Tutorial

Developing single page applications with Ionic, CouchDB,
Mercurial and Calabash for Android

University of Berne

Pascal Y. Zaugg
Dapplesweg 14

3007 Bern
pascal.zaugg@students.unibe.ch

August 2015

Contents

[I_Tutoriall 1
(L1 Introductionlo 2
1.1 Ticensel. 4

(.2 CouchDBl 5
(.2.1 Installationl 5
(1.2.2 Start and stop database service])
(1.2.3 Queries| 6

[1.2.4 Database Manipulation|. 7
[1.2.5 Document Manipulation| 8
(1.2.6 User Management|. 10
(1.2.7 Database security| 11
(1.2.8 Setting up CORS| 12

(L3 PouchDBl o 14
(.3.1 Installation| 0L 14
[1.3.2 Database Manipulation|. 15
(1.3.3 Document Manipulation| 15
(1.3.4 Synchronizing with CouchDB| 23

M4 Tonid o 24
(L.4.1 Installationlo 24

/ Usagel 27

(Lo Calabash for Android| 38
(Lb.1 Installationlo 38

1.5. Usagel 38
(o3 Featurelo 39
(.54 Scenariol 40
(1.5.5 Scenario outlinel 40
(1.5.6 Background| 41
[1.5.7 Step definitions| 44
(1.5.8 Running tests| 46

(L6 Mercuriallo 49

62 Basicd oo 49
[1.6.3 Mercurial with bitbucket.orgl 53
(1.7 Hands-on project| 59
[L71 Scenariol 55
(1.7.2 Requirements| 56
(1.7.3 Main Page| 58
(7.4 Interaction|.o 64
(7.5 Persistencel oL 70
[1.7.6 Adding welcome sound| 7
(1.7.7 Integrate CouchDB| 80
[L78 Gherkinl 81
(1.7.9 Implementation| 81
(L7710 Further informationl. 88

i

Chapter 1

Tutorial

1.1 Introduction

About this tutorial

This tutorial gives you an overview over several different technologies and
how to integrate them to create a powerful mobile application in short time.
It is written for Ubuntu/Linux users although most steps are probably, with
adjustments, easily fitted for iOS and Window users. As far as possible the
examples in this tutorial are minimal working examples.

The focus of this part of the paper lies on programming. First, we will
learn using database management systems like CouchDB and PouchDB. Sec-
ond, we learn Ionic and AngularJS to develop cross-operating-system mobile
applications with HTML5. Third, we get to know better the automated
acceptance test framework Calabash for android and a revision control sys-
tem called Mercurial. Finally, in the hands-on section, we integrate all our
knowledge into a single project. An analysis of how the different frame-
work operate internally and detailed informations on the inventors of these
technologies can be found in the main part of this thesis.

Preliminary knowledge

Although most examples in this tutorial are self-explanatory, in some cases,
we will need basic knowledge of Ruby, JavaScript or HTML. Moreover, the
reader should have some experience with the Linux terminal and Bash.

Prerequisites

The following hardware must be at hand:

Server with Ubuntu 12.04 installed

PC with Ubuntu 14.04

Smartphone with Android > 4.0 installed

USB-Cable to connect the smartphone with PC

[t

S

Conventions

Throughout this tutorial, we will see the following typographical conventions
that indicate different type of informations

A block of code looks like this:

Then (/"I retrieve my previous data$/) do
exists? ("ion—-item", "There was no item in the list")
end

A command to be typed into the command line will look like this:

sudo service couchdb stop

Command line outputs have this look

{ "ok" : true }

Paths, file names, code and elements related to code or code examples are
monospaced.

Tips and tricks to solve a problem faster or make life easier are to be
found in those boxes.

Warnings and parts where things might go wrong are in those boxes
with the picture of an exclamation mark on its side.

Additional information can be found in this boxes.

Versions

In this tutorial the most recent versions of each technology was used. At the
time of writing those were:

Ionic 1.6.3

Cordova 5.1.1

Calabash for Android 0.5.14
NodeJS 0.12.7

PouchDB 3.2.1

CouchDB 1.5.0

Mercurial 2.8.2

1.1.1 License

O

This tutorial is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

You are free to copy and redistribute the material in any medium or
format. Further you are free to remix, transform, and build upon the material
for any purpose, even commercially.

However, you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

1.2 CouchDB

In this section you will learn how to install CouchDB and do some basic
manipulation on it. All commands work on Ubuntu 12.04 and Ubuntu 14.04
if not stated otherwise. This Tutorial will cover the raw API of CouchDB.
However, CouchDB comes with its own administration interface called Futon,
which is not covered in this tutorial [1]

1.2.1 Installation

Use the following command to install CouchDB and all its dependencies on
your server.

Listing 1.1: Install CouchDB[5]

sudo apt—-get install couchdb

Throughout this chapter we will need curl to send HTTP request.
Install it with:

sudo apt—-get curl

1.2.2 Start and stop database service

CouchDB can be restarted from the /etc/init .d/couchdb startup script
or in Ubuntu 14.04 with the service command.

To stop CouchDB we do:
Listing 1.2: Stop CouchDB on Ubuntu 12.04[20]

/etc/init.d/couchdb stop

Listing 1.3: Stop CouchDB on Ubuntu 14.04[20]

sudo service couchdb stop

LA good source to find out more about Futon is the Book “CouchDB: The Definitive
Guide” [1].

To restart CouchDB we do:

Listing 1.4: Restart CouchDB on Ubuntu 12.04[26]

/etc/init.d/couchdb restart

Listing 1.5: Restart CouchDB on Ubuntu 14.04[26]

sudo service couchdb restart

1.2.3 Queries

In order to manipulate and query the database we can use the command
line application curl with which we can send GET, DELETE, PUT and POST
requests to CouchDB. As soon as our CouchDB is running, we may submit
our first GET request.

Listing 1.6: First CouchDB request [T, 12]

curl http://127.0.0.1:5984/

The answer will look like this:

Listing 1.7: Answer to first CouchDB request

"couchdb" :"Welcome",

"uuid":"453456114",

"version":"1.5.0",

"vendor": {"version":"14.04","name":"Ubuntu"}

Each query or request to CouchDB returns a JSON feed. It is natively
supported by JavaScript. Accordingly, CouchDB goes along well with web
applications.

JSON is short for JavaScript Object Notation. It is a lightweight
text-only syntax to store and exchange data or a collection of data in a
human-readable and easy-to-access way [23].

1.2.4 Database Manipulation

If we wish to add a new database to your CouchDB use the following com-
mand:

Listing 1.8: Create a database via HT'TP in CouchDB

curl -X PUT http://127.0.0.1:5984/warningsignals

This command as well returns an answer by CouchDB and looks like this:

Listing 1.9: Answer from CouchDB after Database creation

{ "ok" : true }

Furthermore, to remove a database use this command:

Listing 1.10: Delete a database via HTTP in CouchDB

curl -X DELETE http://127.0.0.1:5984/warningsignals

As mentioned CouchDB answers again:

Listing 1.11: Answer of CouchDB to|1.10

{ "ok" : true }

This is the way to get all databases:

Listing 1.12: Get all databases in CouchDB

curl -X GET http://127.0.0.1:5984/_all_dbs

The answer to the command above is a JSON array. We will see the following
output provided that the request in was sent in advance.

Listing 1.13: Answer to request for all databases in|1.12/in CouchDB

["warningsignals"]

A longer example as bash script to repeat again removing, adding and retriev-
ing databases. The comments are the answer objects returned by CouchDB
after each request.

Listing 1.14: Example with adding removing and retrieving databases in CouchDB

curl -X PUT http://127.0.0.1:5984/warningsignals

{"ok":true}

curl -X PUT http://127.0.0.1:5984/warningsignals

{"error":"file exists",

"reason":"The database could not be created, the file
already exists."}

curl -X GET http://127.0.0.1:5984/_all_dbs

["warningsignals"]

curl -X PUT http://127.0.0.1:5984/user_data

{"ok":true}

curl -X GET http://127.0.0.1:5984/_all_dbs

["user_data", "warningsignals"]

curl -X DELETE http://127.0.0.1:5984/user_data

{"ok":true}

curl —-X DELETE http://127.0.0.1:5984/user_data

{"error":"not_found","reason":"missing"}

1.2.5 Document Manipulation

Assuming that our aim is to create a document called small with a JSON
array holding the values “weariness” and “sickness” in it, then use the fol-
lowing command to do so:

Listing 1.15: Create a document in CouchDB

curl -X PUT http://127.0.0.1:5984/warningsignals/small -d
"{ "signals":["weariness", "sickness"] }’

The first part defines the database in which the document is put. The second
part is the id of the document. The —d tells curl to use the part after -d as
the body of the text which is our JSON array.

To fetch a document one has to send a GET request.

Listing 1.16: Fetch a document in CouchDB

curl —-X GET http://127.0.0.1:5984/warningsignals/small

[Nl

Once the command above is executed and the request in has been sent
too, then CouchDB returns:

Listing 1.17: Answer to request [1.15|in CouchDB

{

" id":"small",
" _rev":"1-028a",
"signals": ["weariness", "sickness"]

}

A document can only be altered if the current revision number of the docu-
ment is known. This revision number is mandatory since CouchDB uses it
to find out if there are consistency problems.

Listing 1.18: Alter a document in CouchDB

url="http://127.0.0.1:5984/warningsignals/small"
rev=$ (curl —-sS —-I "Surl" | sed —-ne ’"s/"ETag: "\ (.*x\)".=*$
/\1/p")

curl -sS -X PUT Surl?rev="Srev" -d ’{"signals":[]}’

In line 2 the document is fetched, the revision is filterd out of the response
with sed. This revision is then used to make another request where the
previous document is replaced with a new one holding only an empty array.

Deletion is achieved by following the same procedure, but instead of sending
a PUT request, you send a DELETE request.

Listing 1.19: Delete a document in CouchDB

url="http://127.0.0.1:5984/warningsignals/small"

rev=$ (curl -sS —-I "Surl" | sed —-ne ’"s/"ETag: "\ (.*\)".*$
/\1/p")

curl -sS —-X DELETE S$Surl?rev="S$Srev"

At this point often the question arises if it is possible to delete a doc-
ument without knowledge of the current revision. It is not. Revision
numbers are essential for CouchDB to keep track of the changes made
to a document and to allow decent conflict management for us. In most
cases even deleted documents have a last revision, a so called tombstones
only containing its ID, revision number and a field deleted set to true
[25].

1.2.6 User Management

When setting up CouchDB the database has no security at all. So everyone
who accesses the database is administrator. CouchDB calls this state the
admin party [I, 189]. Obviously this is useful for first try outs and as long
your CouchDB does only listen to the loop back network interface. However,
as soon as we open our database to the public this is undoubtedly no accept-
able solution. By defining the first administrator all admin rights are passed
to her or him.

This is how an admin is created:

Listing 1.20: Create an admininistrator in CouchDB

curl -X PUT http://127.0.0.1:5984/_config/admins/
pantalaimon -d ’"password"’

The admin is now added to the CouchDB configuration file [1l 190].

From now on only administrator pantalaimon has the right to create and
delete databases. Setting an admin has further consequences, for example,
only admin can create design documents, but this is not covered here E]

Creating a database after setting up an administrator requires to put some
additions to be made to our requests. User name and password separated by
a colon and ending with an @ are needed to be put in front of the url.

Listing 1.21: Create database as admininstrator in CouchDB

curl -X PUT http://pantalaimon:password@l127.0.0.1:5984/
warningsignals

2See “CouchDB: The Definitive Guide” for more information in this direction [I]

10

CouchDB manages its users in a special database called _user. To create
a user we have to put the user into the that database. The format of the
document can be seen below.

Listing 1.22: Format of a user document in CouchDB4]

" _id" : "org.couchdb.user:user_name",
"name" : "user_name",

"type" : "user",

"roles" : [],

"password" : "plaintext_password"

The part org.couchdb.user in the id is mandatory and can not be
omitted.

The command below creates a new user called roger.

Listing 1.23: Create user in CouchDB

curl -X PUT http://pantalaimon:password@l127.0.0.1:5984/
_users/org.couchdb.user:roger —-d ' {"name":"roger",
type":"user", "roles":[], "password":"salcilia" }’

Since _users is a document, you first have to grab the revision number to
subsequently delete a user.

Listing 1.24: Delete user in CouchDB

url="http://pantalaimon:password@127.0.0.1:5984/_users/org
.couchdb.user:roger"
rev=$ (curl -sS -I "Surl" | sed -ne ’"s/"ETag: "\ (.*x\)".=*$

/\1/p")
curl -sS —-X DELETE Surl?rev="Srev"

1.2.7 Database security

Each database defines its own _security document where it stores the
users who have access to the database. As long as there is no _security
document all users have access to it.

11

Listing 1.25: Create security document

curl -X PUT http://pantalaimon:password@l127.0.0.1:5984/

warningsignals/_security —-d ’{"admins": {"names":["
pantalaimon”], "roles":[]}, "members":{"names":["roger
"], "rOleS"! []}}I

The above command creates a security document where Pantalaimon is set
as admin and Roger as member. Members can create and alter all docu-
ments besides design documents. Administrators have the same rights as
members, but they may alter design documents or add and remove mem-
bers and administrators. Nevertheless, a database administrator is allowed
to manipulate its database only, he cannot create or delete databases [6].

