
Reverse Engineering

Tudor Gîrba
www.tudorgirba.com

Chikofky & Cross, 90

Reverse engineering is analyzing a subject system to:

identify components and their relationships, and
create more abstract representations.

Why reverse engineer?

Elliot Chikofsky and James Cross II, “Reverse Engineering and Design Recovery: A Taxonomy,” IEEE Software, vol. 7,
no. 1, January 1990, pp. 13-17.
http://dx.doi.org/10.1109/52.43044

The B29 bomber

In 1944, 3 B29s had to land in Russia

Requirement: Copy everything, fast!

Thanks to Orla Greevy for pointing out this story of extremely successful reverse engineering.

The B-29 was the main bomber of US Air forces and it provided the strategic advantage of reaching over the Pacific
Ocean.

This three billion dollar project was the largest government commitment ever to a single project, including the Atomic
Bomb.
http://en.wikipedia.org/wiki/B-29
http://en.wikipedia.org/wiki/Tupolev_Tu-4
http://www.rb-29.net/HTML/03RelatedStories/03.03shortstories/03.03.10contss.htm

During 1944, 3 bombers had to land in Russia after bombing missions in Japan. The Russians refused to return them.

The B-29 was not a legacy system, but:
- it was tremendously valuable
- it was unknown to the Russians
- it was estimated that to build one from scratch would take about 5 years

http://en.wikipedia.org/wiki/B-29
http://en.wikipedia.org/wiki/Tupolev_Tu-4

Disassemble Run

Test and compare

The challenge was to understand the planes well enough to be able to build a factory that would build them. This had
to go beyond just the structure.

They approached the problem from several directions:
- one plane was disassembled into pieces,
- one plane was used for flying, and
- one plane was used as a comparison model and for training pilots.

They eventually managed to build their own plans.

Tupolev TU-4: 105,000 pieces assembled in 2 years

Why reverse engineer software?

forward engineering

actual development }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

The Russians reverse engineered the plans in 1 year and produced the first piece 1 year later.
Tu-4 first flew on May 19, 1947. Serial production started immediately, and the type entered large scale service in
1949.
It is said that they copied even the flaws, as the engines were as unreliable as in the American version

The problem is that in most projects, the actual development happens only at the code level, with only little
documentation, and several years later the system is not tidy anymore.

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

actual development

program transformation

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

Reengineering life cycle

re
ve

rs
e

en
gin

ee
rin

g

}

{

}

{

}

{
}

{

}

{

Setting direction

First contact

Initial understanding

Detailed model capture

patterns

patterns

patterns

patterns

Forward Engineering is the traditional process of moving from high- level abstractions and logical, implementation-
independent designs to the physical implementation of a system.

Reverse Engineering is the process of analyzing a subject system to identify the systemʼs components and their
interrelationships and create representations of the system in another form or at a higher level of abstraction.

Elliot Chikofsky and James Cross II, “Reverse Engineering and Design Recovery: A Taxonomy,” IEEE Software, vol. 7,
no. 1, January 1990, pp. 13—17.

Reengineering ... is the examination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form.

Elliot Chikofsky and James Cross II, “Reverse Engineering and Design Recovery: A Taxonomy,” IEEE Software, vol. 7,
no. 1, January 1990, pp. 13—17.

Reverse engineering is an iterative process.
Set the direction to guide your way.
Start with exploratory actions to get an impression.
Speculate and check your assumptions.
Go into details.

short intermezzo

What are patterns?

re
ve

rs
e

en
gin

ee
rin

g

}

{

}

{

}

{
}

{

}

{

Setting direction
First contact

Initial understanding

Detailed model capture

Yogi Berra

You got to be careful if you don't know where you're
going, because you might not get there.

Patterns are recurrent solutions to problems that occur over and over.

Why set direction?

Reverse engineering is influenced by different factors:
- Conflicting interests (technical, economical, political).
- The presence or absence of original developers.
- Legacy architecture
- Interesting vs important problems

Important questions:
- Which problems to tackle?
- Wrap, refactor or rewrite?

