 Assertions
2.7.3 Tests

2.8 Wrappi

ng host entities L

3 Piccola Standard Library

3.1 The Standard root e
3.1.1 About
3.1.2 Basic. e e e e e
3.1.3 Collections e
3.1.4 Debug
3.1.5 DefaultOp o oo
3.1.6 Host e e e
3.1.7 Kernel e

CONTENTS

3.1.8 PiUnit e
3.1.9 Builtin Host e
3.2 Builtin Types o o o
3.2.1 Boolean e e
3.2.2 String e
3.2.3 StringBuffer o
3.2.4 Number
3.2.5 Exception
3.2.6 Testo e e e
3.2.7 Label e e e e e e e
3.2.8 Meta o e e e e e e
3.2.9 Class. e
3.2.10 Channel e
3.2.11 Var . . . e e
3.2.12 Counter i e e e
3.2.13 Blackboard o
3.2.14 ATTAay ..o
3.2.15 Collections e
3.2.16 StackTrace e

4 Piccola Language
4.1 The Language o v it e e e e e e e e e e
4.1.1 Abstract Syntax
4.1.2 Precedence Rules
4.1.3 Indentation
4.2 Abbreviations L e
4.2 1 Services
4.2.2 Nested Bindings
4.2.3 Assignment
4.2.4 Quoted Expressions
4.2.5 User Defined Operators
4.2.6 Collections

5 A Brief History of Piccola

6 JPiccola FAQ

31
32
33
33
33
34
34
35
35
35
35
36
36
36
37
37
37
37
38

40
40
40
40
42
43
44
45
45
46
46
47

48

50

Chapter 1

Piccola In a Nutshell

This chapter gives a brief overview of Piccola, its motivation, and the key terminology. Read this
to get a rough idea what Piccola is about, then step through the tutorial. After completing the
tutorial, you might want to re-read this chapter to put everything into context.

What is Piccola?

Piccola is a small composition language.

That is, Piccola is designed to be a minimal language for composing applications from software
components. A composition language is very similar to a scripting language — a language in
which you write high-level scripts to direct “actors” (i.e., software components) to perform a play
(i.e., implement an application). The differences between a composition language like Piccola and
a scripting language are:

Core Piccola provides no programming language features of its own, just very primitive
composition mechanisms (i.e., forms, agents and channels) that are used to build higher-
level abstractions.

Piccola depends entirely on its host language to get any work done. In the case of JPiccola,
the host language is Java.

Basic data types, like booleans, numbers and strings, and basic control structures, like
if/then/else and try/catch, are provided by standard modules written in Piccola itself,
and which typically delegate behaviour to the host language.

The way components are composed is governed by a compositional style, which defines the
interfaces of a set of components, the connectors you may use to compose them, and the
rules that govern and restrict composition — for example, in a pipes and filters styles, a
data source may be connected by a pipe to a filter, which again yields a data source.

The style in which you compose scripts is not hard-wired in Piccola, but is defined by
Piccola modules. Unlike typical scripting languages which may focus on a particular problem
domain, Piccola allows you to define high-level connectors for different styles of scripts. Styles
for GUI composition, dataflow composition, or any other way of composing components can
be defined as Piccola modules.

Forms and services

In Piccola, everything is a form. A “form” is essentially a nested record, which binds labels to
values. Consider, for example, the following JPiccola code:

CHAPTER 1. PICCOLA IN A NUTSHELL 4

0 0O 0 AWT Demo

hello world

Figure 1.1: Evaluating the helloButton script

helloForm =
text = "hello world"
do : println text

makeFrame
title = "AWT Demo"
component = Button.new(helloForm) 7 ActionPerformed helloForm.do

This code defines a form helloForm, which contains a binding of the label text to a string, and
the label do to a service that prints the string. It then invokes a service, makeFrame, passing it
a form containing bindings for the labels title and component. Indentation is significant, as it
allows us to invoke makeFrame by passing its arguments over several lines, instead of having to
write makeFrame(title=...,component=...). As we shall see, makeFrame, "AWT Demo", 200,
println, and all the other values here are also forms.

We use the word form instead of “nested record” to emphasize some important differences:

e Forms are immutable (i.e., pure values), though they may wrap access to mutable entities.

e Forms may contain not only bindings of labels to values, but may also provide a service,
allowing the form to be invoked. makeFrame and helloForm.do are both forms that provide
a service, but no other bindings.

e One form may extend another, possible overriding bindings or services. In fact, in the
example, text = "hello world" is extended by do : println text, and so on.

e A form is an explicit namespace, which may be used as an environment in which to evaluate
a script. The lines above are evaluated in the context of a form that binds makeFrame,
println, Button and ActionPerformed. The current namespace is known by the keyword
root.

We also use the word service instead of “function” or “procedure” to emphasize the fact that
components provide (and require) services, and that these services may be composed of other
(perhaps as yet unknown) services.

Scripts and namespaces

When we evaluate this code, it generates the button we see in Figure 1.1. When we click on the
button, hello world is printed on the Java console.

In fact, the code we have shown forms only part of a longer script that is responsible for
loading a particular component composition style, and defining some missing glue code. The
complete script is shown in Figure 1.2.

When JPiccola reads and evaluates this file, it will first set up the root namespace to contain
some standard definitions. This is where println and the wrappers for Java strings and numbers
are defined. The styles awt.picl and events.picl are standard styles provided by JPiccola. They wrap,
respectively, Java AWT components and Java events so that we can use them from Piccola. When

CHAPTER 1. PICCOLA IN A NUTSHELL 5

’loadCore "awt.picl" root
’loadCore "events.picl" root
makeFrame config:
’default=
title="Frame"
x=200
y=50
component=Label.new(text="<empty>", alignment=Label.Center)
’config=(default,config)
frame = Frame.new(config.title)
frame 7 WindowClosing frame.dispose
frame.add config.component
frame.setSize(config)
frame.show()
helloForm =
text = "hello world"
do : println text
main:
makeFrame
title = "AWT Demo"
component = Button.new(helloForm) ? ActionPerformed helloForm.do

Figure 1.2: The complete helloButton.picl script

the styles are loaded, they have access to the root namespace to build up their own definitions.
The helloButton script defines a makeFrame glue service that will build a Java AWT Frame with
a given title, size and contained component. These parameters are passed in the config argument
form. Next, we define helloForm, which contains a text string and a service we would like to use.
Finally, we define a binding main, which is a service to be invoked. main just invokes makeFrame,
passing it the configuration form.

Let us now take a closer look at the helloButton script. Whenever a script is evaluated,
it is provided with a root namespace (in this case, presumably the standard one that JPiccola
provides). The result of evaluating a script is always a form. The helloButton script returns a
form with a single binding for main, which is a service that can be evaluated. Piccola adopts the
convention that, when a script is evaluated, its main binding, if present, will also be evaluated. If,
on the other hand, the script is loaded as a style, main will not be evaluated. This way a Piccola
file can serve as both a style and a script (cf. Python).

The two styles and the makeFrame service are local to the script. This is achieved by the quote
(?) operator. As we shall see later, this is nothing but syntactic sugar for extending root.

Styles and glue

This line loads a standard JPiccola file that defines how Java AWT components are wrapped as
JPiccola components:

’loadCore "awt.picl" root

The standard service loadCore reads the file awt.picl (which is found in a directory containing
all the core modules), and evaluates it in our root namespace. That is to say, everything that
awt.picl requires, should be provided by root. We then extend our own root namespace with the
resulting form, using the quote operator.

awt.picl and events.picl are standard Piccola files defining services that wrap Java AWT compo-
nents and events so that they can be accessed and composed from Piccola. awt.picl defines Frame

CHAPTER 1. PICCOLA IN A NUTSHELL 6

and Button, whereas events.picl defines WindowClosing and ActionPerformed. loadCore, Host,
false and println, on the other hand, are defined by the standard prelude.picl, which is always
loaded and sets up the standard root. println, for example, is a standard service that wraps the
Java System.out.println method (see Section 3.1.2).

The awt style is rather minimal, so we need an intermediate glue service (makeFrame) that
builds a Frame with a given title and size around a given GUI component, displays the frame, and
makes sure that it will exit cleanly.

makeFrame is a binding in our namespace like any other binding in a form. The only difference
is that it is a binding to a service. Ordinary bindings are defined with =, and services are bound
with :.

The awt style allows us to bind AWT components, events and actions in a convenient way:

frame ? WindowClosing frame.dispose

binds our (wrapped Java) frame to the action frame.dispose in case the WindowClosing event
is raised. Every wrapped AWT component provides a ? connector that allows it to be bound to
an event/action pair. In fact, ? is nothing but a (Curried) service represented as an overloaded
binary operator (cf. Python and C++). The result of this composition is again a component,
allowing it to be composed with multiple event/action pairs.

We can use either parentheses or indentation to indicate nesting (cf. Haskell and Python).
main invokes makeFrame, passing it a form containing bindings for title, x, and so on. When we
invoke Button.new, however, we pass it the form (text=hello) as a parenthesized expression.

Why forms?

We close this example by noting that services are always monadic (i.e., taking a single argument,
instead of a tuple of arguments). This turns out to be the key to a lot of Piccola’s flexibility.
Note, for example, that frame.setSize is only interested in the x and y bindings of its config
argument. It simply ignores all the other bindings. Services like makeFrame that require multiple
arguments will normally expect them to be bundled together as a form. Nevertheless, services like
the ? may be defined as Curried abstractions, taking their arguments one at a time.

Chapter 2

A Small Piccola Tutorial

This chapter provides a step-by-step tutorial to JPiccola 3.7a including exercises. You should
download the JPiccola3.7a.jar and the associated demos, and be prepared to try out the suggested
exercises.

2.1 Quick Start

JPiccola requires the Java 2 Runtime Environment version 1.3.1 or better. If you don’t have Java
installed on your system, you can download it from java.sun.com.

Download the latest version of JPiccola from www.iam.unibe.ch/~scg. The download includes
the latest jar file, JPiccola3.7a.jar (assuming the latest version of JPiccola is 3.7a), a pdf of this
tutorial, and a folder of JPiccola demo scripts. The demo file tutorial.picl contains all the tutorial
examples. Note that the download does not include the JPiccola source files. These are separately
available on the web site from the JPiccola cvs project.

On some systems (such as Mac OSX), you may start JPiccola just by double-clicking on the
jar file. This will start up a simple Piccola console, which has been scripted in Piccola itself (see
Figure 2.1). (Note that if you run JPiccola this way, you might not see any Java messages, unless
you also have a Java console open.)

Alternatively you can start the JPiccola console from the command line as follows:

java -jar JPiccola3.7a.jar

You can also run a specific script either by loading it into the console and running it from
there, or you can evaluate it from the command line. Suppose the file helloWorld.picl (in the
Piccola demos zip) contains the following line:

println "hello world"
We can evaluate this script by running the command:

java -jar JPiccola3.7a.jar demo/helloWorld.picl
Exercise 1 Start the JPiccola console. Load and run helloWorld.picl.

Exercise 2 Run helloButton.picl from the command line. (This is the example from Chapter 1;
you can find it in the demos zip.) Try to load and run it from the console. Why won’t it start?
What must you add to run it from the console?

