
Metrics and Problem Detection

Jorge Ressia

Software is complex.

The Standish Group, 2004

53% Challenged

18% Failed

29% Succeeded

How large is your project?

1’000’000 lines of code

* 2 = 2’000’000 seconds

/ 3600 = 560 hours

/ 8 = 70 days

/ 20 = 3 months

After 50 years, software is not “soft” anymore. It is heavy and dificult to manage.

http://www.standishgroup.com/sample_research/PDFpages/q3-spotlightpdf

For example, if you get a piece of software of 1ʼ000ʼ000 lines of code it would take you 3 months to read it if your
reading speed is 2 seconds per line of code.

forward engineering

}

{

}

{

}

{

}

{

forward engineering

actual development }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

forward engineering

actual development }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

What is the current state?

What should we do?

Where to start?

How to proceed?

In most projects, the actual development happens only at the code level, with only little
documentation maintenance.

In most projects, the actual development happens only at the code level, with only little
documentation maintenance.

In most projects, the actual development happens only at the code level, with only little
documentation maintenance.

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

actual development

Reverse engineering is analyzing a subject system to:

identify components and their relationships, and

create more abstract representations.

Chikofky & Cross, 90

}

{

}

{

}

{
}

{

}

{

A large system contains lots of details.

How to judge its q
uality?

In most projects, the actual development happens only at the code level, with only little
documentation maintenance.

Elliot Chikofsky and James Cross II, “Reverse Engineering and Design Recovery: A Taxonomy,”
IEEE Software, vol. 7, no. 1, January 1990, pp. 13-17.
http://dx.doi.org/10.1109/52.43044

http://moose.unibe.ch

http://loose.upt.ro/incode

1
Metrics

2
Design

Problems

3
Code Duplication

1Metrics

This is the background of the talk.

You cannot control
what you cannot measure.

Tom de Marco

Metrics are functions that assign numbers to

products, processes and resources.

Software metrics are measurements which

relate to software systems, processes or

related documents.

When you can measure what you are speaking about and express it in numbers, you know
something about it;
but when you cannot measure, when you cannot express it in numbers, your knowledge is of a
meagre and unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of science.

Metrics compress system traits into numbers.

Let’s see some examples...

Examples of size metrics

NOM - number of methods

NOA - number of attributes

LOC - number of lines of code

NOS - number of statements

NOC - number of children

Lorenz, Kidd, 1994
Chidamber, Kemerer, 1994

McCabe, 1977

McCabe cyclomatic complexity (CYCLO) counts
the number of independent paths through the code of a
function.

interpretation can’t directly lead to improvement action

it reveals the minimum number of tests to write

Chidamber, Kemerer, 1994

Weighted Method Count (WMC) sums up the
complexity of class’ methods (measured by the metric
of your choice; usually CYCLO).

interpretation can’t directly lead to improvement action

it is configurable, thus adaptable to our precise needs

Chidamber, Kemerer, 1994

Depth of Inheritance Tree (DIT) is the (maximum)
depth level of a class in a class hierarchy.

only the potential and not the real impact is quantified

inheritance is measured

Coupling between objects (CBO) shows the number
of classes from which methods or attributes are used.

Chidamber, Kemerer, 1994

no differentiation of types and/or intensity of coupling

it takes into account real dependencies not just declared ones

Tight Class Cohesion (TCC) counts the relative
number of method-pairs that access attributes of the
class in common.

Bieman, Kang, 1995

TCC = 2 / 10 = 0.2

ratio values allow comparison between systems

interpretation can lead to improvement action

Access To Foreign Data (ATFD) counts how many
attributes from other classes are accessed directly from
a measured class.

Marinescu 2006

...

2Design Problems

McCall, 1977

Metrics alone do not say anything about the quality of the system

Metrics Assess and Improve Quality!

Really?

McCall, 1977

?
Problem 2: implicit mapping

we don’t reason in terms of metrics,
but in terms of design principles

Problem 1: metrics granularity

capture symptoms, not causes of problems

in isolation,
they don’t lead to improvement solutions

2 big obstacles in using metrics:

Thresholds make metrics hard to interpret

Granularity make metrics hard to use in isolation

Can metrics help me
in what I really care for? :)

forward engineering

actual development }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

How do I understand code?

How do I improve code?

I want nothing to do with metrics
!

Understand the Code
e.g. „insourced“ code
you are relocated to a new team

Improve the Code
e.g. refactor the design to make it portable
e.g. make my subsystem more flexible to a change of requirements

How to get an initial understanding of a system?

Metric Value
LOC 35175

NOM 3618

NOC 384

CYCLO 5579

NOP 19

CALLS 15128

FANOUT 8590

AHH 0.12

ANDC 0.31

Metric Value
LOC 35175

NOM 3618

NOC 384

CYCLO 5579

NOP 19

CALLS 15128

FANOUT 8590

AHH 0.12

ANDC 0.31
And now what?

We need means to compare.

hierarchies?

coupling?

