
Software visualization

Tudor Gîrba
www.tudorgirba.com

Price etal. 1993

Software Visualization is the use of
typography, graphic design, animation, and
cinematography with human-computer
interaction and computer graphics to facilitate
both the human understanding and effective
use of software.

Why visualization?

Blaine A. Price, Ronald M. Baecker and Ian S. Small, “A Principled Taxonomy of
Software Visualization,” Journal of Visual Languages and Computing, vol. 4, no. 3,
1993, pp. 211-266.

Complete definition: Software Visualization is the use of the crafts of typography,
graphic design, animation, and cinematography with modern human-computer
interaction and computer graphics technology to facilitate both the human understanding
and effective use of software.

Anonymous

A picture is worth a thousand words.

1854,
London,
cholera
epidemic

1946

Edward R. Tufte, Visual Explanations, Graphics Press, 1997.

It was not known how cholera was transmitted.
Dr. John Snow had the hypothesis that it gets transmitted via water.
To check this, he plotted on the map of the city:
- the deaths of a new epidemic (dots)
- the water pumps (Xs).

The result was that high number of deaths were detected near infected water pump on
Broad Street.

This is a picture of ENIAC I (1946).
(http://en.wikipedia.org/wiki/ENIAC)

In 1946 we used to see the programs. In the picture we can see the complexity of the
program in how intricate the cables are. And we see who is working on what. This is no
longer the case with modern software systems.

Anonymous

A picture is worth a thousand words.

We are visual beings

How many groups do you see?

The picture is taken from: Stéphane Ducasse, Tudor Gîrba and Adrian Kuhn,
“Distribution Map,” Proceedings of 22nd IEEE International Conference on Software
Maintenance (ICSM '06), IEEE Computer Society, Los Alamitos CA, 2006, pp. 203-212.

Some see 3 groups and some see 4 groups. Those that see 3, see the circle in the
center as belonging to the group formed by the two circles at the bottom.

How many groups do you see?

How many groups do you see?

How many groups do you see?

Enclosing clarifies the situation.

Again, no problem in identifying 3 groups when circles are connected with edges.

The same happens when the circles share the same visual shape.

proximity

enclosure connectivity

similarity

Gestalt principles

closure continuity

More Gestalt principles

Iconic
memory

Short-term
memory

< 1 second
very fast
automatic
subconscious

preattentive

couple of seconds
3-9 chunks

Stephen Few, Show me the numbers: Designing Tables and Graphs to Enlighten,
Analytics Press, 2004.

http://en.wikipedia.org/wiki/Gestalt_psychology

These are some examples of so called Gestalt principles. According to these, we
perceive the world as a whole rather than as a sum of parts.

Stephen Few, Show me the numbers: Designing Tables and Graphs to Enlighten,
Analytics Press, 2004.

Two more examples of Gestalt principles.

Our brain is a computer with 3 types of memory:

Iconic
Short-term
Long-term

Orientation Line Length Line Width Size

Shape Curvature Added Marks Enclosure

8789364082376403128764532984732984732094873290845
389274-0329874-32874-23198475098340983409832409832
049823-0984903281453209481-0839393947896587436598

How many times does 5 appear?

How many times does 5 appear?

8789364082376403128764532984732984732094873290845
389274-0329874-32874-23198475098340983409832409832
049823-0984903281453209481-0839393947896587436598

If eyes are computers, visualizations are programs.

These attributes of form are the primitive instructions we can use for building these
programs.

Exemplifying Preattentive Processing
Colin Ware, Information Visualisation, Elsevier, Sansome Street, San Fransico, 2004.
p150

Colin Ware, Information Visualisation, Elsevier, Sansome Street, San Fransico, 2004.
p150

70% of all external input

comes through the eye

Anonymous

A picture is worth a thousand words.

UML took it literally :)

To see is often used a synonym for to understand. Do you see my point?

This picture shows approximately 350 words for a tiny system.

Example: what is ?

Letʼs see what else can we do with 1000 words.

If we display all of them equally, we cannot identify much.

Increasing the font size leads to a tag cloud visualization. The small text is hardly
readable, but it still competes for attention.

What to visualize?
How to visualize?