2.2 Forms

In Piccola, everything is a form.
A form is an immutable sequence of bindings of labels to values:

http://java.sun.com
http://www.iam.unibe.ch/~scg

CHAPTER 2. A SMALL PICCOLA TUTORIAL 8

6 O e‘ Piccola Console

File Edit Run Tools

05|89 #| K& 5

AR

println "Hello World!™
Hello World!
h 1:13

Figure 2.1: The JPiccola console

aPoint = (x=1, y=2)

This defines a form called aPoint with bindings for the labels x and y. The values 1 and 2 are
also forms that wrap Java numbers.
Indentation can also be used to indicate nesting levels:

aCircle =
centre =
X

y
radius = 5

=3
=4

is the same as:
aCircle=(centre=(x=3, y=4), radius=5)

Please note that indented expressions must line up properly, or Piccola will not understand
what you mean. The following code, for example, will generate a compilation error:

aCircle =
centre = x = 3
y =4 # bad -- doesn’t line up
radius = 5 # bad -- doesn’t line up

Also take care not to mix tabs and spaces when indenting!
Bindings are extracted by projection:

anotherCircle =
centre = aCircle.centre
radius = aCircle.radius - 1

This defines anotherCircle to be equal to (centre=(x=3, y=4), radius=4).
Forms can be defined by extending existing forms:

redCircle =
aCircle # retrieve bindings
radius = 1 # override a binding

colour = "red" # introduce a new binding

CHAPTER 2. A SMALL PICCOLA TUTORIAL 9

866 Exploring Form

Action
form
¥ |} centre =
> ®x = 3 [class java.lang.Integer]
3 ¥y = 4 [class jawva.lang.Integer]
> colour = red [class java.lang.String]
> radius = 1 [class jawva.lang.Integer]

icentre = (x = 3, y = 4), colour = red, radius = 1)

Figure 2.2: The form explorer.

aCircle is a form containing a set of bindings. redCircle extends these bindings with radius=1
and colour="red". The first of these overrides an existing binding for radius, whereas the second
introduces a new binding.

The JPiccola console provides a simple graphical interface to explore forms. In Figure 2.2, we
see the result of running;:

explore redCircle
Exercise 3 In the console, define a form hansel with bindings for name and address. Define

gretel by extending hansel with a new name. Run explore hansel and explore gretel within
the console. Save your script as a file, hansel.picl.

2.2.1 Immutability

Bindings are immutable. A reference to an earlier binding is not affected by a later binding of the
same label.

start

end = start # refers to start defined at this point
only affects the namespace below

<
]

Since forms are pure values, they cannot be updated. At this point, we still have end=(x=1,y=2).
We can extend a form with new bindings, which may hide earlier bindings.

start =
start
x =5

We may also use the “dot notation” to rebind a label in the subsequent scope:

CHAPTER 2. A SMALL PICCOLA TUTORIAL 10

start.y = 0
Now we have start=(x=5,y=0).

Exercise 4 Update hansel’s address and then explore gretel.

2.2.2 The empty form

The empty form is denoted by (), so:
empty = ()

binds the label empty to an empty form.

Exercise 5 Fxplore (). Try to project or extend ().

2.2.3 Root

Everything is a form, including the current namespace (i.e., the lexical scope), which is called
root:

anotherPoint =
root.redCircle.centre # same as: redCircle.centre
y = root.redCircle.radius + 2 # same as: y = redCircle.radius + 2

Note that the current root changes from line to line as bindings are added or overwritten.

x =1 # root.x == 1
f =
x = 2 # root.x == 2
y =X # root.x == 2 and root.y ==

root.z == 1 and root.f=(z=2,y=2)

Scoping is purely lezical (as in most programming languages), so after £ is defined, the bindings
it has introduced for x and y are no longer visible.

Exercise 6 FEvaluate the menu item Run:Reset context. Explore root before and after the defini-
tions of hansel and gretel. What does Run:Reset context do? What happens if you explore root
again, but without running Run:Reset context?

2.2.4 Extending root

Whenever we evaluate a binding label =expression, we extend both the root namespace as well
as the current form. When we evaluate an expression, however, we only extend the current form.

blueCircle =
redCircle # extends blueCircle but not root
colour = "blue" # extends blueCircle and root

radius=radius+l # would be an error!

The bindings for centre, radius and colour present in redCircle extend the definition of
blueCircle, but they do not extend its root . As a consequence, it would be an error here
to try to extend blueCircle with radius=radius+1, since radius is not defined in the root
namespace at that point.

In order to explicitly extend root with the value of an expression, we may evaluate:

root = (root, ezpression)

Since this is a common operation, Piccola provides some syntactic sugar:

CHAPTER 2. A SMALL PICCOLA TUTORIAL 11

’erpression # same as root = (root, expression)

Now, in the following example, the bindings of blueCircle are used to extend the root context
of greenCircle, but they do not extend the definition of greenCircle itself.

greenCircle =
’blueCircle # extends root
colour = "green" # extends greenCircle and root

radius = radius+2 # sees blueCircle.radius
centre = centre # sees blueCircle.centre

Since the bindings of blueCircle are not part of our greenCircle, we must explicitly define
centre=centre, or our greenCircle will have no centre!

As we shall see, the quote operator is a common Piccola idiom to hide information, since it
makes bindings purely local to the root scope of a form.

Note that by putting parentheses around a binding, we turn it into an expression, which only
extends the current form, not root.

1 # root.x == 1

o]
I

’x =0 # root.xz == 0

(x =2) # root.z == 0

y =X # root.z == 0 and root.y == 0
root.xz == 1 and root.f=(z=2,y=0)

We can sum up the situation as follows:

Binding | Fxpression
Extends root Yx=1 ‘e
Extends current form | (x=2) e
Extends both x=3

Exercise 7 Eztend gretel with ’secret="my secret" and then explore gretel.

Exercise 8 Try to evaluate root=() and then explore root. What goes wrong?

2.2.5 Quote and double quote

An idiom we will occasionally use is the double quote. It is used to obtain a pure side effect,
ensuring that any value returned will extend neither root nor the current form:

>’println "hello"
hello

Recall that ’e evaluates e, extending root with the result of e. ’e, however, returns the empty
form, since its result does not extend the current form. ’’e then, evaluates e, and then evaluates
> (), which extends root with the empty form. That is to say, it evaluates e and does nothing
else!

If we forget to double quote invocations, we may accidentally extend a form without intending
to!

john =
name = "john"
println "howdy! I’m " + name
Can we really be sure that john now contains only the binding for name, or could it be that

println is returning an unwanted binding?

Exercise 9 FExplore john. Instead of invoking println, invoke Debug.wrapString (name) and
explore john again. Note how john has been cluttered with other, irrelevant bindings. Now quote
the invocation and explore john again.

CHAPTER 2. A SMALL PICCOLA TUTORIAL 12

2.3 Services

Services are abstractions over forms. They are bound with : instead of =, and possibly introduce
named arguments:

newPoint Args: # Service definition
x = Args.x
y = Args.y

a = newPoint aCircle.centre # Invocation

gives us a=(x=3, y=4).
In order to invoke a service, we must pass a form as an argument. If the service does not name
or use its argument, we can pass the empty form:

hello: println "hello world" # define a service w/o argument
hello () # invoke with empty form

hello world

A service is also a form, so newPoint and hello are forms, and thus can be extended with
bindings:
myHello =
hello

doc = "This is my very own hello form"
myHello ()
println myHello.doc

hello world
This is my very own hello form

We can also define Curried services, i.e., services that return services:

sum a b: a + b # a Curried service
println (sum 5 6) # need parens to parse correctly
println sum(7)(8) # or do it this way

11

15

inc = sum 1 # bind first arg of sum —-- returns a service
println inc(9) # supply second arg

10

Invoking a form that does not contain a service, however, is an error:
a()
yields:

Ezception:
Piccola Exception: ————————————————-———————————————————
Piccola Ezception: Apply failed. Form is mot a service.

Exercise 10 Define a newCircle service that expects its argument to provide r, © and y bindings,
and returns a form with radius and centre bindings. Ezplore newCircle (z=1,y=2,7=3).

CHAPTER 2. A SMALL PICCOLA TUTORIAL 13

2.3.1 Anonymous services

A service is just a binding to a lambda abstraction:

newPoint Args:
x = Args.x
y = Args.y
is syntactic sugar for:
newPoint =
\Args:
x = Args.x
y = Args.y

(Now we can clearly see why a service is also a form: it just binds the special label \.)
The argument to a service is often a complex form, which can be passed as a subform on
subsequent lines:

a = newPoint
x =5
y=38

is the same as:
a = newPoint (x=5, y=8)
Exercise 11 Eztend hansel and gretel with (anonymous) services that print their name so you

can invoke hansel () or gretel ().

2.3.2 Recursive services

Since services are just forms, they do not normally have access to their own definition. newPoint
defined above, for example, may not call itself recursively, since the binding of newPoint is not in
the scope of the definition. To define a recursive service, we must use the Piccola keyword def:

def newPoint Args:

Args

$_: "Point(x=" + Args.x + ", y=" + Args.y + ")" # define prefiz $

+ other: # define infiz +
newPoint

x = Args.x + other.x
y = Args.y + other.y

The service newPoint takes a single form, Args, as its argument. This form is wrapped and
extended with bindings for $ and +. These are, respectively, prefix and infix operators. (The
arguments are represented by the _ placeholder.) The $ operator is special to Piccola, and is
assumed by println to return a string representation of a form (cf. toString in Java). The +
operator can now be invoked as an infix service of a point, and will return a new point representing
the vector addition of the target point and its argument.

We must use def since newPoint is recursively defined: the body of + recursively invokes
newPoint, passing it a form with bindings for x and y.

a = newPoint(x=5, y=6)
b=a+a
println b

prints:

CHAPTER 2. A SMALL PICCOLA TUTORIAL 14

Point (z=10, y=12)

Note that println prints its argument using a standard form pretty-printer, unless the argument
provides the service $, in which case the result of invoking that service is printed:

println myHello
([service], doc = This s my very own hello form)

myHello =
myHello
$_: myHello.doc
println myHello

Thts is my very own hello form

Exercise 12 Redefine newCircle to provide services $ and move. The latter should return a new
circle that is translated by the x and y positions of the point argument. Try to define move so it
uses the + service provided by points.

Exercise 13 FExtend root so that when you evaluate println root, the result is Hi! I’m
Root!.

2.3.3 Caveat: recursive forms

def may also be used to define recursive forms, but the use of recursively defined names must
always be protected by a service definition, since Piccola does not support infinite forms!

def rForm =
$_ : "my very own recursive form"
\: rForm

println rForm

println rForm()

println rForm() ()

This definition is perfectly ok, and yields:

my wvery own recursive form
my very own recursive form
my very own recursive form

But this is broken and will not even compile:

def rForm2 =
$_ : "an infinite form"
body = rForm2

Ezception:
Piccola Exception: ————————————— - - - - - - o — oo
Piccola Ezception: Projection fatled. Label rForm2 is not bound in form.

Exercise 14 Ezplore rForm and rForm().