0.31ANDC

NOM

20.21 19

0.12

35175

NOP

NOC

418

0.15

8590

LOC

3618

9.42

5579

NOM

CALLS15128

384

FANOUT

9.72

0.56

AHH

CYCLO

The Overview Pyramid provides a metrics
overview. Lanza, Marinescu 2006

Size Communication

Inheritance

0.31ANDC

NOM

20.21 19

0.12

35175

NOP

NOC

418

0.15

8590

LOC

3618

9.42

5579

NOM

CALLS15128

384

FANOUT

9.72

0.56

AHH

CYCLO

Size

The Overview Pyramid provides a metrics
overview. Lanza, Marinescu 2006

0.31ANDC

NOM

20.21 19

0.12

35175

NOP

NOC

418

0.15

8590

LOC

3618

9.42

5579

NOM

CALLS15128

384

FANOUT

9.72

0.56

AHH

CYCLO

Communication

The Overview Pyramid provides a metrics
overview. Lanza, Marinescu 2006

0.31ANDC

NOM

20.21 19

0.12

35175

NOP

NOC

418

0.15

8590

LOC

3618

9.42

5579

NOM

CALLS15128

384

FANOUT

9.72

0.56

AHH

CYCLO

Inheritance

The Overview Pyramid provides a metrics
overview. Lanza, Marinescu 2006

CALLS: Number of operation calls
FANOUT: Number of Called Classes

ANDC: Average Number of Derived Classes
AHH: Average Hierarchy Height

0.31ANDC

NOM

20.21 19

0.12

35175

NOP

NOC

418

0.15

8590

LOC

3618

9.42

5579

NOM

CALLS15128

384

FANOUT

9.72

0.56

AHH

CYCLO

The Overview Pyramid provides a metrics
overview. Lanza, Marinescu 2006

...

HIGH

0.30

16

15

10

9

0.25

AVG

C++

4

5

0.20

LOW

Java

AVGLOW HIGH

0.24

10

13

7

0.20

10

0.16

7

4NOM/NOC

LOC/NOM

CYCLO/LOC

0.31ANDC

NOM

20.21 19

0.12

35175

NOP

NOC

418

0.15

8590

LOC

3618

9.42

5579

NOM

CALLS15128

384

FANOUT

9.72

0.56

AHH

CYCLO

The Overview Pyramid provides a metrics
overview. Lanza, Marinescu 2006

close to high close to average close to low

The Overview Pyramid provides a metrics
overview. Lanza, Marinescu 2006

close to high close to average close to low

forward engineering

actual development }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

How do I understand code?

How do I improve code?

I want nothing to do with metrics
!

How do I improve code?

Understand the Code
e.g. „insourced“ code
you are relocated to a new team

Improve the Code
e.g. refactor the design to make it portable
e.g. make my subsystem more flexible to a change of requirement
I want to have NOTHING TO DO with metrics! ;-)

Breaking design principles, rules and best practices

deteriorates the code;

it leads to design problems.

Quality is more than 0 bugs.

and 33%
of all classes
would require changes

Imagine changing just a small design fragment

Design problemsare
expensive
frequent
unavoidable

How to detect an
d eliminate them?

God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small
data-classes.

Riel, 1996

God Classes tend
to centralize the intelligence of the system,
to do everything and
to use data from small data-classes.

God Classes
centralize the intelligence of the system,
do everything and
use data from small data-classes.

God Classes
are complex,
are not cohesive,
access external data.

God Classes
are complex, WMC is high
are not cohesive, TCC is low
access external data. ATFD more than few

Compose metrics
 into queries using

logical
 operato

rs

Detection Strategies are metric-based queries to
detect design flaws.

METRIC 1 > Threshold 1

Rule 1

METRIC 2 < Threshold 2

Rule 2

AND Quality problem

Lanza, Marinescu 2006

A God Class centralizes too much intelligence in
the system.

ATFD > FEW

Class uses directly more than a

few attributes of other classes

WMC ! VERY HIGH

Functional complexity of the

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

Lanza, Marinescu 2006

An Envious Method is more interested in data
from a handful of classes.

ATFD > FEW

Method uses directly more than

a few attributes of other classes

LAA < ONE THIRD

Method uses far more attributes

of other classes than its own

FDP ! FEW

The used "foreign" attributes

belong to very few other classes

AND Feature Envy

Lanza, Marinescu 2006

Data Classes are dumb data holders.

WOC < ONE THIRD

Interface of class reveals data

rather than offering services

AND Data Class

Class reveals many attributes and is

not complex

Lanza, Marinescu 2006

Feature Envy - Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts,
Refactoring: Improving the Design of Existing Code, Addison Wesley, 1999.

ATFD: access to foreign data, counts distinct attributes accessed from other classes
LAA: Locality of attribute accesses
FDP: foreign data providers

WOC: weight of class

Data Classes are dumb data holders.

