
Andrea Caracciolo

Software Architecture Extraction

Adapted from slides by Oscar Nierstrasz and Mircea Lungu

> Introduction to SAR
> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR
> Tool Demo

Roadmap

2

> Introduction to SAR
—Architecture
—Viewpoints, Styles, ADL’s
—Architecture Recovery

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR
> Tool Demo

Roadmap

3

Structure: Elements and Form

4

“[...] the fundamental organization of a system embodied in its
components, their relationships to each other [..]”

[IEEE 1421, 2000]

Structure: Elements and Form

5

Rationale: Design Decisions

6

“The structure of components, their interrelationships, and
principles and guidelines governing their design and
evolution over time.”

[Garlan and Perry, 1995]

Rationale: Design Decisions

7

Rationale: Design Decisions

8

- architectural decisions are ones that permit a system
to meet its quality attribute and behavioral
requirements.

- architecture is design, but not all design is architecture

- design decisions resulting in element properties that
are not visible - that is, make no difference outside the
element - are non-architectural.

[Clements et al., Software Architectures and Documentation]
http://msdn.microsoft.com/en-us/library/ee658098.aspx

> Introduction to SAR
—Architecture
—Viewpoints, Styles, ADL’s
—Architecture Recovery

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR
> Tool Demo

Roadmap

9

Architectural View

10

Architecture

View Style

Viewpoint

ADL

represented
through

design pattern

template

notation

Variable range of complexity
(structure -> rationale)

Architectural View

11

A view is a representation of a whole system from the perspective of a
related set of concerns.

A concern is an interest which pertains to the system’s development, its
operation or any other aspects that are important to one or more
stakeholders.

— e.g.: performance, security, distribution, maintenance

A stakeholder is an individual, team, or organization with interests in, or
concerns relative to, a system.

— e.g.: development team, operational staff, project manager

Architectural Viewpoint

> A viewpoint is
—a specification of the conventions for constructing and using

views
—a template from which to develop individual views by

establishing the purposes and audience for a view and the
techniques for its creation and analysis.

> Consensus in software engineering community
> Viewpoints catalogues

—Kruchten ’95
—Hofmeister ’99

12

Kruchten 4+1

13

Logical view: Logical representation of the system’s functional structure
- stakeholders: end-user
- formalization: UML Class diagram

Development view: design time software structure, modules, sub-systems and layers
- stakeholders: developer
- formalization: UML Component diagram

Process view: system processes and how they communicate. Focuses on the runtime behavior
- stakeholders: developer, system engineer
- formalization: UML Activity diagram

Physical view: topology, physical connections, mapping of architectural elements to nodes
- stakeholders: system engineer
- formalization: UML deployment diagram

Classical Architectural Viewpoints

Run-time How are responsibilities distributed amongst run-time entities?

Process How do processes communicate and synchronize?

Dataflow How do data and tasks flow through the system?

Deployment How are components physically distributed?

Module How is the software partitioned into modules?

Build What dependencies exist between modules?

14

Architectural Style

An architectural style defines a family of systems in terms of
a pattern of structural organization.

 More specifically, an architectural style defines a vocabulary of
components and connector types, and a set of constraints
on how they can be combined.

[Shaw and Garlan]

15

Classical Architectural Styles

Layered Elements in a given layer can only see the layer below.
Callbacks used to communicate upwards

Client-Server Separate application logic from interaction logic. Clients may
be “fat” or “thin”

Dataflow Data or tasks strictly flow “downstream”.

Blackboard Tools or applications coordinate through shared repository.

16

Architectural Style “Catalogues”

17

Architectural Description Languages (ADLs)

Formal languages for representing and reasoning about
software architecture.

Provide a conceptual framework and a concrete syntax
for characterizing architectures.

Some are executable, or implemented in a general-
purpose programming language.

18

Common ADL Concepts

Component: unit of computation
or data store. Typically contains
interface (ports) and formal
behavioral description.

Connector: architectural building
block used to model interactions
among components. Typically
contains interface (roles) and
formal behavioral description.

Configuration: connected graph
of components and connectors that
describe architectural structure.

19

connector

port
role

componentcomponent

ADL example

20

Some ADLs

> Wright: underlying model is CSP, focuses on connectivity of concurrent
components.

> Darwin: focuses on supporting distributed applications. Components are single-
threaded active objects.