CHAPTER 2. A SMALL PICCOLA TUTORIAL 15

2.3.4 Default arguments

Default arguments are a common idiom in Piccola.
Our point constructor has the serious problem that it assumes its argument contains bindings
for x and y. If we invoke newPoint with an empty form as its argument, it will fail:

println newPoint ()
yields:

Exzception:
Piccola Exception: —————————————— - - -
Piccola Exception: Projection failed. Label = ts mnot bound in form.

A better solution is to “pre-extend” Args with default values for x and y:

def newPoint Args:
’Args=(x=0, y=0, Args) # Args may override the default bindings

Args # retrieve bindings with defaults
$_: "Point(x=" + Args.x + ", y=" + Args.y + ")"
+ other:

newPoint

x = Args.x + other.x
y = Args.y + other.y

Now

println newPoint ()
yields:

Point (z=0, y=0)

Note how Args=(x=0, y=0, Args) defines default bindings x=0 and y=0, and then eztends this
form with Arg. When we look up x or y we are guaranteed that these labels will be bound, either
to the defaults we have given, or the actual arguments, in case they have been defined. Note
also that we quote the binding ’Args=(x=0, ...) to make it purely local to the definition of
newPoint.

Exercise 15 Redefine newCircle to create by default a circle at the origin with radius zero.
Ezplore newCircle().

2.3.5 Built-in types

Booleans, Strings and Numbers are always available as standard components wrapped from the
host language.

n=5+10 %x 3 -1

hi = "hello
world"
compare = (n == hi) & (hi == n)
println
compare.select
true = "the same"
false = "not the same"
prints:

not the same

CHAPTER 2. A SMALL PICCOLA TUTORIAL 16

Note that standard Piccola components provide an interface that is independent of the interface
provided by the host language. A Piccola boolean, for example, always provides a select service,
whether or not the host Java or Squeak boolean does so.

Piccola also provides lists, sets and maps (dictionaries), which, in the case of JPiccola, are
wrappers around Java List, Set and Map objects.

a=1[1, 2, 3]
b = [45 5’ 6]
(at++b) .forEach(do X: print X)

123456

println {1,2,3} ++ {2,3,4}
println {1,2,3} ++ {2,3,4} == {1,2,3,4}

{4, 1, 2, 3}
true
mymap = {{
a -> "1 to 3"
b -> "4 to 6"

1

println mymap.keys()
println mymap.at(b)

[r4, 5, 61, [1, 2, 3]]
4 to 6

The services of Booleans, Strings and Numbers are detailed in Section 3.2.1, Section 3.2.2 and
Section 3.2.4. Collections are described in Section 3.2.15.

Exercise 16 Explore true, "hello"” and 1. Compare what you find with the descriptions in
Section 3.2.

Exercise 17 FExperiment with collections. What happens if you try to append a list to set, or vice
versa?

Exercise 18 FEzplore "john"->"doe". What is this? Experiment with the map services listed in
Section 3.2.15.

2.3.6 Language bridging

Host services can be accessed as forms. Since Java and Piccola have different calling conventions,
we must somehow convert forms into something that a Java method can understand. The JPic-
cola/Java language bridge expects that arguments to (wrapped) Java methods are provided as
JPiccola lists of values:

squareRoot N:
Host.class("java.lang.Math") .sqrt [N]
println "squareRoot(5) = " + squareRoot(5)

squareRoot (5) = 2.23606797749979

power N E:
Host.class("java.lang.Math") .pow[N, E]
println "power 2 10 = " + (power 2 10)

CHAPTER 2. A SMALL PICCOLA TUTORIAL 17

power 2 10 = 1024.0
Exercise 19 FEzplore Host.class("java. lang.0Object"). Can you instantiate this class?

Exercise 20 Explore Host.class("java. lang.System"). Can you use the resulting form to
invoke java.lang.System.out.printin? What is the difference between this and invoking the standard
println? (Be sure you have the Java console open when you try this.)

Exercise 21 Define a service random that returns a random number.

2.3.7 Inheritance by composition
Even though Piccola is not object-oriented, we can simulate various OO features:

newBetterPoint Args:
’super = newPoint Args
’def extend P:
P
+ other: extend P + other
distance other:
’dx = P.x - other.x
’dy = P.y - other.y
squareRoot dx*dx + dy*xdy
extend super

println newBetterPoint(x=1, y=1).distance(newBetterPoint(x=4, y=5))
prints:
5.0

Note how the bindings for super and extend are made private by quoting them.
Some experimental object models have been developed for Piccola that capture inheritance, as
well as self and super constructs.

Exercise 22 Define a “subclass” of newCircle that extends a circle with a distance service. (You
should use the distance service of the newBetterPoint.)

2.3.8 Control structures
Common control structures are implemented as services in prelude.picl, for example:

if Boolean Cases:
’Cases = (then: (), else: (), Cases)
Boolean.select (true = Cases.then, false = Cases.else) ()

Note that if is a Curried service. It defines default bindings for Cases.then and Cases.else
which do nothing. Then it uses a Piccola boolean to select one of these services, and finally it
invokes the selected service by passing it an empty form.

def fact N:
if N<2
then: 1
else: Nxfact(N-1)

println fact(5)

120

CHAPTER 2. A SMALL PICCOLA TUTORIAL 18

A for loop requires a form that provides from, to and do services:

hi = "good day"

for
from: 1
to: hi.size()

do i: print hi.charAt(hi.size()+1-1i)
yad doog

We will shortly see other control structures, such as loop and foreach, but first we need
variables and iterators.

Exercise 23 What happens if you don’t provide one of the from, to or do services expected by a
for loop?

Exercise 24 Try to define for yourself. What problems do you run into?

2.3.9 Dynamic scoping

The form called dynamic is always passed implicitly, and may be used to simulate dynamic scoping.
This mechanism can be very convenient to avoid having to explicitly pass parameters that are not
normally considered as being part of the interface of an object. For example, println actually
invokes dynamic.println instead of the default behaviour, if it is defined. We can use this fact
to modify the behaviour of println in services that have already bound it, like the hello service
we defined much earlier:

hello() # calls the current println

’saveDynamic = dynamic # save the dynamic mamespace

’dynamic.println X: # extend dynamic with our println
’dynamic = saveDynamic # locally restore the saved dynamic
println ">>" + X + "<<" # call the real printin

hello() # println now calls our dynamic println
’dynamic = saveDynamic # restores the old printin
hello() # works again as it used to

hello world
>>hello world<<
hello world

The JPiccola console uses this feature to redirect println requests to the console window.

Exercise 25 Within the console, set dynamic to the empty form and then try to invoke printin.
Can you explain what happens?

Exercise 26 FExplore dynamic. Define a service exploreDynamic that explores dynamic and in-
voke it. Now extend dynamic and again invoke the exploreDynamic service you defined earlier.
What do you observe? What happens if you do the same experiment with a service exploreHansel?

2.4 Concurrency

Since forms are immutable, the language we have seen so far is purely functional. The only side-
effects that may occur are in the host language. Piccola, however, also supports concurrent agents,
which may communicate by means of shared channels.

CHAPTER 2. A SMALL PICCOLA TUTORIAL 19

2.4.1 Agents

You can start a concurrent agent by invoking run, passing it a form with a do service:

run (do: [1,2,3].forEach(do X: print X))
run (do: [4,5,6].forEach(do X: print X))

Might yield:
124536

Exercise 27 Run the example a few times to see if you always get the same result. Define a
sleep service that invokes Host.class("java. lang. Thread").sleep[N.asLong()]. Now insert
sleep 1 before or after the print and try again.

2.4.2 Channels

Agents can communicate through shared channels, which provide send and receive services.

¢ = newChannel ()
run
do: println c.receive()
run
do: c.send("hello from another world")

Yields:
hello from another world
This service will stop an agent:
stop: newChannel () .receive()

Since no other agent has access to the new channel, nothing will ever be written on it, and the
reader will block forever.

Exercise 28 Define a producer agent that sends the numbers 1 to 10 to a channel, and a con-
sumer agent that reads each number from the channel and prints it.

Exercise 29 Implement a newSemaphore service that creates a semaphore with p and v services.
Use a semaphore to give two agents mutually exclusive access to shared critical section.

2.4.3 Variables

We can use channels to model side effects by storing a value to be retrieved later:

newVar X:

’var = newChannel ()

’’yvar.send X # store the initial wvalue

set X:
’’var.receive() # consume the old wvalue
’’var.send X # and store the new one
X # return the new value

get:
’X = var.receive() # read the old value
’’var.send X # put <t back again
X # now return it

*_ = get # prefixz *

<- = set # infixz <-

CHAPTER 2. A SMALL PICCOLA TUTORIAL 20

(Actually, the standard newVar service provided by the prelude.picl is defined somewhat differently,
but this definition is equivalent.)
Now we can use the loop service defined in prelude.picl:

x = newVar (10)

loop
while: *x > 0
do:
x <- *xx - 1
print (*x)
println ""

9876543210

(Be careful not to type println *x — Piccola will assume that you are trying to multiply println
by x!)

Exercise 30 Try running the loop with a label binding =10 instead of a variable. (You will have
to test z>0, rebind z=z-1 and print z.) Can you explain what happens?

Exercise 31 Can you define a loop service that behaves the same as the standard one?

2.5 Introspection

First-class labels make Piccola primitives available as services:!

centreLabel = newLabel("centre")
println centreLabel.project(aCircle)

(z =3, y =4)
The restrict service of a first-class label can be used to remove that label from a form:
println centrelabel.restrict(aCircle)
(radius = 5)
and bind is used to bind it:
println centrelLabel.bind(x=1, y=2)
(centre = (z =1, y = 2))
We can print all the labels of a form:
printLabels aCircle
centre, radius

or we can iterate over them:

forEachLabel
form = aCircle
do X:
println X.name() + " = " + X.project(form)

IRecall that aCircle=(centre=(x=3, y=4), radius=5)

CHAPTER 2. A SMALL PICCOLA TUTORIAL 21

(x =3, y =4)
5

centre

radius

These standard services are built up using the inspect service, which offers a finer degree of
control. Here we use inspect to define a generic wrapper that invokes Block at the beginning of
every service bound to some label:

def wrapServices Form Result Block:
inspect Form
isLabel L: # select some first-class label
’value = L.project(Form)
’wrappedValue = if isService(value)
then: \X: (’’Block.do L, value X)
else: value
’Result = (Result, L.bind(wrappedValue))
wrapServices L.restrict(Form) Result Block
isEmpty: Result
isPeer: Result
isService: (Result, Form)

wrapServices newPoint() () (do L: println "" + L.name() + " invoked")
z=p+p

el
I

+_ 1invoked

(The peer is the unwrapped Host entity accessible from the Piccola form that wraps it.)
We can also obtain a meta representation of any form by invoking the standard meta service.
meta(form) allows to explore and manipulate the bindings and services of an arbitrary form.

foreach meta(newChannel()) .labels()
do X: println X

receive
send

The standard foreach service is a Curried service that takes an iterator and a do service and
applies the service to each item provided by the iterator. An iterator must provide services next,
which returns the next item, and hasNext, which answers false when there are no more items to

retrieve.
For further details, see Section 3.2.7 and Section 3.2.8.