If we decrease the visual importance of the small text, we still know itʼs there but the
important words stand out more. Still, alphabetical order is not necessarily the most
relevant.

Ordering the words eases our task.

An example of what can be done with 1000 words.

What to visualize?

What to visualize?
Software structure

UML is a nice visual language for expressing ideas, but it is hardly useful as a
visualization.

In this example, we show a small fragment of the model hierarchy in Moose. Still even at
this level of zoom, we cannot see the details.

System Complexity shows class hierarchies

Lanza, Ducasse 2003

Polymetric views show up to 5 metrics

Color
metric

Width metric

Height metric

Position metrics

Lanza 2003

If we zoom out, all we see is the shape of hierarchies, and the shape of classes.

Michele Lanza and Stéphane Ducasse, “Polymetric Views—A Lightweight Visual
Approach to Reverse Engineering,” IEEE Transactions on Software Engineering, vol.
29, no. 9, September 2003, pp. 782-795. http://www.iam.unibe.ch/~scg/cgi-bin/
scgbib.cgi/abstract=yes?Lanz03d

System complexity is a polymetric view that does a better job at showing the shape of
hierarchies and of individual classes.

Michele Lanza, “Object-Oriented Reverse Engineering — Coarse-grained, Fine-grained,
and Evolutionary Software Visualization,” Ph.D. thesis, University of Berne, May 2003.
http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?Lanz03b

Polymetric views are graphs enriched with metric information.

Lanza, Ducasse 2003

Ducasse etal 2006

Distribution Map shows properties over structure

Greevy 2007

Package Map shows who owns what classes

System complexity of ArgoUML.

Node = class
Edge = inheritance
Node width = number of attributes (NOA)
Node height = number of methods (NOM)
Node color = number of lines of code (LOC)

Stéphane Ducasse, Tudor Gîrba and Adrian Kuhn, “Distribution Map,” Proceedings
International Conference on Software Maintainance (ICSM 2006), IEEE Computer
Society, Los Alamitos CA, 2006, pp. 203-212.
This picture shows classes (small squares) grouped in packages (large rectangles). The
color of the classes is given by the predominant concept. The labels show the package
name, but they are cropped when longer that the package width. The classes in the
package are arranged to get a ration between width and height as close as possible to
the golden ratio (1.61803399).

31 packages, 394 classes and 9 concepts of JEdit.

Orla Greevy, Tudor Gîrba and Stéphane Ducasse, “How Developers Develop Features,”
Proceedings of 11th European Conference on Software Maintenance and
Reengineering (CSMR 2007), IEEE Computer Society, Los Alamitos CA, 2007, pp. 256
—274.

Shneiderman 1992

What to visualize?
Software structure
Software relationships

Class Blueprint shows class internals

Initialize Interface Internal Accessor Attribute

invocation and access direction

Ducasse, Lanza 2005

http://www.cs.umd.edu/hcil/treemap-history/index.shtml

Treemaps show the hierarchical structure by filling completely the given space.

The picture shows the files colored by type of ArgoUML 0.26 and it was generated with
Disk Inventory (http://www.derlien.com/).
Blue are Documents, Red are Jars, Cyan are Pictures, Cyan are Java

Stéphane Ducasse and Michele Lanza, “The Class Blueprint: Visually Supporting the
Understanding of Classes,” IEEE Transactions on Software Engineering, vol. 31, no. 1,
January 2005, pp. 75-90. http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?
Duca05b
The class is split into 5 layers:
- The initialize layer contains constructor methods,
- The Interface layer contains methods called from outside the class,
- The Internal implementation layer contains methods called from within the class,
- The Accessor layer contains setters and getters,
- The Attribute layer contains the attributes :).
Blue edges represent method invocations. Cyan edges represent attribute access.

Ducasse, Lanza 2005

Class Blueprint has a rich vocabulary

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

Getter

Method

invocations

lines

Attribute

internal access

external
access

Access

Invocation

Ducasse, Lanza 2005

Holten 2006

The blueprint has a rich vocabulary.

On both dimensions of methods and attributes are mapped metrics. On the color of the
methods are mapped different attributes of the method.

The picture on the left shows the blueprint of one superclass and 3 of its subclasses.
The subclasses have the same shape and color (given by overriding methods). Hence
the name Siamese twins.