1.2.8 Setting up CORS

This section explains how to make CouchDB work with PouchDB. Thus,

reading this tutorial the first time it may be skipped and returned to when
section [L.3] is finished.

To replicate PouchDB with CouchDB you must enable CORS. You may do
this by hand but the programmers of PouchDB saved us some time by making
a node script. Instructions on how to install NodeJS can be found in listing

53

CORS is an abbreviation for cross-origin resource sharing. User agents
normally use same-origin restrictions to prevent a client-side web applica-
tion running from one origin getting data from another origin. Enabling

CORS means to enable a client-side obtaining data from another origin
[28].

Type the following command in a terminal on the computer where your
CouchDB is installed:

Listing 1.26: Enable CORS for CouchDB with script

npm install —-g add-cors—-to-couchdb
add—-cors—to-couchdb

12

The first line installs a script to enable CORS on your computer. The second
line runs the downloaded script and configures CouchDB to accept CORS.

It is possible to enable CORS remotely with the next command:

Listing 1.27: Enable CORS remotely for CouchDB

add-cors-to-couchdb http://example.com:5948 —-u pantalaimon
-p password

13

© 00 ~J O Ot

10
11

1.3 PouchDB

In this chapter we will learn how to set up a database with PouchDB in your
web browser and how to synchronize it with a database on CouchDB.

1.3.1 Installation

PouchDB is a JavaScript library for database management. It can be be
downloaded from the official PouchDB web page [21]. After downloading, we

put it into a sub folder of the folder where our HTML file is stored. We call
this sub folder java-script.

Listing 1.28: Folder structure

root
| - index.html
|- java-script
| - pouchdb-3.6.0.min. Jjs

In order to integrate it into our web application we have to load it with the
script tags.

Listing 1.29: PouchDB scaffold

<html>
<head>
<title>Example 1</title>
<script src="java-script/pouchdb-3.6.0.min. js"></
script>
<script>
//Your JavaScript code comes here...
<script>
</head>
<body>
</body>
</html>

To run the examples in this chapter, we paste them between the second
script tags and open your file in your favorite browser. Each example, if
not mentioned otherwise, stands on its own and needs no presettings to run.

14

Please note that some examples do not show the same behaviour when called
twice.

1.3.2 Database Manipulation

Creating a database is done by creating a new PouchDB instance.

Listing 1.30: Create database in PouchDB

l|var db = new PouchDB (’warningsignals’);

0 ~J O U i W N

w

This command either creates a new database called warningsignals or opens
an existing database.

A PouchDB database is destroyed as soon as we call destroy on it.

Listing 1.31: Delete database in PouchDB

var db = new PouchDB (’warningsignals’);
db.destroy ()
.then (function () {

console.log("Successfully destroyed database.")
})
.catch (function (error) {

console.log("Could not destroy database.")

})

1.3.3 Document Manipulation

In order to add a document we call put or post upon our database instance.
While post creates its own unique document ID for us, we have to provide
it by ourselves if we are using put.

Listing 1.32: Add document with put

var db = new PouchDB (’warningsignals’);
var early_signals = { signals : ["sickness", "weariness"]

i

db.put (early_signals, "early")

15

Ot

.then (function (response) {

6 console.log ("Successfull added doc with rev: " +
response.rev)

7 })

8 .catch (function (error) {

9 console.log("Could not add doc because of: " +
error.message)

10 1});

As you can see, PouchDB returns a response object when the promise was
resolved correctly. This object holds the ID and revision number and looks
like this:

Listing 1.33: Response object in PouchDB

1

2 ok : true,

3 id : "early",

4 rev : "1-b61e29003d1db200b7e538£fe9142a577"
5

Returning the revision number at this stage turns out to be valuable to
manipulate documents later.

There are two ways to apply an ID to a document. Either, as seen in example
1.32, by passing a second argument to put or by including the ID directly
into the JSON document.

Listing 1.34: Add document with put where ID is included in document

var db = new PouchDB (’warningsignals’);
var medium_signals = {

_id: "medium",

signals : ["headache", "dizzyness"] };

db.put (medium_signals)
.then (function () {
console.log ("Successfull added doc.")

© 00 O Ui W N

})
.catch (function (error) {
console.log("Could not add doc because of: " +

— =
= O

error.message)

—
[\]

)

16

© 00~ O Ot s W N

== e =
UL W N~ O

_ =
N

Trying to add a document twice with the same ID will result in error.

Listing 1.35: Add document twice

var db = new PouchDB (’warningsignals’);
add_signal ()
add_signal ()

function add_signal () {
var medium_signals = {
_id: "medium",
signals : ["headache", "dizzyness"] };

db.put (medium_signals)
.then (function () {
console.log("Successfull added doc")

)

.catch (function (error) {

console.log("Could not add doc because of:

error.message)

Y

n _I_

Running the example above results in the following output:

Listing 1.36: Output of listing [1.35

Successfull added doc

Could not add doc because of: Document update conflict

So, PouchDB recognizes that you have added a document with the same ID.
Thus the promise is not resolved and the callback in catch is called. An
error returned in catch holds the status number, a name, a message and a
boolean to determine if the object is an error. It looks similar to this:

Listing 1.37: Error object in PouchDB

status : 409

name : "conflict"
message : "Document update conflict"
error : true

17

© 00 O Ui Wi

I I T N R e Tl v T v T s T e S S e
W N OO OO0 U i WO

Getting a document is done by calling get on our PouchDB database in-

stance:

Listing 1.38: Get document

var db = new PouchDB (’warningsignals’);

add_signal ()
.then (function (response) {
db.get ("medium’)

.then (function (doc) {
console.log (doc)
console.log(doc.signals[0])
console.log(doc.signals[1])

H)

})
.catch (my_catch)

function add_signal () {
var medium_signals = {
_id: "medium",

signals : ["headache", "dizzyness"] };

return db.put (medium_signals)

function my_ catch (error) {

console.log ("Could not add doc: " + error.message)

In our case the console will output headache and dizziness, which
are the two words we loaded into the database. A document returned by
PouchDB always holds the ID in variable _id and the revision number in
variable _rev in addition to the data that was stored. Hence, our object in
doc in example [1.38 would look like this:

Listing 1.39: Answer from [1.38

signals : ["headache", "dizziness"],
_id : "medium",
_rev : "1-8f86e67dc093148d49dda%b12c209dce"

18

O ~J O U i W N —

© 00 O Ui W N

10

12
13
14

Fetching a document which does not exist results in an error:

Listing 1.40: Get non-existing document

var db = new PouchDB (’warningsignals’);

db.get (' verystrong’)
.then (function (doc) {
console.log ("Successfully fetched document")
})
.catch (function (error) {
console.log("Could not fetch document: " +
error.message)

})

Listing 1.41: Error object of example [1.40

error : true

message : "missing"
name : "not_found"
reason : "missing"

status : 404

If our goal is to update an existing document, we call put on your database
and add the updated document with its current revision number as argument.

Listing 1.42: Update existing document

var db = new PouchDB (’warningsignals’);

add_signal ()
.then (function (response) {
db.get (' medium’)

.then (function (doc) {
doc.signals.push ("restlessness")
db.put (doc)

.then (everything_ fine)
.catch (my_catch)
})
.catch (my_catch)
})
.catch (my_catch)

19

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

function add_signal () {
var medium_signals = {
_id: "medium",
signals : ["headache", "dizzyness"] };
return db.put (medium_signals)
}
function everything_ fine() {
console.log ("Everthing went well!")
}
function my_catch (error) {

console.log ("Error: " + error.message)

The most important part of the last listing is to be found in lines 12 to
14. The fetched document is altered and a new element restlessness is
added to the signals array. Afterwards the modified document is put into
the database. Since the document already has a _ref field this works well
and you see the desirable output:

Listing 1.43: Output for |1.42

Everthing went well!

To remove a document from the database you need to provide an ID and a
revision number. You may also send a whole document.

A fast method to add many documents simultaneously is to add them in a
bulk:

Listing 1.44: Add multiple documents as bulk

var db = new PouchDB (’warningsignals’);
db.bulkDocs ([
_id : "medium’, signals : [’"dizzyness’] 1},
_id : ’"early’, signals : ['restlessness’, ’tachycardia’]

}
1) .then (function (result) {
var arraylLength = result.length;

20

8 for (var i = 0; 1 < arrayLength; i++) {

9 if (result[i] .error) {

10 console.log("Error: " + result[i].message)
11 }

12 if (result[i].ok) {

13 console.log("Added " 4+ result[i].id)
14 }

15 }

16| }) .catch (function (error) {

17 console.log("Error: " 4+ error.message)

18| }) ;

It is possible to fetch all documents of a database in a bulk which is faster
than fetching each element after another. To do that, call al1Docs on our
database instance. We will use the option include_docs in this example
to fetch the documents as well. Leaving that option out would fetch only the
revision number and the ID.

Listing 1.45: Fetch multiple documents as bulk

l|var db = new PouchDB (’warningsignals’);

2

3|db.bulkDocs ([

4 _id : 'medium’, signals : [’dizzyness’] },

5 _id : ’"early’, signals : ['restlessness’, ’tachycardia’]
}I

6 {_id : "late’, signals : [’overeagerness’, ’'blur’] }

711) .then (function (result) {

8 var arraylLength = result.length;

9 for (var 1 = 0; i < arrayLength; i++) {

10 if (result[i] .error) {

11 console.log ("Error: " + result[i].message)

12 }

13 }

14

15 db.allDocs ({include_docs : true})

16 .then (function (docs) {

17 console.log (docs)

18 for (var i = 0; 1 < docs.total_rows; 1i++) {

19 console.log ("Fetched document: " + docs.rows[i].id)

20 }

21 1)

22 .catch (my_catch)

21

23| }) .catch (my_catch)

24
25| function my_catch (error) {
26| console.log("Error: " + error.message)

In lines 16 to 21 we see that the promise returns an object holding all fetched
documents. In our case this object looks similar to this:

Listing 1.46: Structure of object returned by a bulk fetch

22

id : "medium",
key : "medium"
value

{

rev : "1-73e.."
doc

_id : "medium",
_rev : "1-73e..",
signals : ["dizzyness"]
bo
}I

The property total_rows holds the number of fetched documents while the
row property holds an array with information about the fetched documents
and the document in the doc property.

1.3.4 Synchronizing with CouchDB

As soon CORS is set in CouchDB as seen in [1.2.8] synchronizing a database
in PouchDB is very comfortable:

Listing 1.47: Sync PouchDB with CouchDB

db = new PouchDB ("warningsignals")

2|db.sync ("http://roger:salcilia@l27.0.0.1:5984/

warningsignals", {live:true, retry:true});

In the above example we expect that there is user roger, who has at least
member rights in the warningsignals database. The options 1ive and
retry determine the behaviour of the synchronization. The live switch tells
PouchDB that it should synchronize in regular intervals. Whereas the retry
switch does retry to establish a connection in an increasing interval even if
it failed to do so before.

23

1.4 Ionic

In this chapter we will learn how to install Ionic, how to use it to create our
first basic application and how to run our mobile application on an android
device.

However, this chapter only covers the very basics, the chapter [L.7|then covers
how to build a more complex application integrating most concepts discussed
in this chapter.

Since Ionic is a mix of different applications we will use the term Ionic only
to refer to a feature unique to Ionic. We will use the name of the framework
the feature originally belongs otherwise.

1.4.1 Installation

In the beginning, we have to install all the dependencies

Oracle Java Development Kit 7
Android SDK

Android Debug Bridge

NodeJS

Cordova

The Oracle Java Development Kit can, by adding an extra package reposi-
tory, be installed with apt package manager. Adding an extra repository is
needed because Oracle does no longer provide the official JDK as a default
installation for Ubuntu.

To install the JDK execute the following commands [27].

Listing 1.48: Preparation installation of JDK

sudo apt-get install python-software-properties
sudo add—apt-repository ppa:webupd8team/java
sudo apt—-get update

sudo apt-get install oracle-java7/-installer

24

Furthermore, we need to install Android SDK to develop an application on
Android. To do this, go the page https://developer.android.com/
sdk/installing/index.html?pkg=tools| and download the stand-
alone SDK. Then, unzip the file into a folder of your preference. Open a
terminal and move to the unzip folder and there into the /tools folder.
Run the the SDK Manager with the following command.

Listing 1.49: Start SDK manager

./android sdk

In order to avoid changing to the directory where our android development
tools lay, it is best to alter the $PATH environment variable in the terminal.
Additionally, we register an ANDROID_HOME environment variable which
is used by Calabash and Ionic to find android tools in the tools subfolder
and the Android Debug Bridge in the plat form-tools subfolder. This is
done by adding the following line to ~/ .profile.

Listing 1.50: Set environment variables PATH and ANDROID_HOME in .profile

export PATH=S$PATH:path/to/sdk/folder/tools:path/to/sdk/
folder/platform-tools
export ANDROID_HOME="path/to/sdk/folder"

In order to make the two environment variables ANDROID_HOME and PATH
available we need to source them in our terminal.