Exercise 32 Write a recursive service that pretty-prints a form, suitably indenting each of its
bindings according to its nesting level.

2.6 Evaluating scripts

Scripts can be evaluated as strings within a given root:
aScript = """println "hello
WOI'ld" nnn
eval aScript root

hello
world

Exercise 33 Define a service that evaluates a string in a root that provides only println and
nothing else.

CHAPTER 2. A SMALL PICCOLA TUTORIAL 22

2.6.1 Loading scripts

A file may contain a set of bindings to be loaded: Suppose the file hello.picl contains:

hiThere = "hello from hello.picl"
hello: println hiThere

We may now use the standard service loadRelative to load and run this script:

’loadRelative "hello.picl" root
hello()

hello from hello.picl

The standard services load and loadCore load, respectively, files in arbitrary locations, and files
relative to the standard prelude.

Exercise 34 Use loadCore to load ide.picl with the current root, and invoke its main() service.

Exercise 35 Write a script that can be invoked from the command line that will start an explorer
on root. (Hint: ezplore is defined in the core library ide.picl.)

2.7 Testing

Piccola provides standard services to support testing and exception-handling.

2.7.1 Exceptions

Exceptions are raised using the raise service. Although any form can be given as an argument
to raise, normally a string describing the error is passed.

raise "my error"

Ezception:
Piccola Ezception: my error

raise "my error" at line 2, column 1

Alternatively, you may pass a form that binds msg=String.
To catch exceptions, use the try/catch clause:

try
do: raise(msg="eek!")
catch e: println "caught exception: " + e.msg

caught exception: eek!

Exercise 36 Raise various exceptions by performing illegal Piccola or Java operations. Catch the
exceptions and explore them.

Exercise 37 How would you implement your own version of try?

CHAPTER 2. A SMALL PICCOLA TUTORIAL 23

2.7.2 Assertions

Piccola provides an assert service that can be used to define pre- and post-conditions for services:

def fact N:
assert N>=0
if N==0
then: 1
else: Nxfact(N-1)

try
do:
println fact(5)
println fact(-1)
catch e:
println "Caught exception: " + e.msg

120
ASSERTION FAILED

Exercise 38 Implement your own version of assert.

2.7.3 Tests

Piccola provides a simple unit testing framework similar to JUnit (for Java) and SUnit (for
Smalltalk). PiUnit is a drastically stripped-down version that adopts the same principles as
its more sophisticated relatives:

e A single test case is constructed with PiUnit.newTest, which requires a name (a String) and
a test service.

e The test service performs various actions, and tests the results with PiUnit.assert,
PiUnit.assertEquals, PiUnit.assertFails and PiUnit.assertFalse.

e A test suite is constructed by composing test cases with the + operator.
e A test case or suite myTest can be run by invoking myTest .test () or myTest.test (verbose=true).
e Tests run silently, unless the verbose flag is set.

e When running a test suite, each individual test case is run, and errors are reported only for
tests that fail.

’PilUnit # Load the PiUnit services into root
testFact = newTest # Define a test case

name = "Factorial test"

test: assert fact(5) == 120
testBetterPoint = newTest # Another test case

name = "BetterPoint test"

test:

’a = newBetterPoint(x=0,y=4) # Build the "fizture" (test data)

’b = newBetterPoint(x=3,y=0)
assertEquals
get = a.distance(b)
expect = 5.asDouble()
myTestSuite = testFact + testBetterPoint # Compose a test suite
myTestSuite.test(verbose=true) # Run all the tests

CHAPTER 2. A SMALL PICCOLA TUTORIAL 24

Testing Factortal test...
Testing BetterPoint test...

Exercise 39 Define a test suite that exercises agents and channels.

2.8 Wrapping host entities

We have seen how JPiccola automatically wraps Java Booleans, Strings, and so on. But how can
we implement our own wrappers?
Consider our old factorial function. If we evaluate:

println "fact(20) = " + fact(20)
we get a nasty surprise:
fact(20) = -2102132736

The problem is that our plain Java integers overflow. Luckily Java provides a nice class,
java.math.Biglnteger, that would be perfect for computing large factorials, but this class has an
ugly interface, due to the design decision (i.e., “mistake”) to not support overloaded operators in
Java. We would like to automatically wrap instances of java.math.Biglnteger so that they support
operators like +, -, * and /.

Let’s start by defining the wrapper:

wrapBigInteger X:

X

+ Y: X.add[Y]

— Y: X.subtract[Y]
* Y: X.multiplyl[Y]
/_ Y: X.divide[Y]

$_ = X.toString

This wrapper will take an instance of Host.class("java.math.BigInteger") and extend it with
the operators we desire.

Now we register this wrapper so that the JPiccola runtime system will always apply our wrapper
when it sees a Biglnteger:

registerWrapper "java.math.BigInteger" wrapBiglnteger

Of course, ordinary numbers are still wrapped in the usual way, so we need a way to convert a
plain integer to a wrapped Biglnteger. One way to do this in Java is to use the Biglnteger(String)
constructor:

big N: class("java.math.BigInteger") .new[$N]
No we redefine fact () so the result is always a Biglnteger:

def fact N:
assert N>=0
if N==0
then: big(1)
else: big(N)*fact(N-1)

Finally we obtain the result we expect:

println "fact(20) = " + fact(20)

fact (20) = 2432902008176640000

CHAPTER 2. A SMALL PICCOLA TUTORIAL 25

Exercise 40 FExplore a Biginteger before and after registering the wrapper. NB: use
ezplore class("java.math.BigInteger").new("1")

Exercise 41 Define the remaining Number operators for wrapped Bigintegers. Define a PiUnit
test suite that exercises these operators.

Exercise 42 Define a linear-time Fibonacci function that uses wrapped Biglntegers.

Chapter 3

Piccola Standard Library

When JPiccola is started, the following standard library files are loaded:

e prelude.picl: sets up the initial root with standard services and forms. prelude.picl in turn
loads the following two files.

e collections.picl: provides Lists, Maps and Sets
e piunit.picl: provides the testing framework

You can find these files in the directory source/piccola/lib of the JPiccola distribution, or in the
directory lib of JPiccola3.7a.jar. (Unpack it with the command jar xvf JPiccola3.7a jar .)

In this chapter we first document the services provided by the standard Piccola prelude, and
then we document the built-in types used by these services.

3.1 The Standard root

After loading the prelude, the resulting initial root looks like this:

About = ...
Basic ..
Collections
Debug = ...
DefaultOp = ...
Host = ...
Kernel =
PiUnit R
asException = [service],

vartous standard services ...

From within the JPiccola console, you may explore the current root by running explore root.
This root, however, has been extended by services needed to run the console itself. In order to
explore the standard root, you should evaluate the following script:

(loadCore "ide.picl" root).explore root

This loads the ide services into a new form, and projects and evaluates just the explore service
on the standard root. The resulting explorer is illustrated in Figure 3.1.

26

CHAPTER 3. PICCOLA STANDARD LIBRARY

e0o

Exploring Form

Action

form

|l About =
| Basic =
} Collections =
i Debug =

) DefaultOp =

) Host =

Eernel =

4 Y vYvYyYyvywl

inspect = [service]

newChannel = [service]

run = [service]
OrJoin = | service]
> 3 Fillnit =
- asException = [service]
- asService = [servica]]
asString = [service] v
| —3 R

k[senfice], About = (core = (d;e = Thu Oct 08 2001, homell

laim

Figure 3.1: Exploring root

3.1.1 About

About documents the current version of Piccola

Service | Type

Description

core version=String,
date=String,

homeURL=String

Library version and build date

vm sys=String,
version=String,
date=String

System (e.g. “java” or “squeak”), vm
version and build date

3.1.2 Basic

27

Basic contains definitions of standard services that are also found in root. As a consequence, you
may override these root services, while still providing access to the original services in Basic. For

example:

println X:
Basic.println "jpiccola " + About
println "hello world"

yields:

.vm.version + ">>> " + X

CHAPTER 3. PICCOLA STANDARD LIBRARY 28

jJpiccola 3.6b>>> hello world
This resets println to the standard definition:
println = Basic.println

The interfaces of the types Boolean, String, Number, Exception, Label, Blackboard, and Var
are defined below in Section 3.2.

A Service is an arbitrary Piccola service. An URL is a wrapped java.net.URL (see the Java
API).

Service Type Description
asException String — Exception Create an exception from the argument.
See Section 3.2.5.
asString Any — String Convert the argument arg into a String
by invoking $arg.
asService Service — do: Service If necessary, convert arg so it can be in-
voked as arg.do(). (Used by foreach
and run.)
assert Boolean — () Raise an exception if arg is false.
equals Any — Any — Boolean Compare the arguments. Services are
always considered to be different.
eval String — Any — Any Parses argl and evaluates it with arg2
as root.
execNative Any — Any Evaluates (java: (), X).java in JPic-
cola or (squeak:(), X).squeak in
SPiccola.
false Boolean The boolean false value.
for (from:() — Number, | Perform argl.do(n) for n ranging from
to:() — Number, | argl.from() to argl.to(). Defaults
do: Number — Any)— () | for from() and to() are 1, and for do ()
is O.
foreach (hasNext:() — Boolean, | Perform arg2(argl.next()) while
next:() — Any)— | argl.hasNext().
Service — ()
forEachLabel | (form=..,do:...) — | Iterates over the labels of arg.form and
Any runs arg.do (L) for each label L.
hash Any — Number Returns a hash value for arg.
homeURL String The URL of the current script. If the
script has no URL, then this is the
empty form.
if Boolean — Any — Any Returns arg2.then() or arg2.else()
if argl is true or false. The then and
else bindings are optional.
isEmpty Any — Boolean Returns true if arg is the empty form
isExternal Any — Boolean Returns true if arg is a wrapped host
component.
isPeer Any — Boolean Returns true if arg is a peer form.
isService Any — Boolean Returns true if arg is (or has) a ser-
vice.
label Any — Label Returns a first class label contained in
F or the empty form

CHAPTER 3. PICCOLA STANDARD LIBRARY

load String — Any — Any Evaluates the piccola file identified by
the URL argl in the root context
arg2. Returns the resulting context,
with About.homeURL set to the URL of
the loaded script.

loadCore String — Any — Any Load a file relative to the prelude.

loadRelative | String — Any — Any Load a file relative to the current
script’s URL.

loop (while:..,do:..)— () Evaluate arg.do() while arg.while()
returns true.

newBlackboard | () — Blackboard Creates a blackboard with write,
remove, read services. See Section
3.2.13.

newCounter Number — Counter Returns a counter. See Section 3.2.12.

newLabel String — Label Returns a first class label with the name
arg. See Section 3.2.7.

newURL String — URL Create a wrapped java.net.URL from
arg. The string must conform to the
URL specification.

newVar () — Var Create a new variable. See Section
3.2.11.

print Any — () Prints the string $arg.

println String — () Prints the string $arg followed by a
newline.

protect Any — Any Wrap an extended Host form. See
[Kne03], p. 26.

raise Any — () Raise an exception.

stop 0O—=0 Stop the current thread

true Boolean The boolean true value.

try (do:...,catch:..)— () Evaluate arg.do() with the exception
handler arg.catch().

typeOf String — String Experimental type inference service.
See [Kne03].