The picture on the right shows a class that has two distinct interests, because the
methods on top do not have a direct relationship with the methods on the bottom (we
see that because there is no blue edge in between).

Danny Holten, “Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data”, IEEE Transactions on Visualization and Computer Graphics (TVCG;
Proceedings of Vis/InfoVis 2006), Vol. 12, No. 5, Pages 741 - 748, 2006.

One straightforward way of representing relationships is to display entities in a circle and
draw edges between them. The picture shows classes organized in a module structure
and the arrows are dependencies (red=called, green=caller). We know that Units 16 and
18 are called many times, but we do not know exactly where from. The picture is too
noisy.

Holten 2006

Hierarchical edge bundles clarify dependencies

Holten 2008

Kuhn etal 2006

user, run, load, message, file, buffer, util

property, AWT, edit, show, update, sp, set

start, buffer, end, text, length, line, count

action, box, component, event, button, layout, GUI

start, length, integer, end, number, pre, count

XML, dispatch, microstar, reader, XE, register, receive

current, buffer, idx, review, archive, endr, TAR

BSH, simple, invocation, assign, untype, general, arbitrary

maximum, label, link, item, code, put, vector

Correlation Matrix reveals correlations

Danny Holten, “Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data”, IEEE Transactions on Visualization and Computer Graphics (TVCG;
Proceedings of Vis/InfoVis 2006), Vol. 12, No. 5, Pages 741 - 748, 2006.

Hierarchical edge bundles make use of the hierarchical structure of entities to make
relationships between larger parts clearer.

Visual Comparison of Hierarchically Organized Data" (PDF available through
EUROGRAPHICS / Blackwell Publishing), Danny Holten and Jarke J. van Wijk, 10th
Eurographics/IEEE-VGTC Symposium on Visualization (Computer Graphics Forum;
Proceedings of EuroVis'08), 2008.

This visualization uses hierarchical edge bundles to show the relationships between two
hierarchies of data.

A correlation matrix displays the same entities both on the rows and on the columns.
Each cell in the matrix is colored based on the strength of the correlation. This notation
is useful for identifying similarities (e.g., code duplication).

In this picture, the matrix displays the similarity of vocabulary used in the classes of
JEdit. Furthermore, the classes are grouped to reveal clusters of classes that use similar
vocabulary.

Adrian Kuhn, Stéphane Ducasse and Tudor Gîrba, “Semantic Clustering: Identifying
Topics in Source Code,” Information and Software Technology, vol. 49, no. 3, March
2007, pp. 230—243.

Wattenberg 2002

Arc diagrams show duplications

What to visualize?
Software structure
Software relationships
Metaphors

Kuhn etal 2008

Software Map reveals software geography

Martin Wattenberg, Arc diagrams: visualizing structure in strings, In Proceedings of
IEEE Symposium on Information Visualization, 2002 (INFOVIS 2002), 110-116

It took thousands of years to build the first abstract representation of the real world using
x and y axis. Software on the other hand, has no physical shape and one challenge is to
lay it out so that the distance between entities has a meaning.

This visualization proposes a cartography metaphor to represent software. The entities
are distributed based on the vocabulary used.

Adrian Kuhn, Peter Loretan and Oscar Nierstrasz, “Consistent Layout for Thematic
Software Maps,” Proceedings of 15th Working Conference on Reverse Engineering
(WCRE'08), IEEE Computer Society Press, Los Alamitos CA, October 2008, pp. 209—
218.

Wettel 2007

CodeCity reveals where software lives

Wettel 2008

What to visualize?
Software structure
Software relationships
Metaphors
Interaction

Richard Wettel and Michele Lanza, “Visualizing Software Systems as Cities,”
Proceedings of VISSOFT 2007 (4th IEEE International Workshop on Visualizing
Software For Understanding and Analysis), 2007, pp. 92—99.

CodeCity represents the system structure as a city. The packages generate quarters,
while the classes are buildings.

http://www.inf.unisi.ch/phd/wettel/codecity.html

Richard Wettel, Michele Lanza “Visually Localizing Design Problems with Disharmony
Maps” In Proceedings of Softvis 2008 (4th International ACM Symposium on Software
Visualization), pp. 155 - 164, ACM Press, 2008.