Listing 1.51: Source .profile

source ~/.profile

In some cases a command like ionic build might still fail because
the environment variables cannot be found. In this case it is best to
restart the computer and trying the failed command again.

The Android Debug Bridge is 32-bit and, therefore, needs more libraries to
run. They can be installed with the apt package management system.

Listing 1.52: Install 32-bit libraries

sudo apt-get install 1ibc6-i386 1ib32stdc++6 l1lib32gccl
lib32ncurses5 libgccl-i386 1ibz1-1386

25

https://developer.android.com/sdk/installing/index.html?pkg=tools
https://developer.android.com/sdk/installing/index.html?pkg=tools

Now, select Tools, the build tools and the APIs for Android > 4.0 within the
manager and click on ITnstall.

Android SDK Manager
SDK Path:

Packages

& [Tools (Preview Channel)
& [Android M (API 22, MNC preview)
& [Android 5.1.1 (AP1 22)
& [Android 5.0.1 (AP121)
& [Android 4.4W.2 (API 20)
& [2 Android 4.4.2 (AP119)
& [Android 4.3.1 (AP1 18)
& [Android 4.2.2 (AP117)
& [Android 4.1.2 (API 16)
& [Android 4.0.3 (API 15)
[Android 2.3.3 (API 10)
[z Android 2.2 (API 8)
] Extras
3 Android Support Repository 16
& @ Android Support Library 22.2.1
3 Goagle Play services 25
3 Google Repository 19

4 ¥ ¥V ¥ ¥ ¥V ¥ ¥V ¥ ¥V ¥V ¥ ¥

show: B Updates/New [] Installed Select New or Updates

[] Obsolete Deselect All

| Done loading packages.

W' Name APl | Rev. Status

| Not installed
] Not installed
| Not installed
[7] Not installed

|Install 87 packages... |

Delete packages...

O

Figure 1.1: Android SDK Manager

To install Tonic you need NodeJS and Apache Cordova installed. On Ubuntu
14.04 you can use apt package manager as well to install both. We first
update the package index files and then install NodeJS, the NodeJS package
manager (npm) [12] and Cordova [9].

Listing 1.53: Install NodeJS npm and cordova

sudo
sudo
sudo
sudo

apt—-get update

apt—-get install nodejs
apt—-get install npm
npm install —-g cordova

26

The newest Ionic version expects you to use NodeJS v.0.12. This version
is not available on built-in ppa in Ubuntu. To install the newest version
you need to run the following commands.

curl -sL https://deb.nodesource.com/setup_0.12 | sudo
bash -
sudo apt-get install -y nodejs

The first command prepares your package index list to include the pack-
age list of nodesource.com. The second command installs NodelJS [18].

Then, we finally install ionic:

Listing 1.54: Install ionic

sudo npm install —-g ionic

1.4.2 Usage

To create a new ionic project you the command below.

Listing 1.55: Create blank ionic project

ionic start warningsignals blank

This command creates needed files and folders for your mobile application
called warningsignals. The forth part tells Ionic which predefined tem-
plates it should use. You may choose between tabs, sidemenus and
blank.

However, Ionic does not now yet, that we want to develop an application for
Android. This is done by typing the following line into your terminal.

Listing 1.56: Tell Ionic to add Android

cd warningsignals
ionic platform add android

27

This prepares Ionic to build an android application. After the command in
listening [1.55] and [1.56] an outer structure folder of our project is defined,
which looks like this:

Listing 1.57: Tonic project structure[9]

| -warningsignals
| - bower. json // Bower dependencies
|- config.xml // Cordova configuration
|- gulpfile.js // gulp tasks
|- hooks // custom Cordova hooks to execute on

specific commands
|- ionic.project // Ionic configuration

| - package. json // node dependencies

|- platforms // specific builds reside here
| - android // Android builds

|- plugins // where your Cordova/Ionic plugins
will be installed

|- scss // scss code, which will output to www
/css/

|- www // application code
|- css // CSS
|— Js // JavaScript Code (Controller,

Services, etc)

|- 1ib // Additional JavaScript libraries

After this preparation we are ready to see first results. Ionic has three ways
to visualize your first application. The first one is the possibility to prepare
your application in a way to display it in your browser. To do this we have
to type in the next command.

Listing 1.58: Show Ionic app in local browser

ionic serve

This is useful to get a first impression and do some debugging of your app,
but it has some limitations, especially if we work with plug-ins.

The second, and in most cases better, way is to directly deploy our app to
our mobile phone. We link phone and computer with an USB cable and then
run the next instruction.

28

Listing 1.59: Run app on connected device

ionic run

In some cases your mobile phone may not be recognized by Ubuntu.
There are several reasons for that. First, try to find out if the Android
debug bridge (adb) does recognizes our phone. The adb bridge is avail-
able in the downloaded SDK folder.

adb devices

If our device is not listed there then we verify if we have enabled USB-
Debugging on our phone. In most cases the toggle to enable it can
be found under Settings>Developer options. Developer options is not
visible on every phone. If this should be the case then find the build
number on your phone. Usually you will find it under Settings>About
phone. Touch the build number seven times to activate the developer
options.

In some cases you might see ?2?? no permission output when you
type in the command in [1.4.2] In this case ADB has not enough rights.
Therefore, you have to stop your ADB server and restart it with super
user rights.

Listing 1.60: Restart adb with more rights

adb kill-server
sudo adb start-server

The third way is to build your application as follows.

Listing 1.61: Building an Ionic application for Android

ionic build android

The newly created file with the ending .apk may be found in the warn-

ingsignals folder under plat forms/android/ant-build. Move this

file to a place such as Dropbox or the phones SD-Card where it is possible
to be accessed by a mobile device. Then, download it on the device and
install it. To be able to do that, we must enable that our device to accept

29

QU b W N~

O 00 3 O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

applications from unknown sources in the Developer options.

Another way to run your application is to connect it with our computer and
run:

Listing 1.62: Run application with Ionic

ionic run android

The Ionic command start as used in [L53 creates an index.html file in
the www folder. This is a good starting point to develop our own application.
The index.html file looks similar to this.

Listing 1.63: index.html created by lonic

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="initial-scale=1, maximum
—-scale=1, user-scalable=no, width=device-width">
<title></title>
<link href="lib/ionic/css/ionic.css" rel="stylesheet">
<link href="css/style.css" rel="stylesheet">
<script src="lib/ionic/Jjs/ionic.bundle.js"></script>
<script src="cordova.js"></script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
<script src="js/services.js"></script>
</head>
<body ng-app="starter">
<ion-nav-bar class="bar-stable">
<ion-nav-back-button>
</ion—-nav-back-button>
</ion-nav-bar>
<ion—-nav-view></ion-nav-view>
</body>
</html>

CSS files, that make our application look more like a native mobile applica-
tion, are loaded in line 8 to 9. We may alter these files to give our app its

30

own unique look and feel.

In line 11 Ionic is loaded. Ionic itself loads AngularJS internally. This means
that from now on the variable angular is available. This is important to
remember once we are going to look at controllers and services.

Our own code is loaded in lines 14 to 16. Ionic creates JavaScript files for
different parts of the application.

app . js contains parts like initialize the application

controllers. js holds controllers to mediate between the view and the
model

services. js provides services beyond the scope of a controller, so con-
trollers may exchange data between each other, the system and online
resources

We could choose an entirely different distribution of our code but the way
Ionic prepares it proved to be useful and reasonable.

Ionic enhances AngularJS with more capabilities, especially on the side of
look and feel of an application. It heavily depends on built-in features of
AngularJS such as controllers, services or directives. Thus, it has many
predefined elements to make use of the MVC pattern easily.

MVC is a software architecture pattern for implementing user inter-
faces. It separates domain objects in the business model from their
presentation. For example, in a domain model temperature may only
be saved as a number, but we could visualize it in many different ways
such as in a thermometer. However, our domain model need not to
know anything about its representation. Generally, the model consists
of application data, and in most cases, the business logic as well, while
the view presents this data to the user. Thus, the controller mediates
between the two. [14] [16, 12].

Module

A core of AngularJS and, therefore, Ionic are modules. A module is a single-
core unit were you put your application code. It ensures encapsulation of the
functionalities of your application [16, 18].

31

[\

W N =

angular .module (' controllers’, [])

The above code defines a module with the name controllers. The second
argument is an array for dependency injection.

Dependency Injection is a software architecture pattern to determine
how components get hold of their dependencies [15]. Dependencies in a
component are not defined within that component, but instead they are
defined in external components and then injected into the component.
This is a specialized form of inversion of control [13].

Controllers

Controllers mediate between the model and the views. They are defined upon
a module. In the next example we see a controller called MainController
defined upon a module ’controller’ with $scope injected.

Listing 1.64: Create controller with $scope injected

angular.module (' controllers’, []).controller (’
MainController’, function (Sscope) {
Sscope.signal = "Weariness"

})

Finally, to make use of the controller, they are assigned to any part of code.

Listing 1.65: Controller assignment

<div ng-controller="MainController">
{{signal}}
</div>

Routing

In section you have been shown how to assign a controller directly in
your HTML code. A better way to do it is using the $stateProvider of Ul-
Router to assign a controller to a state and, thus, to an url and a template
defined for that controller.

32

0 ~J O Ui W N

© 00 O Ui Wi

—_
=]

© 00 N O U s W N

—_
[e=)

Listing 1.66: Assign Controller in $stateProvider

angular .module (' starter’, [’controllers’])
.config (function ($stateProvider) {
SstateProvider
.state('main’, {
url : "/main",
template : "<hl>Hello</hl>",
controller : "MainController"

})

There are multiple ways to make a transition from one state to another. One
way is through browsing. We set a link with the a tag and as soon the user
touches a transition, the next state is entered. This is because most states
are linked to an url.

Listing 1.67: Multiple states in AngularJS

angular .module (' starter’, [])
.config (function ($SstateProvider) {

SstateProvider
.state (' first’, {
url : "/first",
template : "<hl>Hello first</hl>" })
.state (’ /second’, {
url : "/second",
template : "<hl>Hello second</h1>" })

})

Listing 1.68: HTML file for multiple states in AngularJS

<body ng-app="starter">
<ion—-nav-view>
<ion-view>
<ion-content>
Go to second
Go to first
</ion-content>
</ion-view>
</ion-nav-view>
</body>

33

© 00 O Ui Wi

—_
=]

w

A more AngularJS Ul-Router way is using the ui-sref directive and let
AngularJS create the href tags.

Listing 1.69: HTML file for multiple states in AngularJS using ui-sref

<body ng-app="starter">
<ion—-nav-view>
<ion-view>
<ion-content>
<a uli-sref="second">Go to second
<a ui-sref="first">Go to first
</ion-content>
</ion-view>
</ion—-nav-view>
</body>

Since ui-sref references a state instead of an url, we have to use the name
of the state instead of the url that is bound to the state. An advantage of
this approach is that we are able to perform relative calls as well.

Listing 1.70: Example usage of state calls in with ui-sref [2)

ui-sref="contact.detail") - will go to the contact.detail
state

ui-sref=""" - will go to a parent state

ui-sref="".sibling" - will go to a sibling state

ui-sref=".child.grandchild") - will go to grandchild state

Last but not least we can make state transitions programmaticaly by using
the $state service. The same rules for state changes applies for this as for
the ui-sref directive.

Listing 1.71: ”Using $state service for state changes

Sstate.go ("contact.detail") //will go to the
contact.detail state
Templates

Ionic places where templates fit in are declared with the <ion-nav-view>
</ion-nav-view> directive. As we have seen in listing|1.63|line 23 there is

34

N =

© 00 O Ot s W N

e e e
=W N = O

-

already defined such a directive. If our goal now is to put a template there, we
use the $stateProvider as seen in listing [I.66] As soon as the url /main) is
requested, Ionic will render the template found in templates/main.html
at the place of ion—nav-view|[l]].

It is possible to use named templates. This makes it possible to use multiple
templates at the same level.

Listing 1.72: Named templates

<lon—-nav-view name="first"></ion-nav-view>
<ion—-nav-view name="second"></ion-nav-view>

Additionally, this requires minor adjustments to our state in state provider.

Listing 1.73: State for named templates

angular .module (' starter’, [’‘ui.router’])
.config ([’ $SstateProvider’, function ($stateProvider) ({
SstateProvider.state (‘main’, {
url : "/main",
views : {
"first’ : {
template : "<hl>Hi</hl1>",
bo
"second’ : {
template : "<h2>hello</h2>",

If we use named templates we always have to use the syntax in listing
even if there is only one template. Otherwise, Ionic will fail to find
the correct place to render your template and display nothing at all.

The <ion-view> </ion-view> and the <ion-content> </ion-
content> are then used in the templates.

ion-view is a container for content and navigational informations. Further-
more it emits information, namely the view title or whether the navigation
bar should be displayed or not.

35

QU s W N~

ion-content is a content area that allows scrolling [I0] and makes sure
that our content is placed correctly. This is particularly important when
using the ion—nav-bar directive. More about that can be read in the next
chapters.

With that piece of new knowledge we can rewrite the example in listing
and use a template stored in a separate file.

Listing 1.74: Template as file called main.html

<ion-view>
<ion-content>
<hl1>Hi</h1>
</ion-content>
</ion-view>

Consequently we will have to use templateUrl option in line 7 instead of
the template option.