3.1.3 Collections

29

List, Set and Map are normally created with the global collection operators [_1, {_} and {{_}}
(Section 3.1.5), and are described in Section 3.2.15.

Service | Type Description
newlList | () — List Returns a wrapped Host list.
newMap | () — Map Returns a wrapped Host hash table.
newSet | () — Set Returns a wrapped Host set.

3.1.4 Debug

These are some miscellaneous services useful for debugging. StackTrace is documented in Section

3.2.16.

CHAPTER 3. PICCOLA STANDARD LIBRARY 30

Service Type Description
getStackTrace (caller = ...) — | If arg is dynamic, returns the current
StackTrace stack trace. See Section 3.2.16.
printLabels Any — () Prints the labels of an arbitrary form.
printStackTrace | StackTrace — () Prints a stack trace.
wrapString Any — String Returns a built-in debug representation
of the argument.

To print the stack trace at any point in a Piccola script, you could invoke:

Debug.printStackTrace(Debug.getStackTrace(dynamic))

3.1.5 DefaultOp

The form DefaultOp defines global infix, prefix and collection operators. Global operators may
be locally overridden, for example, a+b is interpreted as a._+_(b), if a provides _+_. If not, then
it is interpreted as DefaultOp._+_default(a) (b). If the global + is not defined, an exception is
raised.

The default operators [_1, {_} and {{_3}} are defined in collections.picl. List, Set and Map
are described in Section 3.2.

Service Type Description

$_default Any — String Converts the argument to a String.

_==_default | Any — Any — Boolean The arguments are equal.

_!=_default | Any — Any — Boolean The arguments are not equal.

_—>_default | Any — Any — | Returns a form binding arg1 to key and
(key = ...,value = ...) arg?2 to value.

[_] () — List Returns a wrapped Host list.

{_} () — Set Returns a wrapped Host set.

{{_}} () — Map Returns a wrapped Host hash table.

New global infix, prefix and collection operators can be defined by updating DefaultOp. For
example,

DefaultOp.!_default x: println x

defines ! to be a global prefix operator that prints its argument. Now:
"howdy!"

yields:

howdy !

3.1.6 Host

Here various (Java) host-specific services are defined.

CHAPTER 3. PICCOLA STANDARD LIBRARY 31

Service Type Description

class String — Class Returns a form representing a Java
class. See Section 3.2.9.

classOf WrappedJavaObject — | Returns a form representing a Java

Class class. See Section 3.2.9.

exit 0O—=0 Stop the Java vm.

false Boolean Boolean false.

getProperty String — String Looks up a Piccola system
property. (See javadoc of
ch.unibe.piccola.Host.getProperty)

getResource String — URL Returns a a wrapped java.net.URL for a
filename.

meta Any — Meta Returns a meta-representation of a
form. See Section 3.2.8.

newLocalClassLoader | String — () Sets the class loader from a local file.

newString () — StringBuffer Returns a wrapped Java StringBuffer.

newURLClassLoader String — () Sets the class loader from a URL.

registerWrapper String — Service — () Used to register the service arg2 as a
wrapper for the class argl.

setAutoAbort Boolean — () If set to true, Host terminates auto-
matically when all agents are blocked
or terminated; otherwise terminates on
Host.exit ().

setCallDynamic Any — () Sets the dynamic context for callbacks.

true Boolean Boolean true.

3.1.7 Kernel

These services are available in root, and are provided by the Piccola kernel.

Service Type Description

inspect Any — (isLabel:..., | If argl contains a label L, calls
isService:..., arg2.isLabel(L); else, if it
isEmpty:...) — () contains only a service, calls

arg2.isService(); else (if it is
empty), calls arg2.isEmpty O);

newChannel | () — Channel Creates a new Channel. See Section
3.2.10.
run do:..— () Runs arg.do() in a concurrent agent.

3.1.8 PiUnit

This form provides a simple unit testing framework. Tests are normally provided in scripts by a
test service. For examples, see the core tests defined for the standard library (folder test relative
to prelude.picl).

CHAPTER 3. PICCOLA STANDARD LIBRARY 32

Service Type Description

assert Boolean — () Raises an exception if arg is not true.

assertEquals | Boolean — () Raises an exception if arg.expect does
not equal arg.get.

assertFails |do:...— () Raises an exception if arg.do() does
not raise an exception.

assertFalse | Boolean — () Raises an exception if arg is not false.

fails O—=0 Raises an assertion exception.

loadCoreTest | String — Any — Any Loads a core test.

loadTest String — Any — Any Loads a test relative to current script.

newTest (name=String , Builds a test case with name arg.name

test:...) — Test and body arg.test(). See Section

3.2.6.

Note that both Basic and PiUnit provide assert services. They essentially behave the same way,
except that PiUnit.assert generates a different message, and it returns a StackTrace relative to
the actual location of the failed test.

When writing scripts, a good strategy is to always return a binding test to a suite of tests
that exercise the services defined in the script. Such a script can either be evaluated, i.e., causing
its main service to be run, or loaded to run its test service.

Alternatively, you may put all the tests in a separate file. In this case, each test script should
provide a main service that will run the tests. That way, when the test case is run as a script,
main will be invoked and the tests will be run. On the other hand, when the script is loaded from
another script, the test service can be composed with other tests. This strategy is used to test
the standard libraries. There is a test file for each logical group of services (i.e., testBasic.picl,
testBool.picl, and so on), and a master script, testAll.picl, which loads them all, composes them into
a single test suite, and runs them all. (See the test directory within the lib directory containing
prelude.picl.)

3.1.9 Builtin Host

The following services are provided by Piccola when it starts up, and are renamed or wrapped by
the prelude.picl.

33

CHAPTER 3. PICCOLA STANDARD LIBRARY
Service Type Description
FALSE Boolean false
TRUE Boolean true
exit 0O—0 Host.exit
findResource String — URL Host .getResource
getProperty String — String Host.getProperty
meta Any — Meta Host.meta
newChannel () — Channel Kernel.newChannel
newClass String — Class Host.class
newVariable Any — Variable Used by Host.newVar
print String — () Basic.print
println String — () Basic.println
registerWrapper String — Service — () Host.registerWrapper
serviceFromString String — Any — Service | Used to define Basic.eval
serviceFromURL URL — Any — Service Used to define Basic.load
setAutoAbort Boolean — () Host.setAutoAbort
setCallDynamic Any — () Host.setCallDynamic
setExceptionHandler | Service — () Used to set Basic.raise as the excep-

tion handler.

toString () — String Returns host version info (not used)
typeFromString String — String Basic.typeOf

Recall that an URL is a wrapped java.net.URL

3.2 Builtin Types

3.2.1 Boolean

The JPiccola Boolean wraps, but does not export all the services of a Java Boolean.

Service | Type Description
and Boolean — Boolean Boolean and.
not () — Boolean Boolean negation.
or Boolean — Boolean Boolean or.
select | (true=Any, Returns arg.true or arg.false.
false=Any)— Any
! () — Boolean Boolean negation.
$ () — String Returns “true” or “false”.
& Boolean — Boolean Boolean and.
&& Boolean — Boolean Lazy Boolean and.
| Boolean — Boolean Boolean or.
[Boolean — Boolean Lazy Boolean or.
3.2.2 String

A JPiccola String supports all the services of a java.lang.String, in addition to the following services:

CHAPTER 3. PICCOLA STANDARD LIBRARY

Service Type

Description

charAt Number — Char

Returns the (wrapped) Java character
at the given position.

indexO0f Char — Number

Returns the index of the given character
within the string.

isEmpty () — Boolean

Returns whether size is zero.

size Number

The length of the string.

substring | (from=Number,
to=Number) — String

Returns the substring indexed by the
given range.

$ () — String Returns the string representation.
+ String — String String concatenation.

<= String — Boolean Alphabetical <.

< String — Boolean Alphabetical <.

>= String — Boolean Alphabetical >.

> String — Boolean Alphabetical >.

3.2.3 StringBuffer

34

A JPiccola StringBuffer supports all the services of a java.lang.StringBuffer, in addition to the

following services:

Service | Type Description

append | String — StringBuffer Append arg.

$ () — String Returns the String representation.
+ String — String String concatenation.

3.2.4 Number

A JPiccola Number supports all the services of a java.lang.Number, in addition to the following

services:
Service Type Description
abs () — Number Absolute value.
asByte () — WrappedJavaObject | java.lang.Number.byteValue
asDouble | () — WrappedJavaObject | java.lang.Number.doubleValue
asFloat () — WrappedJavaObject | java.lang.Number.floatValue
asInteger | () — WrappedJavaObject | java.lang.Number.intValue
asLong () = WrappedJavaObject | java.lang.Number.longValue
asShort () = WrappedJavaObject | java.lang.Number.shortValue
equals () — Boolean java.lang.Number.equals
smaller Number — Boolean <
trunc () — Number Truncate the number.
$ () — String String representation.
- () — Number Negation
% Number — Number Modulo.
* Number — Number Multiplication.
Number — Number Addition
- Number — Number Subtraction.
Number — Number Division.
<= Number — Boolean <
< Number — Boolean <
== Number — Boolean Equals.
>= Number — Boolean >
> Number — Boolean >

CHAPTER 3. PICCOLA STANDARD LIBRARY 35

3.2.5 Exception

This is not a Java Exception, but a JPiccola representation of an exception. In any case, when a
Java Exception is raised by a wrapped Java object, it will be caught by the JPiccola runtime and
wrapped as a JPiccola FException.

Service Type Description
getStackTrace | () — StackTrace Return the StackTrace at the point
the exception was raised. See Section
3.2.16.
msg String Textual representation of the exception.
defaultAction | () — () Default action (usually, print the msg)
3.2.6 Test

A single test case is built using PiUnit.newTest (see Section 3.1.8). Test suites are built by
composing tests with the + operator. A test is run by invokling its test service, with an optional
verbose=true flag, which reports the name of each individual test case being run.

Service | Type Description
test | verbose=Boolean — () Run the test.
+ Test — Test Create a composite test suite.

3.2.7 Label

First-class labels are returned by the services Basic.label and Basic.newLabel. (The former
takes Any form as its argument and returns a first-class label representing the “next” label bound
in that form; the latter constructs a first-class label whose name is the argument String.)

Service Type Description

bind Any — Any Returns the form label=arg, where
label is the name of the label.

exists Any — Boolean Returns whether label is bound in
arg.

hide Any — Any Removes any binding for label present
in arg.

name () — String Returns label.

project | Any — Any Returns arg. label; else raises an ex-
ception.

restrict | Any — Any Same as hide.

$ String Returns "Label(label)"

== Any — Boolean Equality test

3.2.8 Meta

meta f returns a meta-representation of a form f that provides some convenient reflective services.