In this work, design flaw suspects are highlighted with different colors.

http://www.inf.unisi.ch/phd/wettel/codecity.html

Lungu etal 2006

Softwarenaut discovers architecture

What to visualize?
How to visualize?

Visualization does not guarantee understanding

Mircea Lungu, Michele Lanza and Tudor Gîrba, “Package Patterns for Visual
Architecture Recovery,” Proceedings of CSMR 2006 (10th European Conference on
Software Maintenance and Reengineering), IEEE Computer Society Press, Los
Alamitos CA, 2006, pp. 185—196.

Visualization does not guarantee understanding

Not any picture tells a thousand words.

Tufte, 1990

Minimize non-data ink

Excel 2004
default

Excel 2004
default
+
6 actions

Edward R. Tufte, The Visual Display of Quantitative Information (2nd edition), Graphics
Press, 2001.

Colin Ware, Information Visualisation, Elsevier, Sansome Street, San Fransico, 2004.

Stephen Few, Show me the numbers: Designing Tables and Graphs to Enlighten,
Analytics Press, 2004.

Edward R. Tufte, The Visual Display of Quantitative Information (2nd edition), Graphics
Press, 2001.

The 6 actions are:
1. Remove background.
2. Remove legend.
3. Add better graph description.
4. Make the series line black for better contrast.
5. Make the grid lines light gray to be less intrusive.
6. Make the dates to start from the origin to avoid confusions.

Ducasse etal 2006

Tufte, 1990

Maximize data ink

Stéphane Ducasse, Tudor Gîrba and Adrian Kuhn, “Distribution Map,” Proceedings
International Conference on Software Maintainance (ICSM 2006), IEEE Computer
Society, Los Alamitos CA, 2006, pp. 203-212.

The only element debatable to be chart junk is the black border which could be perhaps
made gray.

Edward R. Tufte, The Visual Display of Quantitative Information (2nd edition), Graphics
Press, 2001.

Chuah, Eick, 2006

InfoBug is cute and condensed

Each visualization provides a language

that needs to be learnt

Mei C. Chuah and Stephen G. Eick, “Information Rich Glyphs for Software Management
Data,” IEEE Computer Graphics and Applications, vol. 18, no. 4, July 1998, pp. 24—29.

Interesting about this visualization is that each part of the bug bears information, and the
result is a pleasant glyph:
- the wings show two time series of lines of code (left) and errors detected (right)
- the antenas show different types of code. For example the orange line shows the
amount of C code.
- The eye shows the amount of inheritance relationships.
- With red and green are shown lines added to correct errors (red) or for new
functionality (green).

1 node type
1 edge type
3 metrics

3 node types
2 edge types
3 metrics
8 properties

System Complexity

Class Blueprint

A small experiment

1, 13, 27, 4, 96

What were the numbers?

Easy!

What’s the last advertisement you saw?

Not so easy!

Each visualization provides a language

that needs to be learnt

Visualization is art, too

Just at the beginning of 20th century artists sought means of expression that would
match the industrial age, now, as we step into the information age we seek new artistic
means of expression.

Visualization is art, too.

The picture on the top right: http://acg.media.mit.edu/people/fry/revisionist/
The other two pictures were created with Mondrian.

Two nice collections of visualizations are:
http://infosthetics.com/
http://www.visualcomplexity.com/vc/

This picture was created by Michele Lanza

The zeppelin!

The picture shows C grammar dependencies and it was created by Magiel Bruntink,
Jurgen Vinju and CWI

Color plate 1: Voronoi Treemap visualization of the static structure of the software system ‘JFree’ (top), the outbound calls of classes by
other classes in the software system ‘ArgoUML’ (lower left), and the lines of code of files in the software system ‘JFree’ (lower right).

215

Tudor Gîrba
www.tudorgirba.com

creativecommons.org/licenses/by/3.0/

Michael Balzer, Oliver Deussen and Claus Lewerentz, “Voronoi treemaps for the
visualization of software metrics,” SoftVis '05: Proceedings of the 2005 ACM symposium
on Software visualization, ACM, New York, NY, USA, 2005, pp. 165—172.

The picture shows a novel way of drawing treemaps.

http://lip.sourceforge.net/ctreemap.html

