
The anatomy of analysis tools

Tudor Gîrba
www.tudorgirba.com

Lanza, Ducasse 2003

How is it implemented?

But, why should you care?

System complexity of ArgoUML.

How is it implemented?

When we understand our anatomy

we understand better the healing process

Terminology

what is a model?

At the orthopedist, you often can see a skeleton in a corner, albeit not a walking one :).
In the same way, if you

First, letʼs agree on the terminology.

model

model

framework

theoretical account

poser

simulation

example
exemplar

good example

role model

fashion model

manakin

manikin

mannequin

mannikin

modeling
modelling

form

kind

sort

variety

NOUNS

framework, model, theoretical account

a simplified description of a complex
entity or process

"the computer program was based on a
model of the circulatory and respiratory
systems"

a model is a simplification of the subject,

and its purpose is to answer some particular

questions aimed towards the subject.

Bezivin, Gerbe 2001

what does meta mean?

The picture is taken from www.visualthesaurus.com and it shows the nouns related to
the model noun.

Jean Bezivin and Olivier Gerbe. Towards a precise definition of the OMG/MDA
framework. In Proceedings of Automated Software Engineering (ASE 2001), pages
273–282. IEEE Computer Society, 2001.

http://en.wikipedia.org/wiki/Meta

μετά = beyond

Aristotle
384 BC - 322 BC

what is a meta-model?

Meta comes from Greek and it means “beyond” or “after”.

The use of meta comes from the Metaphysics book of Aristotle.

http://en.wikipedia.org/wiki/Metaphysics_(Aristotle)

The picture of Aristotle was painted by Francesco Hayez.
http://en.wikipedia.org/wiki/Francesco_Hayez

Is a meta-model a model of a model? No.

a meta-model is
a model that makes statements about
what can be expressed in valid models.

Seidewitz 2003

model

subject

meta-model

model

subject

meta-model

representedBy

Ed Seidewitz. What models mean. IEEE Software, 20:26–32, September 2003.

Is the relationship between model and subject the same as the one between meta-
model and model? No.

A model represents a subject, and its goal is to answer questions instead of the subject.

model

subject

meta-model

representedBy

instanceOf

database

subject

schema

representedBy

instanceOf

object

subject

class

representedBy

instanceOf

The meta-model describes the model.

When talking about database, the actual database is the model, while the schema is the
meta-model.

Similarly, the object in an object-oriented system is a model, and the meta-model is the
class.

model

subject

meta-model

representedBy

instanceOf

Terminology
Analysis and meta-models

What is an analysis?

Before we go forward, what is an analysis?

TCC = ?

Bieman, Kang, 1995

TCC = 2 / 10 = 0.2

TCC =
method pairs accessing common attributes

total number of pairs

What is an analysis?

Letʼs take an example. TCC. But first, what is TCC? :)

TCC stands for tight class cohesion and it is a metric of cohesion.

Oxford Dictionary

analysis |əˈnaləsis|
noun (pl. -ses |-ˌsēz|)

Detailed examination of the elements or structure of
something, typically as a basis for discussion or
interpretation.

The process of separating something into its constituent
elements. Often contrasted with synthesis.

Oxford Dictionary

synthesis |ˈsinθəsis|
noun (pl. -ses |-ˌsēz|)

Combination or composition. Often contrasted with
analysis.

Data Information
Analysis

Letʼs take a look at the definition

In the scope of this lecture analysis is to be seen as the transformation of data given by
pure facts into information that conveys meaning.