Listing 1.75: Adapted line 7 in listing |1.66

templateUrl : "main.html",

Styling

If there is a ion—-nav-view directive then it is possible to have an <ion-
nav-bar> </ion-nav-bar>. This sets a bar at the top of the application
which is updated when a state change happens. In listing we can see
such an element. It is possible to set a ion—-nav-back-button inside
of it. This sets a back button into the header. However this back button
is maintained by lonic and has only possible ways for interaction. So in
most cases it is best to define your own back button. To set a title for your
application, you need to set a view-title attribute in the i on—-view directive.

36

© 00 O Ui W N

—_
=]

Listing 1.76: HTML body with ion-nav-bar and ion-nav-back-button directive. The title
is set in the ion-view directive.

<body ng-app="starter">
<ion-nav-bar>
<ion-nav-back-button>
</ion—-nav-back-button>
</ion—-nav-bar>
<ion—-nav-view>
<ion-view view-title="Welcome to the real world!">
</ion-view>
</ion—-nav-view>
</body>

Plug-ins

Cordova comes with many plug-ins. Those plug-ins enhance control over
specific elements of our mobile device. They offer possibilities to play music,
create notifications or start the standard browser of the mobile device.

To install a plug-in in Ionic do the following.

Listing 1.77: Plug-in installation for Ionic

ionic plugin add cordova-plugin-device

The last part of the command is the plug-in name. We will see some plug-ins
in action in chapter [L.7]

37

1.5 Calabash for Android

In this chapter you will learn the basics about Calabash for Android. A good
idea is to take your first application build with the knowledge of the above
chapters, build it and use the apk file to constantly exercise your knowledge
acquired throughout this chapter.

1.5.1 Installation

To install Calabash for Android, we first have to install Ruby and then install
Calabash for Android as a gem.

Listing 1.78: Install Ruby 1.9.1 [24]

sudo apt-get install ruby-full

This will install Ruby 1.9.1 which is an older stable release. However, this
version will suffice in our case.

The next step is to install Calabash for Android.

Listing 1.79: Install Calabash for Android Ruby gem

sudo gem install calabash-android

We now have successfully installed Calabash for Android.

1.5.2 Usage

When starting our first tests, it is a good idea to let Calabash create our test
folders.

Listing 1.80: Create test folders

calabash-android gen

38

O O = W N

Our project test directory tree now looks similar to this.

Listing 1.81: Calabash directory tree

root
| - calabash
| - features
|- step_definitions //Step definitions to intermediate
between Gherkin and application
|- calabash_steps.rb
| - support //Support files to manipulate
application before start and after ending
|- app_installation_hooks.rb
|- app_life_cycle_hooks.rb
|- env.rb
|- hooks.rb

Calabash for Android uses the Gherkin language. Gherkin is a DSL (domain
specific language) to describe the expected behaviour of an application in a
human-readable way. It is used as documentation and automated tests.

Listing 1.82: First gherkin example

Feature: Main page, which is displayed on application
start

Scenario: Move to the settings page
Given I am on the main page
When I touch button "settings"
Then I am on the the settings page

Gherkin is a line-oriented language which uses indentation to define structure.
Tabs or spaces may be used as indentation. Most lines, from now on called
steps, start with keywords such as Feature, Scenario, Given, When
and Then as seen in the above example. Gherkin files are determined by
.feature file extensions.

1.5.3 Feature

A feature is a bundle of scenarios and scenario outlines. It is only allowed to
appear once at the beginning of a file. After the feature keyword follows

39

© 00 O Ui Wi

— =
— o

a short description of the feature. This description may be as long as needed
and can use as many lines as desired. The end of a feature description is
determined by the first appearance of the scenario keyword.

Feature files are probably best to be placed directly into the features
folder. However, if you prefer, especially if you have many features, you
are allowed to create sub folders. Calabash for Android looks through the
whole features folder and its sub folders to find promising . feature
files.

1.5.4 Scenario

A scenario is a behaviour of one specific aspect of the application. It starts
with the scenario keyword followed by a short description of its purpose.
After the description and in a new line it is succeeded by the keywords
given, when, then, and and but.

1.5.5 Scenario outline

A scenario outline is a collection of scenarios.

Sometimes there are scenarios that repeat themselvess as shown in the ex-
ample below.

Listing 1.83: Repeating scenario example

Feature: Usage of the home button

Scenario: Use home button on main page
Given I am on the main page
When I touch button "home"
Then I am on the main page

Scenario: Use back button on settings page
Given I am on the settings page
When I touch button "home"
Then I am on the main page

In this case scenario outline is useful. It allows us to define multiple

40

W N

O 00 ~J O Ot

10
11

© 00 O Ui W N

—= = =
W N = O

scenarios in one statement. What Calabash internally does when running
this feature is that it takes each entry in the examples list and runs them as
if they were single scenarios ergo listing and do exactly the same.

Listing 1.84: Scenario outline example

Feature: Usage of the home button

Scenario Outline: Usage home button leads to return to main
page
Given I am on the <page_name> page_name
Whe I touch button "home"
Then I am on the main page

Examples:

| page_name |
|main |
| settings |

1.5.6 Background

The background keyword is used to add context to a single feature. This
keyword is allowed only once in a file. The steps in it are executed before
each scenario.

Listing 1.85: Background example

Feature:
Background:
Given I have filled in some data

Scenario:
When I am on the main page
Then I see a list of the data

Scenario:
Given I am on the main page
And I see a list of the data
When I touch button "delete"
Then the list of data disapears

41

In the above example we make sure that each time we are on the main page,
there is data to be manipulated.

The Programmer’s life is much easier if she or he uses a text editor
with syntax highlighting, for example, Geany or gedit. For Ruby there
exists already syntax highlighting in both editors but not for Gherkin.
We have to add it by ourself.

Save the file below to the folder /usr/share/gtksourceview-2.
0/language-specs with the name gherkin.lang.

Listing 1.86: Gherkin language spec for syntax highlighting [19]

<?xml version="1.0" encoding="UTF-8"7?>
<!—— Author: 2011 Ransford Okpoti ——>
<language id="gherkin" _name="Gherkin" version="2.0"
_section="Scripts">
<metadata>
<property name="mimetypes">text/x-feature</
property>
<property name="globs">«*.feature</property>
</metadata>
<styles>
<style id="keyword" _name="Keyword" map-to="
def :keyword" />
<style id="feature" _name="Feature" map—-to="
def:type"/>
<style id="steps_keywords" _name="Steps Keywords
" map-to="def:keyword"/>
<style id="constructors" _name="Constructors"
map-to="def:type"/>
<style id="variables" _name="Variables" map—
to="def:comment" />
<style id="comments" _name="Comments" map-—
to="def:comment"/>
</styles>
<definitions>
<context id="gherkin" class="no-spell-check">
<include>
<!-- Keywords ——>
<context id="steps_keywords" style-ref="
steps_keywords">
<keyword>Given</keyword>

42

<keyword>When</keyword>

<keyword>Then</keyword>

<keyword>And</keyword>

<keyword>But</keyword>
</context>

<context id="comments" style-ref="comments"
end-at-line-end="true">
<start>#</start>
<end>\n</end>
</context>

<context id="feature" style-ref="feature">
<keyword>Feature</keyword>
</context>

<context id="constructors" style-ref="
constructors">
<keyword>Scenario</keyword>
<keyword>Scenarios</keyword>
<keyword>Outline</keyword>
<keyword>Background</keyword>
</context>

<context id="variables" style-ref="variables

">
<match> (&1t;) (\w+) (>) </match>
</context>

<context id="arguments" end-at-line-end="
true">
<start>\|</start>
<end>\n</end>
<include>
<context ref="def:decimal" />
<context ref="def:float" />
<context ref="def:string" />
<context id="table_headings">
<match>\w+</match>
</context>
</include>
</context>

43

[\

</include>
</context>
</definitions>
</language>

1.5.7 Step definitions

Step definitions, written in Ruby, wire the very high level Gherkin language
with our application. In Calabash for Android step definitions are defined in
the features/steph_definitions/calabash_steps.rb file. Each
step after the keywords given, when, then, and, but must be matched
to exactly one step definition.

Given I am on the main page

If we write a step definition for the step at line 4 in listening it would
look similar to the Ruby code below.

Listing 1.87: Step definition example

Given (/"I am on the main page$/) do
Check that you are on the main page
end

Each step may have one of four outcomes: success, pending, undefined, failed.
What outcome a step has is defined in a step definition like the one above.
A step is considered failed if there was either an error in your application or
the failure was forced by the fail command, it is pending if you use the
pending command and it is undefined if Calabash for Android cannot find
any step definition to match your step. Consequently, a step is considered
successful if it is in neither of those three states. Therefore, our example
above would return successfully for our given step.

Wait-for blocks

One problem in automated test for user interfaces is that in most cases there
is a slight delay from the touch of a button to the moment the wanted element
appears on the screen. Thus, if we query for an element immediately after

44

Calabash touched it, we may be unsuccessful. What we could do is add a
slight delay, for example with sleep (2), before each of our queries but this
causes some unpleasant delay to our tests. Calabash for Android provides
you with a structure that continuously runs a piece of code until it either
succeeds finding the wanted element or a time limit is reached. This moves
the inconvenient delays from the successful steps to the failed ones, which
are (hopefully) fewer.

Listing 1.88: wait_for structure

wait_for (:timeout => 10, :timeout_message => "Could not
find element") {
fquery for an element here

The block is successful as soon as the last statement of the block is true.
Because there is no statement in our block above this example will fail after
10 seconds with the given timeout message.

There are several more options for wait_for[§].

:timeout maximum number of seconds to wait

;retry_frequency time to wait until retrying the block. Default is 0.2 sec-
onds.

:post_timeout time to wait until block returns true. Default is 0.1 seconds.

:timeout_message message in case timeout exceeds. Default is “Timed out
waiting...”.

:screenshot_on_error if true takes a screen shot on error. Default is true.

Queries

A thing you will have to do often in your developing process is to query for
elements in your view. Calabash for Android provides query (uiquery,
xargs) for that. It will return an array of elements that matched our search.

As we are working with a webview in Ionic (see chapter , we will have to
query that webview instead of querying for android elements. Luckily, the
developers of Calabash thought of that.

45

Listing 1.89: ”Query webview for div”

result = query ("systemWebView css:’div’)

The above example will query the webview provide by Cordova for all div in
and store the result in result.

Older versions of Cordova used a CordovaWebView instead of an Sys-
temWebView. So in old versions of applications build with Cordova you
will have to use the following query.

query ("cordovaWebView css:’div’")

Calabash uses css selectors to query your webview. There are various patterns
for it[22], but the ones that have proven to be most useful are:

.button Selects all elements with class=“button”
#password Selects element with id=“password”

* Selectes all elements

div Selects all jdiv; elements

h1 div Selects all jdiv; elements inside a jh1; element
[name | Selects all elements with a name attribute
[name=*“main” | Select all element with name=*“main”

It is possible to combine the selectors.

Listing 1.90: Query for ion-view element with name attribute set to ”main”

query ("systemWebView css:’ion-view[name=\"main\"]"")

1.5.8 Running tests

When we created tests and step definitions we will want to run them. Hence,
we connect our device to our computer and type the following command into
the terminal.

46

© 00 O Ui W N

— =
N = O

Listing 1.91: Running all features

calabash—-android run /path/to/your/application/under/test/
application.apk

In some cases we will want to run one feature only.

Listing 1.92: Running one feature

calabash—-android application.apk features/feature_name.
feature

Futhermore, sometimes we will want to run one scenario only.

Listing 1.93: Running one scenario

calabash—-android application.apk features/feature_name.
feature:12

The instruction above runs the scenario placed at line 12 in the feature_
name . feature file.

It is possible to tag a scenario with a @tag_name and run only those tagged
scenarios.

Listing 1.94: Tag example

Feature:
@slow
Scenario: User sees a list
When I am on the main page
Then I see a list of the data

@slow, @important

Scenario: User deletes list
Given I am on the main page
And I see a list of the data
When I touch button "delete"
Then the list of data disappears

Listing 1.95: Run features with a certain tag

calabash-android application.apk --tags @important

47

The above command will only run the first scenario at line 3.

Tags may be combined in different ways. One way is to combine the with
an and logic. Thus only scenarios having all those tags are executed.

calabash-android application.apk —--tags @slow —--tags
@important

Another way to bring them together is with an or logic. As a consequence
scenarios that have one of the tags are executed.

calabash-android application.apk —--tags @slow,
@important

Moreover, a tag can be negated. Hence only scenarios without that tag
are executed.

calabash-android application.apk —--tags ~@important

48

1.6 Mercurial

In this chapter we will learn how to make use of Mercurial which is a dis-
tributed revision control system similar to git but with fewer commands.
However, this tutorial only provides an introduction to it E| In this chapter
each example builds on the previous examples. So, it is best if we start at
the beginning and do one example after another.

1.6.1 Installation

To install Mercurial on Ubuntu we can use the apt package manager

Listing 1.96: Installation of Mercurial

sudo apt-get install mercurial

1.6.2 Basics

First we create a new folder which you want revision controlled. Then we
use the terminal to change into our newly created folder and type the next
command to prepare this folder.