CHAPTER 3. PICCOLA STANDARD LIBRARY
Service Type Description
bind String — Any Returns arg=f
equals Any — Boolean meta f equals meta arg?
exists String — Boolean Is arg bound in £7
extend Any — Any Extend f by arg
getBindings () = Map Returns map of bindings in f.
hashCode () — Number Same as Basic.hash(f)
hide String — Any Hide label arg in £
isEmpty () — Boolean Is form the empty form?
isPeer () — Boolean Is form a peer form?
isService () — Boolean Does £ have a service?
labels 0 — | Returns an iterator over labels (cf.
(hasNext:() — Boolean, | Basic.foreach).
next:() — Any)
project String — Any Lookup f.arg
runtimeEquals Any — Boolean Compares f and arg. Called by global
default ==.
runtimeToString | () — String Converts f to a String using global $
toString () — String String representation of £

3.2.9 Class

The JPiccola service Host.class returns a form that wraps services of the named Java class.

Service Type Description

getClass | () — WrappedJavaObject | Returns a wrapped java.lang.Class

new () — WrappedJavaObject | Returns a wrapped instance of the
class.

newArray | Number — Array Returns an array of wrapped instances
of the class.

3.2.10 Channel

Channels are created using Kernel.newChannel ().

Service | Type Description
receive | () — Any Blocking receive; consumes and returns
a value from the channel.
send Any — () Non-blocking send; puts a value onto
the channel.
3.2.11 Var

36

Variables are created with Basic.newVar (Any). The optional argument is the initial value of the
variable (by default, the empty form).

Service | Type Description

get () — Any Return the current value of the vari-
able.

set Any — Any Update the variable and return the new
value.

* () — Any Same as get.

<= Any — Any Same as set.

Note that a Var is simple an extended Variable (provided by the newVariable service of the
built-in Host), that adds * and <- as syntactic sugar for get and set.

CHAPTER 3. PICCOLA STANDARD LIBRARY 37

3.2.12 Counter

A Counter is created with Basic.newCounter (Number). A Counter extends a variable with the
following services:

Service | Type Description

dec () — Number Decrement the counter and return the
updated value.
inc () — Number Increment the counter and return the

updated value.

Note that initializing a Counter with a non- Number will result in an exception being raised when
the counter is incremented or decremented.

3.2.13 Blackboard

A Blackboard wraps a Channel, renames send and receive to write and remove, and provides
a non-destructive read service. A Blackboard can be created with Basic.newBlackboard.

Service | Type

Description

read () — Any

Non-destructively reads and returns a
value from the blackboard.

remove | () — Any

Removes and returns a value from the

blackboard.

write | Any — ()

Non-blocking send; puts a value onto
the blackboard.

3.2.14 Array

Array forms are peer forms of Java array objects, and are returned by any wrapped Java object

whose methods return Java Arrays.

Service | Type Description

at Number — Any Element lookup
forEach | Service — () Iterate over elements
size () — Number Size of array

3.2.15 Collections

Piccola supports Lists, Sets and maps, which are created, respectively, using the global default

operators [_]1, {_} and {{_}3}.

Every type of collection supports the following services;

Service Type Description

add Any — Collection Append arg to the end of the collection.

contains | Any — Boolean The collection contains arg,.

forEach | Service — () Invokes arg(item) (alternatively,
arg.do(item)), for each item.

remove Any — Collection Removes the first occurrence of arg
from the collection.

size () — Number The current length of the collection.

map Service — Collection Return the collection the results from
applying arg (resp. arg.do) to each
element of the collection.

CHAPTER 3. PICCOLA STANDARD LIBRARY

reduce Service — Any — Any Produce the product of the collection,
using argl as the operator, and arg2
as the initial value.

+ Any — Collection Return a copy of the collection with el-
ement arg appended to the end.

++ Collection — Collection Return a copy of the collection with col-
lection arg concatenated to the end.

- Any — Collection Return a copy of the collection with el-
ement arg removed.

-= Collection — Collection Return a copy of the collection with ev-
ery occurrence of arg removed.

? Any — Boolean The collection contains arg.

$ () — String Returns the string representation of the
collection

List Lists additionally support the following services:

Service Type Description

at Number — Any Returns the item at position arg (NB:
the first item is at positionl, not 0).

set (index=Number, Updates the value at position

elem=Any)— Any arg.index (must be a valid index);

returns the old value.

removeAll | Any — List Removes every occurrence of arg from
the list.

Set Sets additionally support the following services:

Service Type Description

subset Set — Boolean The set is a subset of arg.
superset | Set — Boolean arg is a subset of the set.
<= Set — Boolean The set is a subset of arg.
>= Set — Boolean arg is a subset of the set.

Map Maps additionally support the following services:

Service Type Description

at Any — Any Lookup key arg.

get Any — Any Lookup key arg.
containsKey Any — Boolean arg occurs as a key.
containsValue | Any — Boolean arg occurs as a values.
isEmpty () — Boolean No keys are bound.
keys () — Set Returns the set of keys.

3.2.16 StackTrace

38

A StackTrace is returned by getStackTrace(dynamic), or by e.getStackTrace, where e is a

raised exception.

CHAPTER 3. PICCOLA STANDARD LIBRARY

Service | Type Description

bottom | Boolean We are at the bottom of the stack.

src String The current source code location.

top () — String Returns the current source code loca-
tion.

pop () — StackTrace Returns the caller’s StackTrace

39

Chapter 4

Piccola Language

The following description of the Piccola syntax has been adapted from Franz Achermann’s PhD
thesis [Ach02]. Please consult the thesis for details of the formal semantics.

4.1 The Language

We now define the syntax of the Piccola language. The language does not contain syntactical
primitives for communication along channels, for spawning off new agents, and for hiding labels.
These features are made available as predefined services in the initial root context.

4.1.1 Abstract Syntax

The abstract syntax of Piccola is given in Table 4.1. The grammar is a set of productions that
describe how form expressions are constructed. Terminal symbols of the grammar are the Piccola
keywords def and root, the symbols backslash (\), colon (:), dot (.), round parentheses (()),
comma (,), equal (=), and the quote sign (?). Nonterminal symbols are shown in Italic. Optional
parts for an alternative are written in square brackets |[...].

The most important class of terms are Piccola form expressions. These expressions evaluate
to a form. Constant literals are numbers and strings. Strings are enclosed in double quotes (")
or in triple douple quotes (""" ... """). The former interpret escaped characters, whereas the
latter do not.

Normal identifiers start with an alphanumeric character and are followed by a sequence of
numeric, alphanumeric and underscore characters. Special identifiers start with an underscore
or an operator character, are followed by a sequence of alphanumeric, numeric and operator
characters, and end with an underscore possibly followed by a sequence of alphanumeric characters.

Special identifiers denote the user-defined operators labels. The underscore is a placeholder
for arguments of infix and prefix operators. For instance, the identifier for the + infix operator
is _+_, its default label _+_default. User-defined operators are sequences of the characters: * /
+-=<>1%:;""8 | 7&and @ Alternatively, an operator can be an identifier written in
backquotes, like ‘mod ‘. Collections are enclosed by tokens opt and op} that match. These tokens
are sequences of { or [and } or], respectively. They match if their individual characters match
in reverse order. For instance, [{{ matches with }}].

4.1.2 Precedence Rules

The precedence rules for Piccola are given in Table 4.2. Each syntactical category has a precedence
and an associativity. For instance the application “a b” has precedence 3 and is left-associative.
Subterms may only have higher precedence. The precedence of infix expression is given by the
first character of the infix operator. There are four groups of precedence:

40

CHAPTER 4.

PICCOLA LANGUAGE

41

Form ::=
root
identifier
literal
\[Param] : Form
Form . identifier

Form Form

Form op Form

op Form

Form , Form

opt [FormList] op?

([Form])

root = Form [, Form |
[def] Label [Param | :

Form [, Form |

[def] Label = Form [, Form |

> Form [, Form |

FormList ::=

[FormList , | Form

Param ::=

Labe

identifier [Param]
([identifier |) [Param |

[=
identifier
Label . identifier

current namespace
label

constant literal
anonymous Service
projection
application

infiz application
prefix application
extension
collection
parentheses
sandboz

service binding
binding

quote

collection composition

simple label
nested label

Table 4.1: Piccola Language Syntax

Precedence Category

Concrete Syntax

9R | prefix op Form
8L | projection Form . identifier
tight invocation Form (Form)
7L | arithmetic high Form op Form
6L | arithmetic low Form op Form
5L | comparison Form op Form
4L | other op Form op Form
3L | invocation Form Form
2R | service \[Param] : Form
binding [def] Label = Form
service binding [def] Label | Param] : Form
sandbox root = Form
quote > Form
1L | collection composition FormList , Form
1R | binding sequence [def] Label = Form , Form

service binding sequence
sandbox sequence

quote sequence
extension

[def] Label [Param] :

Form , Form

root = Form , Form

> Form , Form

Form , Form

Table 4.2:

Precedence Rules

CHAPTER 4. PICCOLA LANGUAGE 42

Group First character
7L Arithmetic high | * /
6L Arithmetic low | + -
5L Comparison =< > |
41, Other hotos T 78| 7 & @ identifier

”

As an example, the expression “a b +> c¢” is parsed as “a (b +> c)” because arithmetic low
(defined by the + character) has precedence 6 which is higher than precedence of invocation which
in turn is 3. If the precedence is left or right associative, then the left or right subterm may
in addition have the same precedence. The expression “a b c¢” is parsed as “(a b) c” because
invocation is left associative.

Note that infix operators have higher precedence than invocation. Therefore the expression
‘a + b” is interpreted as an infix arithmetic expression and not as “a (+ b)”.

There are two different precedences for invocation: tight invocation (8L) and normal invocation
(3L). For tight invocation, the argument must be enclosed in parentheses or collection brackets
and must immediately follow the functor. No whitespace may occur in between. For instance, the
expression “a b(c)” is parsed as “a (b c)”, whereas “a b (c)” is parsed as “(a b) c¢”. The
motivation to distinguish normal and tight invocation is driven by the desire to write code as

4

a().b(c = x).d instead of ((a()).b(c = x)).d and
abec instead of a(b) (c).

The precedence rules are strict. This means that they not only rule out ambiguities but they
also forbid certain constructs and force the programmer to use parentheses or indentation. For
instance the expression “a b=()” would be syntactically valid if parsed as “a (b=())”". However,
such a parsing is not permitted since the expression “b=()” has precedence 2 and cannot be a
subterm of invocation with precedence 3. Such an expression must be corrected using additional
parentheses or indentation.

The associativity induced by a comma is different when the comma appears as top-level oper-
ator in an expression sequence or within collection brackets.

Collection. A comma appearing top-level inside collection brackets has precedence 1L and de-
notes an expression FormList, Form. For instance the expression “[a, b = x, c¢]” is parsed
as “[(a, (b = x)), c]”. This means that the collection will contain three elements: the
value of “a”, of “b = x”, and that of “c”.

Note that by using parentheses the meaning of the comma changes: The collection
“la, (b = x, c)]” contains two elements, namely “a” and the term “b = x, c”.

Sequence. A comma appearing in a sequence of form expressions has precedence 1R. If the left
hand side of a comma is a binding, a service binding, a sandbox or a quote expression, then
the right-hand side is the scope of the left hand side. In these cases the value of the left-hand
side extends the current root context for the scope. For instance the expression

a=1, ’b, c

is parsed as “(a = 1, (’b, c))”, i.e., the expression “’b, c” is in the scope of the binding

“a = 1”7 and the expression “c” is in the scope of “b”.