TCC = ?

tightClassCohesion (classSource)
 count = 0
 methodCount = methodBodies(classSource)
 attributes = attributes(classSource)
 methodsToAttributes = new Dictionary
 for (methodBody in methodBodies(classSource))
 accessedAttributes = new Set
 for (statement in methodBody)
 accessedAttributes.add(attributesIn(statement))
 end
 methodsToAttributes.put(methodBody, accessedAttributes)
 end
 for (methodToAttributes in methodsToAttributes)
 for (attribute in methodToAttributes.value)
 for (methodToAttributes2 in methodsToAttributes)
 if (methodToAttributes.value.contains(attribute) &
 methodToAttributes ~= methodToAttributes2)
 count++
 end
 end
 end
 end
 return count / methodCount * (methodCount - 1) / 2
end

tightClassCohesion (classSource)
 count = 0
 methodCount = methodBodies(classSource)
 attributes = attributes(classSource)
 methodsToAttributes = new Dictionary
 for (methodBody in methodBodies(classSource))
 accessedAttributes = new Set
 for (statement in methodBody)
 accessedAttributes.add(attributesIn(statement))
 end
 methodsToAttributes.put(methodBody, accessedAttributes)
 end
 for (methodToAttributes in methodsToAttributes)
 for (attribute in methodToAttributes.value)
 for (methodToAttributes2 in methodsToAttributes)
 if (methodToAttributes.value.contains(attribute) &
 methodToAttributes ~= methodToAttributes2)
 count++
 end
 end
 end
 end
 return count / methodCount * (methodCount - 1) / 2
end

How can we define TCC?

Letʼs take a look at a possible implementation of TCC that takes as input the source
code of a class.

The code is difficult to follow because the computation of the metric is intertwined with
the construction of some intermediate data structures. For example, the variables
highlighted represent relationships that are needed for the computation.

Class

Method

Attribute

*

belongsTo

*

belongsTo

Class::tightClassCohesion ()
 count = 0
 methodCount = this.methods.size()
 for (attribute in this.attributes)
 temp = attribute.accessingMethods()
 count = count + temp * (temp - 1) / 2
 end
 return count / methodCount * (methodCount - 1) / 2
end

Class

Method

Attribute

*

belongsTo

*

belongsTo

Class::tightClassCohesion ()
 count = 0
 methodCount = this.methods.size()
 for (attribute in this.attributes)
 temp = attribute.accessingMethods()
 count = count + temp * (temp - 1) / 2
 end
 return count / methodCount * (methodCount - 1) / 2
end

?

A good meta-model enables easy navigation

Class

Method

Attribute

Access

Inheritance

Package

Namespace

*

belongsTo

*

belongsTo

belongsTopackagedIn

superclass

subclass

* *

Invocation
invokedBy

candidate

*

accessedIn

*

accesses

*

*

*

*

This is another way to implement the metric. The code is much simpler to read because
it is based on a meta-model that is more suited for the computation.

Still, where does accessingMethods come from?

The picture shows FAMIX 2.1. Note how there are no arrows, which means that the
relationships can be navigated in both directions. For example, an attribute can know
about the accessing methods by going through all accesses that point to him and
collecting the methods that initiate those accesses.

A meta-model offers

a language

A common meta-model offers

a common language

	 	 (FAMIX.Class (id: 100)
	 	 	 (name 'Server')
	 	 	 (container (ref: 82))
	 	 	 (isAbstract false)
	 	 	 (isInterface false)
	 	 	 (package (ref: 624))
	 	 	 (stub false)
	 	 	 (NOM 9)
	 	 	 (WLOC 124))
	 	 (FAMIX.Method (id: 101)
	 	 	 (name 'accept')
	 	 	 (signature 'accept(Visitor v)')
	 	 	 (parentClass (ref: 100))
	 	 	 (accessControl 'public')
	 	 	 (hasClassScope false)
	 	 	 (stub false)
	 	 	 (LOC 7)
	 	 	 (CYCLO 3))

Tools that implement a common

meta-model can exchange models
Two tools that share the same meta-model can exchange models that comply with these
meta-models by using an exchange format. In this example, we see an MSE file format.