Another nice fragment :
'Would you tell me, please, which way I ought to go from here?'
'That depends a good deal on where you want to get to,' said the Cat.
'I don't much care where ... ' said Alice.
'Then it doesn't matter which way you go,' said the Cat.
'... so long as I get somewhere,' Alice added as an explanation.
~ Lewis Carroll, Alice's Adventures in Wonderland

Setting direction patterns

Agree
on maxims

Appoint
a navigator

Speak to the
round table

Most valuable
first

If it ain’t broke
don’t fix it

Where
to start

What
to do

Fix problems
not symptoms

Keep it simple

What not
to do

How to do

Set
direction

Maintain
direction

Coordinate
direction

re
ve

rs
e

en
gin

ee
rin

g

}

{

}

{

}

{
}

{

}

{
Setting direction

First contact
Initial understanding

Detailed model capture

Interview during demo Chat with maintainers

Remember that they are all humans:

they complain

they are enthusiastic

they protect their jobs

What is the usage?

What are the bugs?

What do you like?

What is the history?

What is the process?

What are the problems?

Most Valuable First
Problem: Which problems should you focus on first?
Solution: Work on aspects that are most valuable to your customer.
Maximize commitment by aiming for early results; build confidence.
Difficulties and hints:
- Which stakeholder do you listen to?
- What measurable goal to aim for?
- Consult change logs for high activity
- Play the Planning Game
- Wrap, refactor or rewrite? — Fix Problems, not Symptoms

Setting direction summary:
Given the large amount of data to be processed, it is important to not lose focus.

Other questions to ask a maintainer:
How long was your project going on?
Who worked on the project?
What was the most interesting bug you had to fix?
Why was the reengineering effort started?
How do you release?
How do you plan what to do?
How do you test?

Read all code in one hour
100’000 lines of code

* 2 = 200’000 seconds

/ 3600 = 56 hours

/ 8 = 7 days

?

ArgoUML

Weinberg was among the first to point out that programming is a human activity. In one of his stories, he points out
how chatting around a vending machine helped solving problems. You can read about the vending machine story here:
http://www.stsc.hill.af.mil/crosstalk/2008/08/0808Cockburn.html

Supposing that you read one line in 2 seconds, it would take 7 working days to read 100ʼ000 lines of code. So, what
good would it make to read all code in one hout?

Read all code in one hour
Problem: How to get a first impression of the code?
Solution: Scan all code in one short session.
Issues:
- limit your time, and isolate from interruptions.
- use a checklist.
- look for root and abstract classes.
- beware of misleading comments.
- log your questions and findings.

Moose

Woody Allen

I took a course in speed reading and read “War and
Peace” in twenty minutes.

It’s about Russia.

Get a first impression, but do not rely on it.
Use it for guiding your future investigations.

Why read all code in 1 hour? Because we have a built-in mechanism to think fast.

First contact patterns

Chat with
maintainers

Interview
during demo

Talk with
developers

Talk with
users

Read all code
in one hour

Skim
documentation

Do a mock
installation

Read
the code

Compile
the code

Read about
 the code

Talk
about it

Verify what
you hear

re
ve

rs
e

en
gin

ee
rin

g

}

{

}

{

}

{
}

{

}

{
Setting direction

First contact

Initial understanding
Detailed model capture

Speculate about design

Graph

Layout

EdgeNode

Abstract

Item

Legacy systems are large and complex. Split the system into manageable pieces
Time is scarce. Apply lightweight techniques to assess feasibility and risks.
First impressions are dangerous. Always double-check your sources.
People have different agendas. Build confidence; be wary of skeptics.
Rule of thumb: Do not let the first contact last more than one week time.

First contact summary:
First project plan
Use standard templates, including:
- project scope - see "Setting Direction"
- opportunities
- e.g., skilled maintainers, readable source-code, documentation risks
- e.g., absent test-suites, missing libraries, …
- record likelihood (unlikely, possible, likely) & impact (high, moderate, low) for causing problems
- go/no-go decision
- activities overview - fish-eye view

The picture shows a possible design of a graph-based visualization tool.