> Rapide: focuses on developing a new technology for building large-scale,
distributed multi-language systems.

21

> Introduction to SAR
—Architecture
—Viewpoints, Styles, ADL’s
—Architecture Recovery

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR
> Tool Demo

Roadmap

22

Architecture Recovery

23

[...] is an archaeological
activity where the analysts
must unveil all the historical
design decisions by looking
at the existing implementation
and documentation of the
system.

[Riva]

[...] are the techniques and
processes used to uncover
a system’s architecture from
available information.

[Jazayeri]

Architecture

Design

Code

> Introduction to SAR
> The Architecture of Architecture Recovery
> Top-down SAR

—Reflexion Models
> Bottom-up SAR
> Tool Demo

Roadmap

24

Top-Down SAR: Overview

Verifies whether the system
conforms to the model the
stakeholders have in mind

25

(1) an hypothesized architecture is defined,
(2) the architecture is checked against the src,
(3) the architecture is refined.

> Introduction to SAR
> The Architecture of Architecture Recovery
> Top-down SAR

—Reflexion Models
> Bottom-up SAR
> Tool Demo

Roadmap

26

Software Reflexion Models

> A reflexion model indicates where the source model and
high-level model differ
—Convergences
—Divergences
—Absences

> Has to be interpreted by developer

27

Reflexion modeling is iterative

28

Repeat
* Define/Update high-level model of interest
* Extract a source model
* Define/Update declarative mapping between high-
level model and source model
* System computes a software reflexion model
* Interpret the software reflexion model.

Until “happy”

Case Study

29

The VMS of NetBSD

The High-level Model

30

The High-level Model

31

file= .*pager.* mapTo=Pager
file= vm_map.* mapTo=VirtAddressMaint
file=vm_fault\.c mapTo=KernelFaultHandler
dir=[un]fs mapTo=FileSystem
dir=sparc/mem.*] mapTo=Memory
file=pmap.* mapTo=HardwareTrans
file=vm_pageout\.c mapTo=VMPolicy

The Mapping

Source Model

> Particular information extracted from source code
> Calculated with lightweight source extraction

—Flexible: few constraints on source
—Tolerant: source code can be incomplete, not compilable, …

> Lexical Approach

32

A Reflexion Model

33

> Introduction to SAR
> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR

—Data Extraction
—Knowledge Organization
—Analysis & Exploration

> Tool Demo

Roadmap

34

Bottom-Up SAR: Overview

Starts without any
assumptions about the
code and tries to recover
the architecture as-is

35

(1) views are extracted from src
(2) view are refined

The Architecture of Architecture Recovery

36

Fact Repository

Mailing-list
Archives

Individual Project
Documentation

Individual Developer
Expertise

Source
Code

Dynamic
Information

Configuration
Files

Version Control System

Bug Tracking
System

1.Data
Extraction

2.Knowledge
Organization 3.Analysis&

Exploration

“extract-abstract-present” [Tilley]

> Introduction to SAR
> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR

—Data Extraction
—Knowledge Organization
—Analysis & Exploration

> Tool Demo

Roadmap

37

5. Re-document

Analyze & record  
rationales

Rationales for  
design decisions

© Harald Gall, UniZH

Architecture Reconstruction

38

1. Data Extraction - Tools

src text dyn phys hist stk style
Alborz [110] x x x

ArchView [99] x x x x

ArchVis [45] x x x x x

ARES [26] x x

ARM [40] x x

ARMIN [58] x x

ART [32] x x x

Bauhaus [13, 25, 62] x x x

Bunch [79, 90] x x

Cacophony [28] x

Dali [56, 57] x x

DiscoTect [146] x x x x

Focus [18, 84] x x x

Gupro [24] x x

Intensive [87, 145] x x

ManSART [4, 43] x x x x

MAP [117] x x x

PBS/SBS [8, 31, 49, 113] x x x

PuLSE/SAVE [61, 103] x x

QADSAR [118, 119] x x

Revealer [100, 101] x x x

RMTool [92, 93] x x

SARTool [30, 64] x x

SAVE [89, 94] x x

Softwarenaut [77] x x x x x

Symphony,Nimeta [106, 135] x x

URCA x x

W4 [44] x x x

X-Ray [86] x x x x

src - source code
text - textual information
dyn - dynamic analysis
phys - physical
organiation
stk - human expertise /
stakeholder
style - architectural style