Listing 1.97: Init Mercurial folder

hg init

From now on we can track all changes. To see how this works we create a
file called test.txt in a new initialized folder, fill it with some text and
wait what happens.

Listing 1.98: Create file and retrieve Mercurial status

mk test.txt
echo "Hello" >> test.txt
hg status

3To learn more about Mercurial the book “Mercurial: The Definitive Guide” is
recommanded [20].

49

Mercurial will output this

Listing 1.99: Result of Listing |1.98

? test.txt

Mercurial tells us that we have created a new file but it does not know that
we want to track it. However, that is exactly what we would like to do.

Listing 1.100: Add all files

hg add

The add command tells Mercurial to track all files shown in status with
a ?. Repeating the status instruction returns A test.txt which means
that our file is now tracked. Nevertheless at this stage we only told Mercurial
that we want to track the file but to later return to this current state of our
files we need to commit them.

Listing 1.101: Commit a change

hg commit --message This is my first commit

The part behind —message holds your message associated to your commit. It
should be a short summary of what you have changed since the last commit.

A file that was added and committed once need not to be added again later
even if it changes. It is then tracked by Mercurial and changes to a tracked
file are committed as soon as we use commit.

Checking the status again as seen in listening [1.98| we now get no result. This
means we have not changed anything since the last commit. To see all our
previous commits you use the 1og command.

Listing 1.102: See log history

hg log

In our case we should see something like this.

Listing 1.103: Example of a log

changeset: 0:bclf7£9f63ab
tag: tip

30

user: Pas
date: Mon Jul 27 13:00:13 2015 +0200
summary: This is my first commit

At the row changeset we first see a number before the colon. This is the
number of the log entry and the hexadecimal number after the colon is the
revision number. At the rows user and date we find our user name and
the current date. At row summary on the last line our commit message is
listed.

To set your own username and email, use the ~/.hgrc file in your
home directory, add the lines below to it and save it.

[ui]
username = here_comes_your_username

Sometimes it is convenient to have different branches to work on, for ex-
ample, a ’development’ and a ’deployment’ branch. On the ’deployment’
branch we could always hold a working version of your application and on
the ’development’ branch we could commit our current changes. To create a
new branch we use the branch command. To create a branch, it has to be
committed after giving the branch a name as seen in the example below.

The branch in a newly created Mercurial folder is called ’default’.

Listing 1.104: Create a branch

hg branch development

hg commit --message "Create branch ’'development’"
hg branch deployment

hg commit --message "Create branch ’'deployment’"

All the created branches can be listed with the branches command.

Listing 1.105: Show all branches

hg branches

o1

With the previous commands we created two branches. Changing from one
branch to another is done with update. So, if we want to change from our
current 'default’ branch to our new ’development’ branch, we have to follow
the step in the next box.

Listing 1.106: Change from one branch to another

hg update development

If we now change anything in our file this will only be affected in the devel-
opment branch. To do that you can either use the number of the log entry
before the colon or the hexadecimal number.

Listing 1.107: Changes only affect current branch

$ echo "world!"™ >> test.txt

$ hg commit --message "Added more content to text.txt"
S cat test.txt

hello

world!

$ hg update deployment

S cat test.txt

hello

In some cases we may want to return to a previous version of our application.
A good way to do this is to create an new branch and then update this branch
to the revision we want to return to.

Listing 1.108: Second example of a log

changeset: 0:bclf7£9f63ab

tag: tip

user: Pas <pascal.zaugg@students.unibe.ch>
date: Mon Jul 27 13:00:13 2015 +0200
summary: This is my first commit

changeset: 1:dalffof62db

tag: tip

user: Pas <pascal.zaugg@students.unibe.ch>
date: Mon Jul 27 13:00:13 2015 +0200
summary : This is my second commit

If we wish to return to our first revision we have two possibilities.

52

Listing 1.109: Return by log entry number

branch update 0

Listing 1.110: Return by revision number

branch update bclf7f

When returning by use of the revision number, it is in most cases sufficient
to use only the first six hexadecimal numbers.

In other occasions we want our changes to be moved from one branch to
another. This is done with merge. Change into the branch which you want
to bring together with another one and type the following into your terminal.

Listing 1.111: Merge two branches

hg merge development
hg commit --message "Merged branch ’development’ into '/
deployment’"

The third part of the command is the name of the branch you want your
branch to merge with. After each merge you have to commit your changes
as seen above in line 2.

In some cases it is useful to tag a changeset (e.g. commit). In most cases you
will use this to tag your working versions. An advantage over other revision
systems is that tags in Mercurial are as well under version control and allow
changes in the future.

Listing 1.112: Tag the current changeset as version 0.0.1

hg tag v0.0.1
hg commit --message "v0.0.1"

1.6.3 Mercurial with bitbucket.org

A distributed revision control system is convenient to keep track on your
progress on one computer, but its real strengths are shown as soon as it
is paired with an remote repository like bitbucket.org. It lets us push our

33

revision to it at the same time clone your repository to any computer you
want.

First we need to create an account on bitbucket.org. Then, create a new
repository on bitbucket.org and push our repository with the code in the
next box.

Listing 1.113: Push first time to bitbucket.org

hg push https://bitbucket.org/your_username_on_bitbucket/
your_newly_created_repository

Now eachtime we want to push our changes to bitbucket.org we use this
command. On the other hand, if we want to get changes from it, you can
use the pull command.

Listing 1.114: Pull from bitbucket.org

hg pull https://bitbucket.org/your_username_on_bitbucket/
your_newly_ created_repository

If we want to use the same repository on an other machine, we create a new
folder, change into it and use the clone command.

Listing 1.115: Clone respository from bitbucket.org

hg clone https://bitbucket.org/your_username_on_bitbucket/
your_newly_created_repository

It is rather inconvenient to write the whole path of the repository each
time we want to push our repository. Mercurial allows us to set a default
push. Open or create the file . hg/hgrc and add the lines below.

[paths]
default=https://bitbucket.org/your_username_on_bitbucket
/your_newly_created_repository

From now on it is enough to write hg push or hg pull to push or
pull our changes to or from the repository.

o4

1.7 Hands-on project

In this chapter we will use, repeat and sometimes extend techniques and
technologies we have seen before. To be able to follow the examples in this
chapter, you either read the previous chapters about CouchDB, PouchDB,
Calabash for Android and Ionic, or bring expertise with those technologies.
You will see how to integrate those frameworks and how to use them in
different situations. In the beginning, every step is shown and explained, but
the further the tutorial advances common commands will only be referred
by text. For instance, the first time we tag and commit an iteration, we
will see the full command for that. However, from that point on we might
only describe the same work flow in text form without explicitly naming the
necessary commands.

1.7.1 Scenario

To make it more realistic, the following scenario will guide us:

We develop a small mobile application for a well-known company. Our aim
is to collect warning signals in different (pre)stages of psychotic episodes
to prevent relapses in patients suffering from schizophrenia. The mobile
application is a simplified version of a working sheet developed by Tania
Lincoln [I7], 168] as seen further down. The application should work primarily
on Android, but in the future probably as well on iOS.

95

Arbeitsblatt 15:
Krisenplan

K

i

Signale | MaBnahmen

Sehr frilhe Warnsignale:

Frithe Warnsignale:

Spéte Warnsignale:

Erste Symptome:

Ernste Symptome:

Figure 1.2: Worksheet for patience suffering from schizophrenia [17]

1.7.2 Requirements

Our clients already did some homework and present us the following sketches
for their application at our first meeting.

After one hour speaking and discussing with our clients, we settle the follow-
ing requirements for our small application.

56

| warningsignals Login
|“ Enter your login data here
Enter your early wamingsignal here .
Login
retreat more often to my room.
start fights with my friends more often.
Figure 1.3: Prototype of main page Figure 1.4: Prototype of signal page

1. requirement

When I start the app
Then I am on the front page

2. requirement

When I am on the main page
Then I see a title "warning signals"

3. requirement

When I am on the main page
Then I see tabs with "early", "middle" and "late"

4. requirement

57

When I am on the main page
Then he sees an input field

. Tequirement

When I am on the main page
Then I see a signal list

. requirement

Given I enter some signals
When I restart the app
Then I see all entered signals

. requirement

When I start the app
Then I hear a welcome sound

. requirement

Given I log in

And I enter some signals

When I delete and reinstall the app
And I log in

Then I retrieve my previous data

1.7.3 Main Page

After reviewing all the requirements, our clients want us to develop the main
page first by choosing the requirements 1 to 3. What we do first is create a
new ionic project. We create a blank project. Furthermore, we add Android
as platform and build our first apk. Then we create a Mercurial repository
and commit everything to keep track of our progress.

38

=W N

Listing 1.116: Create Ionic project

ionic start warningsignals blank

cd warningsignals

ionic add platform android

ionic build android

hg init

hg add

hg commit —--message "First empty application"

The newly created apk may be found in the warningsignals folder under
platforms/android/ant-build.

As it is common in behaviour driven development, we start by writing our
first test before we do the implementation to make the test pass. Since we
do not want to pollute our Ionic repository with tests we create a new folder
calabash on our root level.

Afterwards, we change into that folder and let Calabash for Android create
the necessary folders.

calabash—-android gen

We are now ready to create our first scenario, we name it main_page.feature

and we put it into the features folder. Because we already have collected
requirements in given-when-then phrases, we have little to do to start our
first test.

Listing 1.117: First feature with first requirement in main_page.feature

Feature: Main page
Scenario: User sees main page at the start
When I start the app
Then I am on the front page

We connect our Android mobile device via USB to our computer and let our
first feature run. In order to do that we change into the calabash folder
and run

Listing 1.118: First run of warningsignals app

calabash—-android run ../warningsignals/platforms/android/
build/outputs/apk/android-debug.apk

29

As expected the line When the user starts the app, among the other
two, is already undefined as we have not created anything yet.

Listing 1.119: Output after first failing tests

Feature: Main page
Scenario: User sees main page at start # features/
main_page.feature:2

When I start the app # features/
main_page.feature:3
Then I am on the main page # features/

main_page.feature:4

1 scenario (1 undefined)
2 steps (2 undefined)
Om28.201s

You can implement step definitions for undefined steps
with these snippets:

When (/"I start the app$/) do
pending # express the regexp above with the code you
wish you had
end

Then (/"I am on the front page$/) do
pending # express the regexp above with the code you
wish you had
end

Calabash gives us a hint as to what to do. In lines 12 to 18 it printed
code snippets in Ruby. We copy those lines into the file calabash/fea-

tures/step.definitions/calabash_steps.rb to work them out [29]
14].

First, we have to wire the step When the user starts the app toour
application. Calabash restarts the app for every scenario by default so we
just check if the systemWebview of Cordova is there. The second step is a
little bit more tricky. The most comfortable way to find out if we are on the
front page is to give the main page template an ID and query for it. We
create a templates folder in the www folder. After that we create a new
template and name it main_page.html and finally save it to the freshly
created folder.

60

[

25

© 00 O Ui Wi

10
11

—_

~ O O i~ W

Listing 1.120: Creating main_page.html

<ion-view name="main">
</ion-view>

Now we need to prepare the index file and set a controller.

Remove everything between the <body> tags and add the following HTML
code instead.

Listing 1.121: index.html changes to line 25 to 32

<ion—-nav-view></ion-nav-view>

The ion—-nav-view directive tells Ionic that it has to render a template
here. Which template it renders is defined by the UI-Router.

Listing 1.122: app. js changes to end of file

angular.module (' starter’, [ionic’])
.run (function ($ionicPlatform) {
#some more code
)
.config(function ($stateProvider, SurlRouterProvider) {
SstateProvider.state ('main_page’, {
url: "/main",
templateUrl: "templates/main_page.html",
})
SurlRouterProvider.otherwise (/ /main’)

1)

Next we wire our steps to our application with step definitions in calabash_
steps.rb.

Listing 1.123: calabash_steps.rb changes to end of file

When (/"I start the app$/) do
wait_for (:timeout => 5, :timeout_message => "App was not
started. There is now webview") ({
result = query ("systemWebview")
not result.empty?

end

61

© 00

10

11
12
13

Then (/"I am on the front page$/) do
wait_for (:timeout => 5, :timeout_message => "You are not
on the main page") {
result = query("all systemWebView css:’ion-view[name
=\"main\"]’")

not result.empty?

end

We run our test again and we see that our first scenario is fully successful.

Listing 1.124: Positive result of first test

Feature: Main page
Scenario: User sees main page at the start # features/
main_page.feature:2
features/
step_definitions/calabash_steps.rb:4
features/
step_definitions/calabash_steps.rb:8

1 scenarios ()
2 steps ()
Om5.498s

The classic behaviour driven development cycle for our mobile applica-
tion would be: Defining the behaviour in Gherkin, create tests in step
definitions and in a last step do the implementation. Doing it like that
requires us to know already which elements, tags or directives we have
to use. Thus, this tutorial deviates from the original process for the
purpose of understandability.

Thus, we have accomplished our first goal and are ready for the next one. In
a first step we add requirements 2 to 3 to our main_page. feature file.