Speculate about design
Problem: How do you recover design from code?
Solution: Develop hypotheses and check them.
Develop a plausible class diagram and iteratively check and refine your design against the actual code.

Variants:
- Speculate about Business Objects.
- Speculate about Design Patterns.
- Speculate about Architecture.

Identify exceptional entities

Identify exceptional entities

for i in $(ls); do
 echo `wc -l $i` >> temp
done
sort -nr temp | head -10

Initial understanding patterns

Speculate
about design

Analyze
persistent data

Study
exceptional entities

Bottom up

Top down

Iteration

Recover
database

Identify
problems

Recover
design

The picture shows the System Complexity View of Mondrian.

Identify exceptional entities
Problem: How can you quickly identify design problems?
Solution: Measure software entities and study the anomalous ones

Use simple metrics.
Visualize metrics to get an overview.
Browse the code to get insight into the anomalies.

You do not need fancy tools to get simple answers. The above program was written in 5 minutes by Jorge Ressia.

Knowledge must be shared.
Team need to communicate. “Use their language”
Data is deceptive. Always double-check your sources.
Understanding entails iteration. Plan iteration and feedback loops.
Knowledge must be shared. “Put the map on the wall”.

re
ve

rs
e

en
gin

ee
rin

g

}

{

}

{

}

{
}

{

}

{

Setting direction

First contact

Initial understanding

Detailed model capture

To understand: refactor

To understand: refactor
write tests

Initial understanding summary: Speculate about Design, Study Exceptional Entities.
Iterate! ... and start going into details.

Expose the design and make sure it stays exposed.

Refactor to undertand
Problem: How do you decipher cryptic code?
Solution: Refactor it till it makes sense.

Goal (for now) is to understand, not to reengineer. Work with a copy of the code.
Refactoring requires an adequate test base. If this is missing, Write Tests to Understand.

Hints:
- Rename attributes to convey roles.
- Rename methods and classes to reveal intent.
- Remove duplicated code.
- Replace condition branches by methods.

You can encode your assumptions as tests and execute them against the system.

To understand: refactor
write tests
step through execution

Learn from the past

Detailed model capture patterns
Tie code and

questions

Expose
contracts

Refactor
to understand

Step through
execution

Look for
the contracts

Write tests
to understand

Learn from
the past

Expose
design

Track your
understanding

Encode
assumptions

Expose
collaborations

Expose
evolution

Step through execution
Problem: How do you uncover the run-time architecture?
Solution: Execute scenarios of known use cases and step through the code with a debugger.

Tests can also be used as scenario generators. If tests are missing Write Tests to Understand.
Put breakpoints in the code.
Focused use of a debugger can expose collaborations.
Difficulties:
- OO source code exposes a class hierarchy, not the run-time object collaborations
- Collaborations are spread throughout the code
- Polymorphism may hide which classes are instantiated

Problem: How did the system get the way it is?
Solution: Compare versions to discover where code was removed.

Removed functionality is a sign of design evolution.
Use or develop appropriate tools.
Chat with maintainers about the reasons of change.
Look for signs of:
- Unstable design — repeated growth and refactoring
- Mature design — growth, refactoring and stability

Tie code and questions
Problem: How do you keep track of your understanding?
Solution: Annotate the code.
List questions, hypotheses, tasks and observations. Identify yourself!
Use conventions to locate/extract annotations.
Annotate as comments, or as methods.

re
ve

rs
e

en
gin

ee
rin

g

}

{

}

{

}

{
}

{

}

{

Setting direction

First contact

Initial understanding

Detailed model capture

Tudor Gîrba
www.tudorgirba.com

creativecommons.org/licenses/by/3.0/

Reverse engineering is creating high level views.
Plan the work and work the plan.
Iterate.
Issues:
- politics
- speed vs. accuracy
- scale

Choose your tools and use them.