39

> Introduction to SAR
> The Architecture of Architecture Recovery Tools
> Top-down SAR
> Bottom-up SAR

—Data Extraction
—Knowledge Organization
—Analysis & Exploration

> Tool Demo

Roadmap

40

Knowledge Organization

> Different techniques
a) Aggregation
b) Clustering
c) Concept Analysis

41

a. Aggregation

Package
Dependencies Highest-Level

Dependency View
com

org

42Hierarchical Graph Data Structure

b. Clustering

> Concepts
—Entities
—Similarity Metric
—Algorithms

> Solutions: Hapax, Bunch

43

Similarity Metric

> Based on relationships between the elements
or common properties
—relationships (e.g. invocations)
—natural language similarity
—…

44

Similarity Metric: (natural) language

[Lungu et al.’05] 45

Similarity Metric: (natural) language

46[Lungu et al.’05]

Similarity Metric: Arch

> Arch [Schwanke]
—similarity between procedures:

– number of common features (non-local symbols used in procedures)
– feature weight
– interactions

47

Algorithms

place each entity in a group by itself
repeat
 identify the two most similar groups
 combine them
until the existing groups are satisfactory

Flat

place each entity in a group by itself
repeat
 identify the most similar groups Si and Sj
 combine Si and Sj
 add a subtree with children Si and Sj to the
clustering tree
until the existing groups are satisfactory or only
one group is left

Hierarchical

48

A Dendrogram: How do you select the
cutoff factor?

Result of Hierarchical Clustering

49

Example: Clustering dot with Bunch

50

Clustering dot with Bunch

51

c. Formal Concept Analysis

52

> Identify meaningful
groupings of elements that
have common properties

> Concept: (objs, props)
—props(obj) includes props
—obj_with(props) == objs

A Concept Analysis Example

53

The
Concept
Lattice

—props(obj) includes props
—obj_with(props) == objs

A Concept Analysis Problem

54

A Concept Analysis Problem

55

A Concept Analysis Problem

56

> Introduction to SAR
> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR

—Data Extraction
—Knowledge Organization
—Analysis & Exploration

> Tool Demo

Roadmap

57

3. Analysis & exploration - Rigi

Programmable reverse engineering
environment
—C parser; relational data import
—Visualization of hierarchical typed

graphs
—Graph manipulation, filtering, layout
—Tcl-programmable
—www.rigi.csc.uvic.ca/

58

http://www.rigi.csc.uvic.ca/

3. Analysis & exploration - Creole

> Eclipse Integration
> Semantic Zooming
> Simple Aggregation

59http://thechiselgroup.org/2003/07/06/creole/

> Introduction to SAR
> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR
> Tool Demo

Roadmap

60

Dicto (Top-down)

61

http://scg.unibe.ch/dicto/

A uniform notation
for keeping SA under

control

{

http://scg.unibe.ch/dicto/

SoftwareNaut (Bottom-up)

62

http://scg.unibe.ch/softwarenaut

> Based on FAMIX
> Hierarchical Graphs
> Collaboration & Sharing

http://scg.unibe.ch

What you should know!

> Architecture, Architectural styles, Architectural viewpoints
> What is architecture recovery
> The two main types of architecture recovery processes
> How clustering software artefacts works
> How concept analysis works

63

Can you answer these questions?

> What is formal concept analysis and how can you use it
in architecture recovery?

> How would you cluster the classes in an object-oriented
software system if you want to discover its architecture?

> What are the limitations of top-down AR? Of bottom-up?
> What are Mavericks in Schwanke’s approach?
> What are the limitations of clustering?
> What are the limitations of concept analysis?

64

Further Reading

An intelligent tool for re-engineering software modularity, Schwanke R.

Software Reflexion Models: Bridging the gap between Source and High-Level
Models, Murphy et al.

Identifying Modules via Concept Analysis, Siff and Reps

Constructive Architecture Compliance Checking -- An Experiment on Support
by Live Feedback, Knodel et al.

Maintaining Hierarchical Graph Views, Bauchsbaum et al.

Evolutionary and Collaborative Software Architecture Recovery With
Softwarenaut, Lungu et al.

Towards A Process-Oriented Software Architecture Reconstruction Taxonomy,
Pollet et al.

65

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