62

~N O O W N

24
25

26
27

© 00 O Ui W N

—_
o

15
16

17
18

Listing 1.125: Addition to main_page.feature

Scenario: User sees title
When I am on the main page
Then I see a title "warning signals"

Scenario: User sees tabs
When I am on the main page
Then I see tabs with "early", "middle" and "late"

As a second step, we add an ion-nav-bar directive to our index file and
set the title of the ion-view as well as adding the tabs.

Listing 1.126: Addition to index.html

<body ng-app="starter">
<ion-nav-bar class="bar bar-header" align-title="center
"></ion-nav-bar>
<ion-nav-view></ion-nav-view>
</body>

Listing 1.127: Full main_page.html template

<ion-view name="main" title="warning signals">
<ion-tabs>
<ion-tab title="early">
</ion-tab>
<ion-tab title="middle">
</ion-tab>
<ion-tab title="late">
</ion-tab>
</ion-tabs>
</ion-view>

Then, in a last and third step, we wire our test with our application by
adding the missing two steps.

Listing 1.128: Addition to calabash_steps.rb

Then (/"I see a title " (.%x?)"$/) do |title_name|
wait_for (:timeout => 5, :timeout_message => "There is no
title #{title_name}") {
result = query ("systemWebView css:’ion-nav-bar’")
result [0] ["textContent"] == title_name

63

19
20
21
22
23
24
25
26
27
28

29

}

end
Then (/"I see tabs with " (.x2)", "(.*?)" and " (.*x?)"$/) do
| first_tab, second_tab, third_tab]
result = query("systemWebView css:’ .tab-item’")

fail ("There are not 3 tabs but #{result.count} tabs")
unless result.count ==
fail ("First tab 1s not called #{first tabl}") unless

first_tab == result[0] ["textContent"]

fail ("Second tab is not called #{second tab}") unless
second_tab == result[l] ["textContent"]

fail ("Third tab i1s not called #{third tab}!") unless
third _tab == result[2] ["textContent"]

end

To check the title name, we query for ion—-nav-bar in line 17 and after-
wards assert that the text content of this element is our title.

We use the same approach to find out whether the tabs are called properly
or not. However, we do not query for an element, but for a class called tab-
item. Line 25 then checks if there are exactly three tabs and lines 26 to 28
check for the correct text in those tabs.

We run our tests again and see it passes. Additionally, we tag our current
changeset with “v0.0.1” and commit the changes.

Listing 1.129: Tag and commit first iteration

hg tag "v0.0.1"
hg commit --message "Finished first iteration"

Finally, we have finished this week’s work and are eager to show our first app
to our client.

1.7.4 Interaction

As a second iteration our clients wants us to do requirements 4, 5 and 6.
Hence, we will add an input field to each tab and store the input data to an

64

© 00 O Ui W N

—= = =
W N = O

W N =

(=)

array. After having consulted our clients we made requirement 5 a litte more
precise.

Gherkin steps

Listing 1.130: Additions to main. features for second iteration

Scenario: User sees entry field
When I am on the main page
Then he sees an input field

Scenario: User sees signal list
When I am on the main page
Then I see a signal list

Scenario: User enters signal
Given I am on the main page
When I enter "weariness" into input field
And I press enter
Then I see "weariness" in the signal list

Implementation

We will start by adding the input field to our tabs. You could do that by
adding the input field to each tab in your main_page.html file, but this
would lead to a repetition of code for every tab. So, we decide to refactor
our code and use templates. Consequently, we then load the same template
for each tab.

Listing 1.131: tab.html template

<ion-view title="warning signals">
<ion-content>
<label class="item item—-input">
<input name="input" ng-model="input.value" ng-keyup="
save (Sevent)" type="text"/>
</label>
<ion-list>
<ion-item ng-repeat="warningsignal in warningsignals
track by $index" type="item-text-wrap">

65

© 00

10
11
12

{{warningsignal}}
</ion-item>
</ion-list>
</ion-content>
</ion-view>

The ng-keyup directive in line 4 triggers, as soon a key is released, the
save function in $scope. ng-keyup exposes an $event object in its scope
that we pass to the save function. It is later used to determine if enter was
pressed. Additionaly we bind the property input.value to our input area
with the ng-model directive.

In the second part as of line 6 we create an ion-1ist directive and fill it
with items by iterating over a warning signals array.

To iterate over all warning signals in line 7 we could write warn-
ingsignal in warningsignals without track by $index. The
problem is that AngularJS expects unique names to track its elements
in ng—repeat and by default uses its content. In our case this is the
content of warningsignal. Consequently, it would not be possible to
enter the same warning signal twice.

Initially, there is no save function and no warning signals array in our scope
so we have to define it in a controller. Thus, we create a controller. js
file in our js folder. Since we want to use services to expose the signals list to
our controllers, we create as well a services. js file. To make sure they
are loaded into our application, we need to adjust our index.html file right
after the <!-— your app’s Jjs —--> comment.

Listing 1.132: Adjustments to index.html to add new controllers.js and
services. js files

<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
<script src="js/services.js"></script>

In services. js we create a new module called 'warningsignals.services’
and create a service which provides us with an empty array for each stage of
signals. We are going to use those arrays to store new signals in it.

66

© 00 O Ui W N

10
11
12
13

~ O U i~ W [\

O 0o

10

Listing 1.133: First services in services. js

angular.module (' warningsignals.services’, [])

.factory (' earlyWarningsignals’, function() {
early = new Array();
return early;

})

.factory ('middleWarningsignals’, function() {
middle = new Array();
return middle;

})

.factory ('’ lateWarningsignals’, function() {
late = new Array();
return late;

})

As for the controllers. js we create as well a new module called warn—
ingsignals.controller and create a controller for each tab. Further-
more, we inject our newly created services into our controllers.

We implement the same logic for all controllers. First we create, in line 3,
an input property in our scope. Second we create another property warn-—
ingsignals and assign our injected array to it and third we create a last
property save and assign it a function to handle the call from ng-keyup
declared in . This function checks, in line 7, if the enter key (keycode
13) was pressed and if the input field is not empty. If both premises are true
then the input is pushed into our array and the input field is emptied again.
The same behaviour is implemented for all controllers.

Listing 1.134: First controllers in controllers. js

angular.module (' warningsignals.controllers’, [])
.controller ('EarlyController’, function ($Sscope,
earlyWarningsignals) {
Sscope.input = { value : "" }
Sscope.warningsignals = earlyWarningsignals

Sscope.save = function (event) {
if (event.keyCode == 13 && S$scope.input.value.length
'= 0) {
earlyWarningsignals.push ($scope.input.value)
Sscope.input.value = ""

67

11
12
13

14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29

30
31
32
33
34

}
})

.controller ('MiddleController’, function ($scope,
middleWarningsignals) {

Sscope.input = { value : "" }
Sscope.warningsignals = middleWarningsignals
Sscope.save = function() {
if (event.keyCode == 13 && S$scope.input.value.length
= 0) {

middleWarningsignals.push ($scope.input.value)
Sscope.input.value = ""

}

1)

.controller (' LateController’, function (S$Sscope,
lateWarningsignals) {

Sscope.input = { value : "" }
Sscope.warningsignals = lateWarningsignals
Sscope.save = function() {
if (event.keyCode == 13 && S$scope.input.value.length
= 0) {

lateWarningsignals.push ($Sscope.input.value)
$scope.input.value = ""

As mentioned, each controller implements almost the same logic for the
sake of simplicity. A better way to implement it, would be to move the

repeating logic into a service. This is left to the reader as exercise.

At last what we must not forget is to inject our new modules into our main
‘'warningsignal’ module. Hence, we change the first line of app . js as follows.

Listing 1.135: Change to the first line of app. js

angular.module (' warningsignals’, [’ionic’, '
warningsignals.controllers’, ’‘warningsignals.services’])

68

© 00 O Ot s W N

— e
= wWw NN = O

15

16
17
18

19
20
21

22
23
24
25
26
27

Calabash steps

We change now to our calabash-steps.rb file to start wiring our tests
to our application.

Listing 1.136: New step definitions in calabash-steps.rb

Then (/"I see an entry field$/) do
exists? ("input", "There is no entry field")
end

Then (/"I see a signal 1list$/) do
exists? ("ion-1list", "There is no signal list")
end

When (/"I enter " (.%?)" into input field$/) do |text|
enter_text ("systemWebView css:’input’", text)
end

Then (/"I see "(.*?)" in the signal 1list$/) do |text|
result = exists?("ion—-item", "There is no item in the
list")
fail ("Not correct content \"#{result[0] ["textContent"
1}\" in item") unless result[0] ["textContent"].
include? (text)
end
def exists?(element, failure_message = "Could not find
element")
result = []

wait_for (:timeout => 5, :timeout_message =>
failure_message) {
result = query ("systemWebView css:’ #{element}’")
not result.empty?

return result
end

First we check if there is actually an input field and a signal list for require-
ment 4 and 5. As seen in previous examples we do that by querying the
webview namely for ion-1ist and input.

69

Implementing requirement 6 next is a little bit more difficult but still straight
forward. In line 10 we use Calabash’s own enter_text method to fill our
text into the input field. There is only one input field hence, we are allowed
to query for an input tag without running into problems. In line 14 we then
check for the existence of the ion—-item tag. If it exists we check if it holds
the correct text in line 15.

In cases where there are multiple inputs on one view, it a good practise
to define an unique ID for each of them in the HTML file and query for
this ID.

<input id="signallInput" type="text"/>

query ("systemWebView css:’#signalInput")

We do not have to implement the step I press the enter button. It
is not necessary because it is a step provided by Calabash. This canned step
passes a keycode 13 to the application.

As mentioned by Aslak Hellesoy et al. “test automation is software
development” [29, 140] so the same good habits for maintainable and
reusable software in development should be applied to step definitions
as well. This is the reason why we created a separate method to check
for the existence of an element. So that we can reuse that method in

different part of our test.

Running Calabash shows that all our tests pass. Consequently, we tag our
current work with “v0.0.2” and commit it.

1.7.5 Persistence

In the third iteration our client chooses requirement 6. This means that our
client wants to make the data persistent over time. To store our data we will
use PouchDB as local storage. As well we decided to do some refactoring to
reduce code repetition.

70

=~ W N -

Gherkin

Listing 1.137: Requirements for third iteration

Scenario: User keeps his data after app shutdown
Given I enter some signals
When I restart the app
Then I see all entered signals

Implementation

First we need to download the PouchDB library from http://pouchdb.
com/|, put it into the www/11ib folder and then load the PouchDB library
in our index.html file.

<script src="lib/pouchdb-3.6.0.min. js"></script>

Second we create a PouchDB database and make it accessible for our appli-
cation. The best way to do it is through a service. All signal will be stored
in one document.

Listing 1.138: Make PouchDB accessible for application

angular.module (' warningsignals.services’, [])
.factory (' pouchdb’, [’Sqg’, function($Sq) {

pouchdb = new PouchDB (’warningsignals’)

emptyDocument = { "early" : [], "middle" : [], "late"
(11}

pouchdb.put (emptyDocument, "signals")

return {

add
function (time, element) {
pouchdb

.get ("signals")

.then (function (doc) {
doc[time] .push (element)
pouchdb.put (doc)

H)

by
get

71

http://pouchdb.com/
http://pouchdb.com/

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

function (time) {
deferred = S$g.defer ()

pouchdb
.get ("signals")
.then (function (doc) {
deferred.resolve (doc[time])
})
.catch (function(err) {
deferred.reject (err)

)

return deferred.promise

}
1)

We do not expose the whole PouchDB object to the user of our service
but provide only the necessary get and add function. One big advantage of
this approach is that we have all interaction with the database in one place
increases maintainability. In line 1 to 3 we create a PouchDB instance and
add a document called signals to it. This document holds three properties
“early”, “middle” and “late” each of them holding an array. Those arrays
will be used to store the signals at each stage.

The add function from line 8 to 17 accepts two arguments, one is the stage
and the other is the element to add to that stage. We get our signals
document from the database. Right after we get the correct property of that
document and add our new element to it. Finally we put our new element
back into our database.

The get function accepts one argument to determine the stage to be fetched.
It Returns a promise that is resolved as soon as we have fetched the array
for the stage we are looking for. In line 19 we create a deferred object from
the Sq service. Afterwards we fetch our signals document, get the correct
property and resolve our deferred object. If an error occurs we reject the
promise. At last we return a new promise.

After creating new services, we can now completely our module for controllers
and reducing all controllers to a single one.

Listing 1.139: Redesigned controllers in controllers. js of third iteration

72

—_

© 00 ~J O Ut i~ W

10
11
12
13
14
15
16
17
18
19
20
21

Oy O i W N

angular.module (' warningsignals.controllers’, [])

.controller (' TabController’, function ($Sscope, Sstate,

pouchdb) {

tab = $state.current.name.replace("main.", "")

Sscope.warningsignals = []

Sscope.input = { value : "" }

Sscope.save = function (event) {

if (event.keyCode == 13 && S$scope.input.value.length

'= 0) {

Sscope.warningsignals.push (Sscope.input.value)
pouchdb.add (tab, $scope.input.value)
Sscope.input.value = ""

pouchdb
.get (tab)
.then (function (doc) {
Sscope.warningsignals = doc
})
})

Instead of using multiple controllers, one for each tab, we create one single
controller. The current state is found through the $state service in line 3
The save function is almost untouched but instead of pushing it into the
array, we add it to our database via our new pouchdb service in line 11.
Finally, from line 16 to 20, we get the signals of the current stage out of our
database and assign them to our warningsignals property in $scope.