4.1.3 Indentation

Piccola supports indentation and newlines instead of parentheses and comma to group form ex-
pressions. For example the term “x = f(a = (), b = a), y” is normally written as

x = f
= 0

a
b=a

CHAPTER 4. PICCOLA LANGUAGE 43

When a line starts at a higher or lower indentation than the previous line, an opening parenthe-
sis (indent) or a closing parenthesis (dedent) is inserted, respectively. If the new line starts on the
same indentation level, a comma is inserted. Inserted dedents may not mix matching parentheses,
brackets or other indent-dedent pairs. Therefore, one or multiple dedent tokens are inserted before
any closing parentheses, bracket or dedent, if a corresponding indent was inserted but not closed
between the matching pairs. The precise rules are as follows. Assume line n has indentation level
d. The following line has indentation level d'.

Indent. If d < d’ an indent with indentation level d’ is inserted unless line n ends with an opening
parentheses or bracket or the following line starts with a dot.

Comma. If d = d’, a comma is inserted unless line n ends with a comma, an operator, an opening
parentheses or bracket, or the following line starts with a dot.

Dedent. If d > d’ and the following line does not start with a closing parentheses or bracket then
closing dedents to match previously inserted indents are inserted until there is a remaining
unmatched opening parentheses, bracket, or an indent with a lower indentation level. A
comma is inserted unless the following line starts with a dot.

Closing. Dedents are inserted before any closing parentheses or bracket if there are unmatched
indents inserted after the matching parentheses or bracket that gets closed. If dedents are
inserted, the next line must not have an indentation level higher than the last inserted
dedent.

End. At the end of an input, as many dedents are inserted as there are remaining unmatched
indents inserted.

The precedence of invocations with an indented argument have normal precedence (8L). For
example

ab
c

is parsed as “(a b) c”.

Indentation restricts the programmer’s freedom to insert newlines at will. For instance a
newline cannot occur after an equal sign unless the value of the binding is indented or put into
parentheses. For instance

o T w

is tokenized as “a = , b , c¢” which is syntactically wrong.
Note that no indents are inserted if the previous line ends with an opening bracket. For example
the code

a=1[
1
2]

“

is read as “a = [1, 2]”. This collection has two elements, whereas “a = [(1, 2)]” denotes a
collection with one element, namely 1 extended with 2.

4.2 Abbreviations

Many of the features of the Piccola language are syntactic sugar. In Table 4.3 the expansion for
these features are given. We use T to range over form expressions, P over parameter expres-
sions and L over label expressions. The abbreviations define, amongst other simplifications, the
semantics for user-defined operators and collections.

CHAPTER 4. PICCOLA LANGUAGE 44

[def | L{P]:T = [def] L=\[P]:T (abb-sd)
N\IP: T =\[:\P:T (abb-curryl)
N([(IDP:T =\(ID:\P:T (abb-curry2)
\[: T =\I):T (abb-paren)
\: T =\0O : T (abb-void)
[def|]L.I1=T = L=(L,[def]I=1T) (abb-nest)
[deflI =T\, T, = ([def|I =T, T=1),T, (abb-assign)
Ty [, Ta] = root = (root, T1) [, Tn] (abb-quote)
root =T = root =T, O (abb-sandbox)

Ty op Ty = C(x=1T1), opmﬁz (y): (opdef““m"ﬁz xy), I).opmﬁz T
(abb-infix)

op T = Clx=T), opP (): (oplefoultPrefic 1y 1y opvrefiz ()
(abb-prefix)
opl opt = oplt O (coll-empty)
opl [Ty,] Ty opt = (opl [Ty] 0p?) . add Ty (coll-add)

Table 4.3: Piccola Language Abbreviations

4.2.1 Services

The rule abb-sd allows the programmer to define services and bind them to an identifier in a single
expression. For example

id x: x

is syntactic sugar for: id = \x: x. Observe that the name of the service id is not visible in the
body of its binding. For recursive services we use the def keyword.

The rules abb-curryl and abb-curry2 allow the programmer to write curried functions more
user friendly. Instead of

\1l: \r: 1 +r
we can write
\lr:1+r

The rules abb-paren and abb-void allow us to omit parentheses and formal parameters in pa-
rameter expressions. For instance in the example

if n < 2
then: 1
else: n * fac(n - 1)

the bindings for label then and else expand to:

if n < 2
then = \(O: 1
else = \(): n * fac(n - 1)

CHAPTER 4. PICCOLA LANGUAGE 45

4.2.2 Nested Bindings

The rule abb-nest specifies the semantics of bindings with a nested label. A nested binding
“a.b = c” extends the form denoted by a with the binding “b = c¢”. This is achieved by writing
“a = (a, b = ¢)”. This process can be repeated to unfold the complete structure of the nested
label.

Observe that an expression Label.x = T is only valid when the current root context contains
a binding for Label. This is due to the fact that the nested binding is translated to a binding
where the right-hand side value is an extension of Label with a normal binding. For instance the
following code is invalid

a= 0 # a will be the empty form
a.b.c = ... # wrong!

since the form a.b is not defined.
The rule abb-nest defines an inner fix-point when used with the def keyword. The term
“def f.b = c” is equivalent to

f =
f
def b = ¢

whereas an outer fix-point would be:

def f =
£ # f used while being defined. Wrong!

Such code is illegal since it would denote an infinite form.

4.2.3 Assignment

The rule abb-assign allows us to rewrite binding assignments with a nonempty scope. The value
of “l=a,b” is a binding 1=a extended with the value of “b” where “b” is evaluated in a context
that contains 1=a. This is achieved by rewriting “1=a,b” as:

(1 = a)
(1 =1
b

Note that the quoted expression evaluates “a” and extends the root context. The following example
illustrates the difference between assignment and extension:

a =
1=1 # assignment
println 1 # prints 1
1 =2 # extension, does not change root
println 1 # stell prints 1

println a # prints (1 = 2)

1

1

CHAPTER 4. PICCOLA LANGUAGE 46

4.2.4 Quoted Expressions

»

We call expressions of the form “root = ...” sandbozres because they replace the root namespace
of any expression that follows.
We extend the root context with the value of an expression “a” by:

root = (root, a)

Since such constructs occur very frequently we provide a special notation using quotes. By rule
abb-quote the above code is abbreviated as:

’a

The quote construct is often used for local definitions. Its bindings are not exported.
The rule abb-sandboxr defines the empty form as the scope for sandbox expressions without
scope. The value of a quoted expressions is the empty form. For instance:

X = ’a

is syntactic sugar for “x=(root =(root,a), ())”. The value of the whole expression is the binding
x=0).

These rules explain the behaviour of the following idiom of using two quotes in Piccola. For
instance, “’’extern(), ” is an abbreviation for

root =
root
(root = (root, extern()), ())

This code evaluates extern() and extends the root context with the empty form. This means
that the result of extern() is not used, the application is evaluated for its side effect only. We
also use this idiom if the application is known to return the empty form to make the code more
self-documenting.

4.2.5 User Defined Operators
The infix expression “a + b” is syntactic sugar for

(
"(x = a)
(_+_ y: DefaultOp._+_default x y) # default +
X

)._+_ D

The behaviour of this term is as follows. Assume the value of the expression a contains a
binding _+_=S. In this case the projection on the last line denotes the service S and the expression
is equivalent to

a._+_b

The infix operator is dispatched on its left-hand expression.
Now, assume a has no binding for the label _+_. In this case the projection sees the service
that is defined as a default operator and the infix-expression is equivalent to

DefaultOp._+_default a b

The order of evaluation is in both cases the same: First the left-hand expression is evaluated
then the right-hand expression is evaluated and finally the service of the operator is applied. We
use the label DefaultOp to contain global defaults for user-defined operators.

A similar expansion works for prefix operators. The term “+a” behaves as “a.+_()” when the
form a contains the label +_ and as “DefaultOp.+_default a” otherwise.

CHAPTER 4. PICCOLA LANGUAGE 47

4.2.6 Collections

The semantics of user-defined collections in Piccola is specified by the rules coll-empty and coll-
add. They work as follows. For each user-defined collection there is a global factory in DefaultOp.
The code “x = { }” is syntactic sugar for

x = DefaultOp.{_}0

It should be noted that DefaultOp.{_} is not a collection itself, but a factory to create new
(empty) collections. Individual elements are added to such a collection using its add service. The
term “{a, b, c}” is syntactic sugar for

DefaultOp.{_}() .add(a).add(b).add(c)

Observe that a collection, i.e., the form returned by the factory must contain a service add
which in turn returns the collection with the added element.

Recall from Section 4.1.2 that the comma separates the elements of the collection. As such,
the bindings do not behave like assignments. For instance

a=1 # Assignment

tt

a =2 # inside collection
b = all

X

is syntactic sugar for

a=1
DefaultOp.[[_]1]1().add(a = 2).add(b = a)

X

The root context is the same for both elements that are added to the new collection. The collection
x contains the bindings a=2 and b=1.

Chapter 5

A Brief History of Piccola

Piccola was developed as a result of the desire to have a formal framework for understanding
how software entities can be composed. In general, we assume that software systems are open
and evolving, and in particular, concurrent and distributed. An early attempt to propose such
a framework was outlined in “Viewing Objects as Patterns of Communicating Agents” [NP90].
Abacus was a first attempt to implement a Piccola-like language [Nie90].

A research agenda for developing a composition language was first described in the position pa-
per “Requirements for a Composition Language” [NM95]. This led first of all to some experiments
using Milner’s m-calculus [MPW92|, and its implementation in the PicT programming language
[PT95], to model various sorts of software abstractions [NSL9I6, LSN96]. A key result of this work
was the insight that extensible records, i.e., forms, provided a better basis for modeling reusable
software abstractions and wrappers than did tuples. This in turn led to the development of the
mL-calculus, which is presented in detail in the PhD dissertation of Markus Lumpe [Lum99]

Piccola itself was first proposed in the ESEC 97 Workshop on Foundations of Component-Based
Systems [LSNA97]. The syntax of Piccola has evolved considerably since the first version, which
we refer to as Piccolal. (The version described in the present document is Piccola3.) Piccolal is
defined on top of £, and is described in Lumpe’s thesis and in the paper “A Formal Language
for Composition” [LANOO].

The PhD thesis of Jean-Guy Schneider [Sch99] presents the ForM calculus, a refinement of the
wL-calculus that further eases modeling of software abstractions, and illustrates how forms can
be conveniently used to model a wide range of software composition mechanisms. The thesis also
presents PiccoLa(F), a version of Piccola built on top of the Form calculus.

There are two papers presenting Piccola2? in some detail, “Applications = Components -+
Scripts — A tour of Piccola” [ANO1] and “Piccola — a Small Composition Language” [ALSNO1].
These papers also introduce the notion of a compositional style, which enables one to express an
application as a composition of software components. The conceptual framework supported by
Piccola is introduced in the paper “Components, Scripts and Glue” [SN99]. Compositional styles
are explored in various papers [AKN00O, NAOOb] and in a student project of Stefan Kneubuehl
[Kne01].

The paper “Explicit Namespaces” [AN00] explains how forms unify a number of concepts,
including namespaces, thereby enabling the definition of abstractions, such as generic wrappers,
that are difficult or impossible to define in most programming languages.