AND

OR

Class reveals many

attributes and is not

complex

NOAP + NOAM > FEW

More than a few public

data

WMC < HIGH

Complexity of class is not

high

NOAP + NOAM > MANY

Class has many public

data

WMC < VERY HIGH

Complexity of class is not

very high

AND

Lanza, Marinescu 2006

Shotgun Surgery depicts that a change in an
operation triggers many (small) in a lot of different
operation and classes.

Lanza, Marinescu 2006

3Code Duplication

NOAP: number of public attributes
NOAM: number of accessor methods

CM = Changing Methods (Number of calls)
CC = Changing Classes

What is Code Duplication?

What ar
e the problems of it?

Code Duplication Detection

Lexical Equivalence

Semantic Equivalence

Syntactical Equivalence

Visualization of Copied Code Sequences

File A

File A

File B

File B

Duplicated Code = Source code segments that are found in different places of a system.
- in different files
- in the same file but in different functions
- in the same function

Detected Problem:
File A contains two copies of a piece of code
File B contains another copy of this code

Possible Solution: Extract Method

All examples are made using Duploc from an industrial case study (1 Mio LOC C++ System)

Author Level Transformed Code Comparison Technique

Johnson 94 Lexical Substrings String-Matching

Ducasse 99 Lexical Normalized Strings String-Matching

Baker 95 Syntactical Parameterized Strings String-Matching

Mayrand 96 Syntactical Metrics Tuples Discrete comparison

Kontogiannis 97 Syntactical Metrics Tuples Euclidean distance

Baxter 98 Syntactical AST Tree-Matching

Source Code Transformed Code Duplication Data

Transformation Comparison

Noise Elimination

…
//assign same fastid as container
fastid = NULL;
const char* fidptr = get_fastid();
if(fidptr != NULL) {
 int l = strlen(fidptr);
 fastid = newchar[l + 1];

fastid=NULL;
constchar*fidptr=get_fastid();
if(fidptr!=NULL)
intl=strlen(fidptr)
fastid = newchar[l+]

Enhanced Simple Detection Approach

 Assumption:
- Code segments are just copied and changed at a few places

 Noise elimination transformation
- remove white space, comments
- remove lines that contain uninteresting code elements

(e.g., just ʻelseʼ or ʻ}ʼ)

Code Comparison Step
As before, but now
Collect consecutive matching lines into match sequences
Allow holes in the match sequence
Evaluation of the Approach
Advantages
Identifies more real duplication, language independent
Disadvantages
Less simple
Misses copies with (small) changes on every line

a b c d a b c d

lines from source

lines

from

source

a b c d a x y d

lines from source

lines

from

source

a b c a b x y c

lines from source

lines

from

source

Visualization provides insights into the duplication situation
A simple version can be implemented in three days
Scalability issue

Dotplots — Technique from DNA Analysis
 Code is put on vertical as well as horizontal axis
 A match between two elements is a dot in the matrix
Exact Copies

Copies with variations

Insert / Delete

a x b x c x d x

lines from source

lines

from

source

lines from source 2

lines

from

source 1

lines from source 2

lines

from

source 1

Repetitive Code Elements

Mihai Balint, Tudor Gîrba and Radu Marinescu, “How Developers Copy,” Proceedings of
International Conference on Program Comprehension (ICPC 2006), 2006, pp. 56—65

Mihai Balint, Tudor Gîrba and Radu Marinescu, “How Developers Copy,”
Proceedings of International Conference on Program Comprehension (ICPC
2006), 2006, pp. 56—65

lines from source 2

lines

from

source 1

exact

chunk

lines from source 2

lines

from

source 1

exact

chunk

line

bias

lines from source 2

lines

from

source 1

exact

chunk

exact

chunk

line

bias

Significant Duplication:
- It is the largest possible duplication chain uniting
all exact clones that are close enough to each
other.
- The duplication is large enough.

Lanza, Marinescu 2006

1
Metrics

2
Design

Problems

3
Code Duplication

God

Class

Brain

Class

Feature

Envy

Data

Class

Brain

Method

Significant

Duplication

Intensive

Coupling

Extensive

Coupling

Shotgun

Surgery

Tradition

Breaker

Refused

Parent

Bequest

uses

has

is

has

has

has (partial)

is partially

has

is

is

has

Futile

Hierarchy

uses

has

has

is

has (subclass)

Classification

Disharmonies

Identity

Disharmonies

Collaboration

Disharmonies

Lanza, Marinescu 2006

SEC: Size of Exact Clone measures the size of a clone in terms of lines of code.
SDC: Size of Duplication chain, a duplication chain is a block of duplication composed of exact
clones that are close enough to be considered as belonging together.
LB: Line Bias is the distance between two consecutive exact clones

Don’t reason about quality
in terms of numbers!

Follow a clear and repeatable process

QA is part of the the Development Process

http://loose.upt.ro/incode

Tudor Gîrba
www.tudorgirba.com

creativecommons.org/licenses/by/3.0/

Jorge Ressia