In a last step we need assign our new unified TabController to each tab
state.

Listing 1.140: New state provider settings with unified TabController in app. js

SstateProvider
.state('main’, {
url: "/main",
templateUrl: "templates/main_page.html",
})

.state('main.early’, {

73

O 00

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

© 00 O Ui Wi

10

url: "/early",
views: {
"early’ : {
templateUrl: ’'templates/tab.html’,
controller: ’"TabController’,

}

})
.state('main.middle’, {
url: "/middle",
views: {
"middle’ : {
templateUrl: ’'templates/tab.html’,
controller: ’"TabController’,
H}
})
.state(‘main.late’, {
url: "/late",
views: {
"late’” : {
templateUrl: ’'templates/tab.html’,
controller: ’"TabController’,

}
})

SurlRouterProvider.otherwise (/! /main’)

}) i

Calabash Steps

Listing 1.141: Step definitions for third iteration

Given (/"I enter some signals$/) do
@signals = ["weariness", "sickness", "dizziness"]

for signal in @signals do
enter_text ("systemWebView css:’input’", signal)
press_enter_button
end
end

When (/"I restart the app$/) do

4

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25

26

O UL b W N~

EN|

shutdown_ test server
start_test_server_in_background
end

Then (/"I see all entered signals$/) do
result = exists?("ion-item", "There was no item in the
list")

@signals.each_with_index do |signal, index|
textContentIncludes? (result [index], signal, index+1)
end
end

def textContentIncludes? (result, expected, index)
content = result["textContent"]
fail ("Not correct content \"#{expected}\" in #{index}.
item") unless content.include? (expected)
end

From line 2 to 7 we enter the elements called “weariness”, “sickness” and
“dizziness”. The interesting part is line 11 to 14. In line 12 we shut down
the test server which consequently shuts down our app. After that in the
next line we restart the server and thus restart our app. In line 15 to 21
we then check for if the signals survived the shutdown. We create a helper
function textContentIncludes? to check if an element includes a string
in its text content to avoid code repetition.

If we run all our tests now with —format progress, we see that our last
test is failing.

Listing 1.142: Output of Calabash with option —format progress on after changes for
third iteration

F
(::) failed steps (::)

Not correct content "sickness" in 2. item (RuntimeError)
./features/step_definitions/calabash_steps.rb:83:in
textContentIncludes?’
./features/step_definitions/calabash_steps.rb:77:in ‘block
(2 levels) in <top (required)>’
./features/step_definitions/calabash_steps.rb:76:in ‘each’

A

75

10
11
12

13
14

A

./features/step_definitions/calabash_steps.rb:76:in
each_with_index’

./features/step_definitions/calabash_steps.rb:76:in /"I
see all entered signals$/’

features/main_page.feature:32:in ‘Then I see all entered
signals’

Failing Scenarios:
cucumber features/main_page.feature:29

Calabash is taking a screenshot at the moment when a step fails Taking a
closer look at this screenshot shows us that there is one item too much.

warningsignals

early middle late

weariness
weariness
sickness

dizzyness

Figure 1.5: Screenshot after error in third iteration

But why is this? Did we make a mistake in our step definitions? No, we
didn’t. The problem is that Calabash preserves the application data in
each test run. So the added “weariness” from our scenario User enters
signal gets preserved and interferes with our current scenario. Lucky
for us Calabash provides a solution for this. We need to clear the ap-
plication data after each scenario. For that we change the after hook in

76

~N O Ol W N~

app_life_cycle_hooks.rb situated at features\support and use
the clear_app_data method after each scenario.

After do |scenario]
if scenario.failed?
screenshot embed
end
clear_app_data
shutdown_test server
end

Running our tests again, we see that everything is fine. As after each iteration
before we tag it with “v0.0.3” and commit.

1.7.6 Adding welcome sound

Gherkin

Listing 1.143: Scenario for fourth iteration

When I start the app
Then I hear a welcome sound

Implementation

Our client wants to use a friendly killdeer chirp by Mike Koenig found on
soundbible.comathttp://soundbible.com/grab.php?i1d=18494&
type=mp3 as welcome sound. Using sound is possible with the media plug-
in. Thus, before we can begin, we have to add this plug-in.

Listing 1.144: Install the media plug-in

cordova plugin add cordova-plugin-media

At start we create a service to expose our music file to the application. As
soon as the service is loaded, we want it to play a file but as well there must
be a way to determine if a the media file is currently running or not. So
our Player should expose a Player.isRunning () function. We use an

77

soundbible.com
http://soundbible.com/grab.php?id=1849&type=mp3
http://soundbible.com/grab.php?id=1849&type=mp3

QU b W N

~N

10
11
12
13

L

event listener for “deviceready” because the Media plug-in is only available
after this event.

.factory ('Player’, function() {
isRunning = false
document .addEventListener ("deviceready", function() {
player = new Media ("/android_asset/www/sounds/
killdeer.mp3",
function () { 1},
function (err) { },
function (status) { isRunning = (status ==
Media.MEDIA_RUNNING || status ==

Media.MEDIA_STARTING) })
player.play ()
}, false);

return { isRunning : function() { return isRunning } }

})

Unfortunately the Media object has no native API to determine if a media
file is played. In line 2 we create a property (isRunning). It will be true
if currently a music file is playing or false otherwise. Then from line 4 to 7
we create a new media object. The constructor expects a path to a media
file as first argument. The second and third arguments are callbacks in the
case of success or error. Finally the last argument is a callback to monitor
the current state of the media file. We use this callback to populate our
isRunning property with either true if the media is running or starting
and false otherwise.

On iOS the path in the first argument don’t need /android/www/
attached to find a ressource, so here is case where you have to differ
between the two operating systems. A good way to do that is using the
Cordova device plug-in [3].

Finally in line 10 we expose our API to the user of this service. It consists
of only one method called i sRunning.

Media objects provide further possibilities to manipulate a media file.
The most important and self-explanatory methods are play (), pause (),

78

and stop () amusic and release () torelease the underlying audio re-
sources. To learn more about it visit the Cordova media plugin homepage
https://github.com/apache/cordova-plugin-media [7].

After the creation of our service we inject it into a new controller called
MusicController. Since the service is starting our media file directly, we
don’t have to do anything else than inject it into our controller. Consequently
our controller is empty otherwise.

Listing 1.145: New MusicController in controllers. Js

1| .controller ('MusicController’, function (Player) { })

At last we assign our new controller to the body of our application using the
ng-controller directive.

Listing 1.146: Assignment of MusicController to body in forth iteration in index.
html

1| <body ng-app="warningsignals" ng-controller="
MusicController">

2 <ion-nav-bar class="bar bar-header" align-title="center"
></ion-nav-bar>

3 <ion-nav-view></ion-nav-view>

4] </body>

Calabash steps

To test if a media file is running need a little more effort. Since Calabash or
adb do not provide any native way to determine if music is running we have
to inject a JavaScript code into our application to retrieve and examine our
Player service. Here is where the injector comes handy.

Listing 1.147: Use of injector to find out if music is running

1| Then (/"I hear a welcome sound$/) do
2 wait_for (:timeout => 5, :timeout_message => "You are not
on the main page") {
3 result = query("all systemWebView css:’ion-view[name
=\"main\"]’")
4 not result.empty?

79

https://github.com/apache/cordova-plugin-media

(=)

10
11
12

wait_for (:timeout => 5, :timeout_message => "There is no
welcome sound") {
Jjs = "var player = angular.element (document.body) .
injector () .get ("Player’); return player.isRunning ()
.
result = evaluate_javascript ("systemWebView", Jjs)
result [0] == "true"
}
end

In the first 5 lines we wait until the main page appears. We use this to make
sure that the device is actually ready and that AngularJS is loaded.

In line 7 we define the JavaScript code to be executed in our application.
To retrieve our Player service, we first create an AngularJS element of the
body. From this element we then retrieve its injector, which is the same that
is used in our controllers and services. Further we get our Player service
from this injector and store it into the player property. At last we return the
current state of the media with player.isRunning().

Running our previously created JavaScript in line 8 with execute_javascript
returns now an array holding either a “true” or “false” string. “true” if an
audio file is running, “false” otherwise. In line 9 we then check if a file is
running thus if our array holds a “true” string as first element.

Running our tests shows us that everything is fine. Consequently, we tag our
current progress with “v0.0.4” and commit.

1.7.7 Integrate CouchDB

For the purpose of example and shortness security elements, data pro-
tection and parts of the error handling are not considered. The main
focus lies on synchronizing the PouchDB instance with CouchDB. This
section should therefore not be used as is in production code. Please be
aware of that when reading this section.

80

Oy O i W N

Throughout this section we will assume that there is CouchDB instance list-
ing to port 5984 of example.com and an admin called “admin” with a pass-
word “secret”.

1.7.8 Gherkin

Listing 1.148: Data backup scenario for iteration 5

Scenario: User has data backup
Given I log in
And I enter some signals
When I delete and reinstall the app
And I log in
Then I retrieve my previous data

1.7.9 Implementation

Our first step is creating a database called “users” on CouchDB that stores
the data in one document per user. Next we create a general user who has
member access to the newly created database.

Listing 1.149: Create user wsingnaluser with password verysecret

curl —-X PUT http://admin:secret@example.com:5984/users

curl —-X PUT http://admin:secret@example.com:5984/_users/
org.couchdb.user:wsignalsuser -d ' {"name":"
wsignalsuser", "type":"user", "roles":[], "password":"
verysecret" 1}’

curl —-X PUT http://admin:secret@example.com:5984/users/
_security -d ’{"admins": {"names":[], "roles":[]}, "
members": {"names": ["wsignalsuser"], "roles":[]}}’

In a next step we create our template for our login screen. Here we want to
give the user two choices to confirm his login data. Either he presses enter
on the keyboard or he touches the login button.

Listing 1.150: Login template in login.html

l|<ion-view name="login" title="Login">

2

<ion—-nav-buttons side="left">

81

~ O O W~

O 00

10
11

© 00~ O Ot s W N

10
11
12

<button class="button" ui-sref="main"><i class="ion-ios
—undo"></1i></button>
</ion-nav-buttons>
<ion-content>
<label class="item item—-input">
<input name="input" ng-model="input.value" ng-keyup="
save (Sevent)" type="text"/>
</label>
<button ui-sref="main.early" class="button button-full"
ng-click="save () ">Login</button>
</ion-content>
</ion-view>

We create back button with the ion—-nav-button directive in line 2 to
3. Instead of using as text we use an ionicons icon by setting the class of
our nested i tag to the name of the icon we want to use. From line 6 to 8
we the same approach to create an input as seen before in the tabs. Right
after it we create a button. Buttons in ionic must always be of the class
“button” to ensure correct functionality therefore we use this class and the
class “button-full” to create button that horizontally stretches over the hole
screen. Furthermore the ng—c1ick directive is used to listen to touches and
clicks to the button.

Thinking ahead and for the purpose of handing the user name from controller
to controller or to inject it into a service we create a User service with getters
and setter for the user name.

Listing 1.151: User service to store pass around user name in services. js

.factory (' User’, function() {
var username = "signals";
return {

getUsername : function() {

return username;

Yo
setUsername : function (name) {
username = name;

82

Oy UL i W N

© 00 I

10

12
13
14
15
16
17
18
19
20
21
22
23

Since we want to synchronize our PouchDB instance with our remote CouchDB,
we extend our pouchdb service with a sync () method. First we create a
new document with the user name, second we move all elements entered be-
fore the login to this new document and third we synchronize both databases.
The reason why we do that is because at the beginning we don’t know the
name of the user but still we have to store our data in a document. This
document we called signals. As soon as we now the user name we create
document with his name and synchronize this document. If we do not do
that every person using this app would synchronize with the same document.

The user name is a very bad idea to uniquely identify a document. A
better idea is to use uuid (universally unique identifier, for example the
methods described here http://stackoverflow.com/questions/
105034 /create—guid—uuid-in—-javascript.

Listing 1.152: Extension of the pouchdb service

sync : function () {
pouchdb
.get ("signals’)
.then(function (doc) {
sync = function () {
pouchdb.sync ("http://wsignalsuser:
verysecret@example.com: 5984 /users", {
live: true,
retry: true,
doc_ids: [User.getUsername ()],
})
}
delete doc._id
delete doc._rev
pouchdb
.put (doc, User.getUsername ())
.then (sync)
.catch (function (err) {
if (err.status == 409) {
sync ()

83

http://stackoverflow.com/questions/105034/create-guid-uuid-in-javascript
http://stackoverflow.com/questions/105034/create-guid-uuid-in-javascript

U s W N

O 00 3 O

10

Line 4 gets the current signals document. This document was used to store
the data when no user name was known. The line 6 assigns an anonymous
function to the sync variable. This function does the necessary steps for the
synchronization. It uses a doc_ids filter to only synchronize the documents
with the id being the user name. The retrieved signals document is then
stripped of its _id and _rev properties. Subsequently this packed document
is put as a new document with the id set to the current user name. Then
in a last step in line 17 to 21 the synchronization process is started either
if adding the document was success or if there was a document conflict. A
document conflict returns the error code 409. It occurs if we want to create
a document that already exists. The reason why this might happen is if we
restart the app then maybe we already have synced once with the database
and therefore the document already exists.