JPiccola is an implementation of Piccola3. The PhD thesis of Franz Achermann [Ach02] de-
scribes the syntax and semantics of Piccola3 in detail. This language is based on the Prccora
calculus, a further refinement of £ and the Forwm calculus, which provides form introspection,
and a number of features such as first-class abstractions as built-in mechanisms.

One of the difficulties in implementing a language like Piccola, is to realize an effective bridge
to the host language. This subject is explored in detail in the diploma thesis of Nathanael Schaerli
[Sch01, SAO1], and a highly effective partial evaluation strategy is developed in the Squeak im-
plementation of SPiccola that drastically reduces the wrapping and unwrapping of host objects.

48

CHAPTER 5. A BRIEF HISTORY OF PICCOLA 49

Achermann proves in his dissertation [Ach02] that this strategy is sound. This strategy is also
adopted and refined in the present implementation of JPiccola, and is described in the diploma
thesis of Stefan Kneubuehl [Kne03].

Another difficulty when the host language is object-oriented, is that many components cannot
be composed without creating a subclass of an existing host-language class. To create a Java GUI,
for example, one must subclass a listen class or implement a listener interface. Since Java provides
only introspection, and not full reflection, the problem cannot be solved without generating a
number of boilerplate Java classes. In his diploma thesis [Sch03], Andreas Schlapbach demonstrates
a JPiccola approach in which these boilerplate class can be generated on-the-fly by using a bytecode
generation package.

Another open problem is to develop a static type system for Piccola. Lumpe partially ex-
plored this topic in his dissertation [Lum99], but only considered typing of £, not Piccola itself.
Nierstrasz has proposed an experimental system of “Contractual Types” [Nie03] in the context of
a pure form calculus, but has not applied it to Piccola. Stefan Kneubuehl, in his diploma the-
sis [Kne03], extends contractual types to handle Piccola features not present in the (pure) form
calculus, and develops an experimental type inference system for JPiccola.

Cited publications are available from the scg web site:

www.iam.unibe.ch /~scg/cgi-bin /oobib.cgi?query=piccola.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science Foundation for the
following projects:

e “Composing Active Objects” (SNF Project No. 2140610.94, Oct. 1994 - Sept. 1996),

e “Infrastructure For Software Component Frameworks” (SNF Project No. 2000-46947.96,
Oct. 1996 - Sept. 1998),

e “A Framework Approach to Composing Heterogeneous Applications”, (SNF Project No.
20-53711.98, Oct. 1998 - Sept. 2000),

e “Meta~-models and Tools for Evolution Towards Component Systems” (SNF Project No.
20-61655.00, Oct. 2000 - Sept. 2002), and

e “Tools and Techniques for Decomposing and Composing Software” (SNF Project No. 2000-
067855.02, Oct. 2002 - Sept. 2004).

Many thanks to Gabriela Arévalo, Alexandre Bergel, Markus Gaelli, Tudor Girba, Marc-
Philippe Horvath and Laura Ponisio for their suggestions and corrections.

http://www.iam.unibe.ch/~scg/cgi-bin/oobib.cgi?query=piccola

Chapter 6

JPiccola FAQ

: Where can I find prelude.picl and all the other standard library scripts?
: Unpack the JPiccola jar file (jar xvf JPiccola3.6b.jar). prelude.picl is in the lib folder.

: How do I run all the standard tests from the console?
: Run: (loadCore "test/testAll.picl" root).main()

: How do I print the current stack trace without raising an exception?
: Run: Debug.printStackTrace (Debug.getStackTrace(dynamic)). See Section 3.1.4.

: What does it mean when Piccola reports <No source information available>?

: This means that the stack trace is referring to a piece of code that has no source code reference.
Mostly, this is code generated by the vm such as Piccola wrappers for Java method calls. Just
ignore it.

PO PO PO PO

Q: How do I invoke a Java method that takes an int or a long argument, like
Thread.sleep()?
A: Host.class("java.lang.Thread") .sleep[(N*1000) .asLong()]

a0

Bibliography

[Ach00]
[Ach02]

[AKNO00]

[ALSNO1]

[ANOO]

[ANO1]

[Cri99]
[Kne01]
[Kne03)]

[LANOO]

[LSN96]

[LSNA97]

[Lum99]

[MPW92]

[NAOOa]

[NAOOb]

Franz Achermann. Language support for feature mixing. In Workshop on Multi- Dimensional
Separation of Concerns in Software Engineering (ICSE 2000), Limerick, Ireland, June 2000.

Franz Achermann. Forms, Agents and Channels — Defining Composition Abstraction with Style.
PhD thesis, University of Berne, January 2002.

Franz Achermann, Stefan Kneubuehl, and Oscar Nierstrasz. Scripting coordination styles. In
Anténio Porto and Gruia-Catalin Roman, editors, Coordination ’2000, volume 1906 of LNCS,
pages 19-35, Limassol, Cyprus, September 2000. Springer-Verlag.

Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Piccola — a
small composition language. In Howard Bowman and John Derrick, editors, Formal Methods for
Distributed Processing — A Survey of Object-Oriented Approaches, pages 403-426. Cambridge
University Press, 2001.

Franz Achermann and Oscar Nierstrasz. Explicit Namespaces. In Jiirg Gutknecht and Wolfgang
Weck, editors, Modular Programming Languages, volume 1897 of LNCS, pages 77—89, Ziirich,
Switzerland, September 2000. Springer-Verlag.

Franz Achermann and Oscar Nierstrasz. Applications = Components + Scripts — A Tour of
Piccola. In Mehmet Aksit, editor, Software Architectures and Component Technology, pages
261-292. Kluwer, 2001.

Cristina Gheorghiu Cris. Visualisierung von pi-programmen. Informatikprojekt, University of
Bern, January 1999.

Stefan Kneubuehl. Implementing coordination styles in piccola. Informatikprojekt, University
of Bern, February 2001.

Stefan Kneubuehl. Typeful compositional styles. Diploma thesis, University of Bern, April
2003.

Markus Lumpe, Franz Achermann, and Oscar Nierstrasz. A Formal Language for Composition.
In Gary Leavens and Murali Sitaraman, editors, Foundations of Component Based Systems,
pages 69—90. Cambridge University Press, 2000.

Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Using metaobjects to model con-
current objects with PICT. In Proceedings of Languages et Modéles a Objects, pages 1-12,
Leysin, October 1996.

Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz, and Franz Achermann. Towards a
formal composition language. In Gary T. Leavens and Murali Sitaraman, editors, Proceedings
of ESEC 97 Workshop on Foundations of Component-Based Systems, pages 178—187, Zurich,
September 1997.

Markus Lumpe. A Pi-Calculus Based Approach to Software Composition. Ph.D. thesis, Uni-
versity of Bern, Institute of Computer Science and Applied Mathematics, January 1999.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part I/II.
Information and Computation, 100:1-77, 1992.

Oscar Nierstrasz and Franz Achermann. Separation of concerns through unification of concepts.
In ECOOP 2000 Workshop on Aspects & Dimensions of Concerns, 2000.

Oscar Nierstrasz and Franz Achermann. Supporting Compositional Styles for Software Evo-
lution. In Proceedings International Symposium on Principles of Software Evolution (ISPSE
2000), pages 11-19, Kanazawa, Japan, Nov 1-2 2000. IEEE.

ol

BIBLIOGRAPHY 52

[Nie90]

[Nie03]
[NMY5]

[NP90]

[NSAQ0]

[NSL96]

[PT95]

[SAO1]

[Sch99]

[SchO01]
[Sch03]

[SN99]

Oscar Nierstrasz. A guide to specifying concurrent behaviour with abacus. Object management,
Centre Universitaire d’Informatique, University of Geneva, July 1990.

Oscar Nierstrasz. Contractual types. submitted for publication, 2003.

Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a composition language. In Paolo
Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa, editors, Object-Based Models and Lan-
gages for Concurrent Systems, volume 924 of LNCS, pages 147-161. Springer-Verlag, 1995.

Oscar Nierstrasz and Michael Papathomas. Viewing objects as patterns of communicating
agents. In Proceedings OOPSLA/ECOOP 90, ACM SIGPLAN Notices, volume 25, pages
38-43, October 1990.

Oscar Nierstrasz, Jean-Guy Schneider, and Franz Achermann. Agents everywhere, all the time.
In ECOOP 2000 Workshop on Component-Oriented Programming, 2000. Web proceedings
available at: http://www.cs.rug.nl/ bosch/WCOP2000/.

Oscar Nierstrasz, Jean-Guy Schneider, and Markus Lumpe. Formalizing composable software
systems — A research agenda. In Proceedings 1st IFIP Workshop on Formal Methods for Open
Object-based Distributed Systems FMOODS ’96, pages 271-282. Chapmann & Hall, 1996.

Benjamin C. Pierce and David N. Turner. Concurrent objects in a process calculus. In Takayasu
Ito and Akinori Yonezawa, editors, Proceedings Theory and Practice of Parallel Programming
(TPPP 94), pages 187-215, Sendai, Japan, 1995. Springer LNCS 907.

Nathanael Schérli and Franz Achermann. Partial evaluation of inter-language wrappers. In
Workshop on Composition Languages, WCL °01, September 2001.

Jean-Guy Schneider. Components, Scripts, and Glue: A conceptual framework for software
composition. Ph.D. thesis, University of Bern, Institute of Computer Science and Applied
Mathematics, October 1999.

Nathanael Schérli. Supporting pure composition by inter-language bridging on the meta-level.
Diploma thesis, University of Bern, September 2001.

Andreas Schlapbach. Enabling white-box reuse in a pure composition language. Diploma thesis,
University of Bern, January 2003.

Jean-Guy Schneider and Oscar Nierstrasz. Components, scripts and glue. In Leonor Barroca,
Jon Hall, and Patrick Hall, editors, Software Architectures — Advances and Applications, pages
13-25. Springer-Verlag, 1999.

	Piccola In a Nutshell
	A Small Piccola Tutorial
	Quick Start
	Forms
	Immutability
	The empty form
	Root
	Extending root
	Quote and double quote

	Services
	Anonymous services
	Recursive services
	Caveat: recursive forms
	Default arguments
	Built-in types
	Language bridging
	Inheritance by composition
	Control structures
	Dynamic scoping

	Concurrency
	Agents
	Channels
	Variables

	Introspection
	Evaluating scripts
	Loading scripts

	Testing
	Exceptions
	Assertions
	Tests

	Wrapping host entities

	Piccola Standard Library
	The Standard root
	About
	Basic
	Collections
	Debug
	DefaultOp
	Host
	Kernel
	PiUnit
	Builtin Host

	Builtin Types
	Boolean
	String
	StringBuffer
	Number
	Exception
	Test
	Label
	Meta
	Class
	Channel
	Var
	Counter
	Blackboard
	Array
	Collections
	StackTrace

	Piccola Language
	The Language
	Abstract Syntax
	Precedence Rules
	Indentation

	Abbreviations
	Services
	Nested Bindings
	Assignment
	Quoted Expressions
	User Defined Operators
	Collections

	A Brief History of Piccola
	JPiccola FAQ