Our login.html is still only a template without behaviour. Therefore we
implement a controller for it.

Listing 1.153: Add behaviour to 1ogin.html

.controller (' LoginController’, function ($scope, pouchdb,
User) {
$scope.input = { value : "" }

Sscope.save = function (event) {
if ((typeof event === ’"undefined’ || event.keyCode == 13)
&& S$scope.input.value.length != 0) {
username = $scope.input.value
User.setUsername (username)
pouchdb.sync ()
Sscope.input.value = ""

This controller looks almost identical to our TabController in listing
[1.139] What is different is that instead of adding an element to our local
PouchDB instance we set the new user name in our User service in line 7 and
start synchronizing with our remote CouchDB.

For navigational reasons we add a button at the header of our tabs so we can
reach the login page from there.

84

—_

U W N

© 00~ O Ot s W N

I e T Tl
DU W N~ O

Listing 1.154: Button to navigate to the login page in tabs.html right after the
ion-view tag

<ion-nav-buttons side="left">
<button class="button" ui-sref="login"><i class="ion-
log—-in"></i></button>
</ion-nav-buttons>

In a final step we wire our template together with our LoginController
by adding a new state Login to the $stateProvider.

Listing 1.155: Adding 1ogin state to $stateProvider in app. js

.state (' login’, {
url: "/login",
templateUrl: ’'templates/login.html’,
controller: ’"LoginController’

1)

The basic programming part of this iteration is now finished and can move
on to wire our application to our scenario.

Calabash steps

Listing 1.156: Calabash steps for iteration 5

Given (/"I log in$/) do
touch (! systemWebView css:".button"’)
enter_text (/ systemWebView css:"#login-input"’, "Peter")
press_enter_button
wait_for main_page

end

When (/"I delete and reinstall the app$/) do
sleep(2)
shutdown_test_server
clear_app_data
start_test_server_in_background

end

Then (/"I retrieve my previous data$/) do
result = exists?("ion-item", "There was no item in the

list™)

85

17
18
19
20
21

DN =

S O i W N

@signals.each_with_index do |signal, index|
textContentIncludes? (result [index], signal, index+1l)
end
end

Defining the Calabash steps is straightforward. To login we touch our only
button in the view then enter text in our login input and confirm it by
pressing the enter button. Then we wait until the main page appears.

For deleting and reinstalling in line 9 to 13 Calabash provides us with the
method we need. First we shut down the test server, then we clear the
application data and last we start our application again.

Finally to check if we retrieved the correct signals, we use exactly the same
code like in listing of the third iteration.

As it was with data chunks left in PouchDB after each test, it is now with
chunks in our remote database. Since we do not use the database in every
scenario we create a special “@clear” tag. Furthermore we create an after
hook especially for this tag in hooks.rb under calabash\features\
support.

Listing 1.157: Use after hook for @clear in hooks.rb

After (' @dclear’) do
url = 'http://wsignalsuser:verysecret@pas—-web.ch:5984/
users/Peter’
rev = %$x[curl -sS -I "#{url}" | sed -ne ’"s/"ETag:
"\\ (. *\\)"/\\1/p’] .chomp
system(%$Q[curl -sS —-X DELETE #{url}?rev="#{revi"])
end

Now, we should not forget to tag our scenario

Listing 1.158: Tagged scenario to clean up database after execution

@clear
Scenario: User has data backup
Given I log in
And I enter some signals
When I delete and reinstall the app
And I log in

86

7 Then I retrieve my previous data

Running all our tests shows us that we have finished our fifth iteration. We
tag this as version '1.0.0" and commit it.

Listing 1.159: Last example output of Calabash with ——format progress on and all
tests passing

9 scenarios ()
24 steps ()
1m33.450s

87

1.7.10 Further information

You are now able to create a small but functional application. Unit testing,
an important part of the whole development cycle, was not mentioned in this
tutorial. AngularJS provides a nice unit testing environment. Find out more
at https://docs.angularijs.org/guide/unit—-testing.

A good start to find out more about the frameworks of this tutorial is to
either have a look at the literature or visit the official homepages of each
technology.

88

https://docs.angularjs.org/guide/unit-testing

Bibliography

1]

2]

Chris J. Anderson, Jan Lehnardt, and Noah Slater. CouchDB - The
Definitive Guide. O’Reilly, 1 edition, 2010.

AngularUI. Ui router: ui.router.state.$state. http://angular-
ui.github.io/ui-router/site/#/api/ui.router.state.
Sstatel Retrieved 31 july 2015.

Apache Software Foundation. Apache cordova api documentation.
https://cordova.apache.org/docs/en/3.3.0/cordova_
device_device.md.html. Retrieved 7 August 2015.

Apache Software Foundation. Security_features_overview - couchdb wiki.
http://wiki.apache.org/couchdb/Security_Features_
Overview, 2013. Retrieved 28 July 2015.

Apache Software Foundation. Installing_on_ubuntu - couchdb
wiki. https://wiki.apache.org/couchdb/Installing_on_
Ubuntu, 4 2014. Retrieved 30 June 2015.

Apache Software Foundation. 10.3.9. /db/_security - apache couchdb
2.0.0 documentation. http://docs.couchdb.org/en/latest/
api/database/security.html, 2015. Retrieved 28 July 2015.

Apache Software Foundation. cordova-plugin-media/readme.md at mas-
ter - apache/cordova-plugin-media github. https://github.com/
apache/cordova-plugin-media/blob/master/README.md,
2015. Retrieved 7 August 2015.

calabash android developers. calabash-android /ruby_api.md
at master calabash/calabash-android github. https:
//github.com/calabash/calabash-android/blob/
master/documentation/ruby_api.md, 2014. Retrieved 30
July 2015.

89

http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.$state
http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.$state
http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.$state
https://cordova.apache.org/docs/en/3.3.0/cordova_device_device.md.html
https://cordova.apache.org/docs/en/3.3.0/cordova_device_device.md.html
http://wiki.apache.org/couchdb/Security_Features_Overview
http://wiki.apache.org/couchdb/Security_Features_Overview
https://wiki.apache.org/couchdb/Installing_on_Ubuntu
https://wiki.apache.org/couchdb/Installing_on_Ubuntu
http://docs.couchdb.org/en/latest/api/database/security.html
http://docs.couchdb.org/en/latest/api/database/security.html
https://github.com/apache/cordova-plugin-media/blob/master/README.md
https://github.com/apache/cordova-plugin-media/blob/master/README.md
https://github.com/calabash/calabash-android/blob/master/documentation/ruby_api.md
https://github.com/calabash/calabash-android/blob/master/documentation/ruby_api.md
https://github.com/calabash/calabash-android/blob/master/documentation/ruby_api.md

[9]

[10]

[11]

[12]

[19]

Drifty. Installing ionic and its dependencies - ionic framework. http:
//ionicframework.com/docs/guide/installation.html]
2013-15. Retrieved 25 July 2015.

Drifty. ion-content - directive in module ionic - ionic frame-
work. http://ionicframework.com/docs/api/directive/
ionContent/, 2013-15. Retrieved 31 July 2015.

Drifty. ion-nav-view - directive in module ionic - ionic frame-
work. http://ionicframework.com/docs/api/directive/
ionNavView/), 2013-15. Retrieved 31 July 2015.

Justin Ellingwood. How to install node.js on an ubuntu 14.04 server
— digitalocean. https://www.digitalocean.com/community/
tutorials/how—-to—-install-node—-js—-on—an—-ubuntu—14-
O0d-server, 5 2014. Retrieved 25 July 2015.

Martin Fowler. Inversion of control containers and the dependency
injection pattern. http://www.martinfowler.com/articles/
injection.html, 2004. Retrieved 28 July 2015.

Martin Fowler. Gui architectures. http://martinfowler.com/
eaaDev/uiArchs.html, 2006. Retrieved 27 July 2015.

Google. Angularjs: Developer guide: Dependency injection.
https://docs.angularjs.org/guide/di, 2010-2015. Retrieved 28 July 2015.

Ari Lerner. ng-book - The Complete Book on AngularJS. Fullstack.io,
2013.

Tania Lincoln. Kognitive Verhaltenstherapie der Schizophrenie. Hogrefe
Verlag, Gttingen, 2006.

NodeSource. Node.js v0.12, io.js, and the nodesource linux repositories
— nodesource - enterprise node.js training, support, software & con-
sulting, worldwide. https://nodesource.com/blog/nodejs—
v0l2-iojs—and-the—-nodesource-linux-repositories),
2015. Retrieved 28 July 2015.

Ransford Okpoti. How to create a gherkin syntax highlighter in gedit
— ransford okpoti’s blog. https://ranskills.wordpress.
com/2011/07/11/how-to-create—a—-gherkin-syntax—
highlighter—in—gedit/, 7 2011. Retrieved 26 July 2015.

90

http://ionicframework.com/docs/guide/installation.html
http://ionicframework.com/docs/guide/installation.html
http://ionicframework.com/docs/api/directive/ionContent/
http://ionicframework.com/docs/api/directive/ionContent/
http://ionicframework.com/docs/api/directive/ionNavView/
http://ionicframework.com/docs/api/directive/ionNavView/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-an-ubuntu-14-04-server
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-an-ubuntu-14-04-server
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-an-ubuntu-14-04-server
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html
https://nodesource.com/blog/nodejs-v012-iojs-and-the-nodesource-linux-repositories
https://nodesource.com/blog/nodejs-v012-iojs-and-the-nodesource-linux-repositories
https://ranskills.wordpress.com/2011/07/11/how-to-create-a-gherkin-syntax-highlighter-in-gedit/
https://ranskills.wordpress.com/2011/07/11/how-to-create-a-gherkin-syntax-highlighter-in-gedit/
https://ranskills.wordpress.com/2011/07/11/how-to-create-a-gherkin-syntax-highlighter-in-gedit/

[20] Bryan O’Sullivan. Mercurial: The Definitive Guide. O'Reilly, 2009.

[21] PouchDB. Pouchdb, the javascript database that syncs! http://
pouchdb.com. Retrieved 17 July 2015.

[22] Refsnes Data. Css selectors reference. http://www.w3schools.
com/cssref/css_selectors.asp, 1999-2015. Retrieved 30 July
2015.

[23] Refsnes Data. Json tutorial. http://www.w3schools.com/json/,
1999-2015. Retrieved 17 July 2015.

[24] Ruby community. Installing ruby. https://www.ruby-lang.org/
en/documentation/installation/#apt. Retrieved 27 July
2015.

[25] Tillmann Seidel. How to finally delete documents in couchdb -
eclipsesource blog. http://eclipsesource.com/blogs/2015/
04/20/how-to-finally-delete—-documents—in—couchdb/,
2015. Retrieved 8 August 2015.

[26] StackOverflow. database - clean couchdb and restart - stack
overflow. http://stackoverflow.com/questions/13030551/
clean—-couchdb-and-restart, 2012. Retrieved 30 June 2015.

[27] Koen Vlaswinkel. How to install java on ubuntu with apt-get —
digitalocean. https://www.digitalocean.com/community/
tutorials/how—-to—-install-java—-on—ubuntu-with—apt-
get, 2014. Retrieved 25 July 2015.

[28] W3C. Cross-origin resource sharing. http://www.w3.org/TR/
cors/, 2014. Retrieved 8 August 2015.

[29] Matt Wynne and Aslak Hellsoy. The Cucumber Book. Pragmatic Pro-
grammers, Ilc., 2012.

91

http://pouchdb.com
http://pouchdb.com
http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/json/
https://www.ruby-lang.org/en/documentation/installation/#apt
https://www.ruby-lang.org/en/documentation/installation/#apt
http://eclipsesource.com/blogs/2015/04/20/how-to-finally-delete-documents-in-couchdb/
http://eclipsesource.com/blogs/2015/04/20/how-to-finally-delete-documents-in-couchdb/
http://stackoverflow.com/questions/13030551/clean-couchdb-and-restart
http://stackoverflow.com/questions/13030551/clean-couchdb-and-restart
https://www.digitalocean.com/community/tutorials/how-to-install-java-on-ubuntu-with-apt-get
https://www.digitalocean.com/community/tutorials/how-to-install-java-on-ubuntu-with-apt-get
https://www.digitalocean.com/community/tutorials/how-to-install-java-on-ubuntu-with-apt-get
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

	Tutorial
	Introduction
	License

	CouchDB
	Installation
	Start and stop database service
	Queries
	Database Manipulation
	Document Manipulation
	User Management
	Database security
	Setting up CORS

	PouchDB
	Installation
	Database Manipulation
	Document Manipulation
	Synchronizing with CouchDB

	Ionic
	Installation
	Usage

	Calabash for Android
	Installation
	Usage
	Feature
	Scenario
	Scenario outline
	Background
	Step definitions
	Running tests

	Mercurial
	Installation
	Basics
	Mercurial with bitbucket.org

	Hands-on project
	Scenario
	Requirements
	Main Page
	Interaction
	Persistence
	Adding welcome sound
	Integrate CouchDB
	Gherkin
	Implementation
	Further information