Analyses specified on a meta-model can

be applied on any complying model

ClassMethod

Inheritance

Attribute

File

ClassMethod

Inheritance

Attribute

Symbol

File

ClassMethod

Inheritance

Attribute

Author

Symbol

File

ClassMethod

Inheritance

Attribute

Author

Symbol

File

ClassMethod

Duplication

Inheritance

Attribute

Author

Class
History

Symbol

File

Class
Version

ClassMethod

Duplication

Inheritance

Attribute

Author

Class
History

Trace Symbol

FileEvent

Class
Version

ClassMethod

Duplication

Inheritance

Attribute

Author

Class
History

Trace Symbol

FileEvent

Class
Version

ClassMethod

Duplication

Inheritance

. . .

Attribute

We can have many entities in a meta-model, depending on what we are interested in.
Also, we can have many meta-models, depending on the point of view.

A good meta-model makes things explicit

Terminology
Analysis and meta-models
Analysis tools

Model repository described by a meta-model

Analysis Analysis Analysis

Fact extractorFact extractor

The basic architecture of an analysis tool. Fact extractors extract data from the subject
systems. This data is then stored in models that are described by meta-models.
Analyses are specified based on the meta-model.

Repository Fame MondrianUIFAMIX EyeSee

MSE

Repository Fame MondrianUI

Smalltalk

FAMIX EyeSee

MSE

Repository Fame MondrianUI

Smalltalk
Java

C++

iPlasma

FAMIX EyeSee

Letʼs take a look at the architecture of Moose (http://moose.unibe.ch). At the core we
have a Repository of models that are described by the FAMIX family of meta-models.
Fame is an implementation of the meta-meta-model that describes FAMIX. UI, Mondrian
and EyeSee are generic tools that work with any meta-models.

Data is imported either directly from Smalltalk, or through the MSE exchange format.

iPlasma is one external tool that can parse Java and C++ systems and exports models
complying to FAMIX in an MSE format. These MSE files can then be imported into
Moose.

MSE

Repository Fame MondrianUI

Smalltalk
Java

C++

iPlasma

FAMIX EyeSee

MSE

Repository Fame MondrianUI

Smalltalk
Java

C++

iPlasma

FAMIX

HapaxDynaMooseChronia SmallDude

EyeSee

CodeCity
Yellow
Submarine

MSE

Repository Fame MondrianUI

Smalltalk
Java

C++

iPlasma

FAMIX

HapaxDynaMooseChronia SmallDude

EyeSee

CVS

CodeCity

MSE SourceJ-Wiretap

Yellow
Submarine

SVN

Recently, support was added for Java systems to be parsed directly.

On top, several analyses tools are built.

These tools, at their turn, can also import data from other sources. Furthermore, in the
case of Moose these tools can also extend FAMIX with new kinds of entities due to the
Fame engine.

Adrian Kuhn and Toon Verwaest, “FAME, A Polyglot Library for Metamodeling at
Runtime,” Workshop on Models at Runtime, 2008, pp. n10.
http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?Kuhn08c

MSE

Repository Fame MondrianUI

Smalltalk
Java

C++

iPlasma

FAMIX

HapaxDynaMooseChronia SmallDude

EyeSee

CVS

CodeCity

MSE SourceJ-Wiretap

Yellow
Submarine

SVN

Softwarenaut BugsLife Clustering Metanool ...

Terminology
Analysis and meta-models
Analysis tools
Analysis as transformation

Data Information
Analysis

And there are even more such tools.

In the scope of this lecture analysis is to be seen as the transformation of data given by
pure facts into information that conveys meaning.

Meta-model TechniqueGlue

Analysis

Meyer etal 2006

e.g., Mondrian

Mondrian is about

visualization

Analysis = meta-model + technique + glue

Michael Meyer, Tudor Gîrba and Mircea Lungu, “Mondrian: An Agile Visualization
Framework,” ACM Symposium on Software Visualization (SoftVis 2006), ACM Press,
New York, NY, USA, 2006, pp. 135—144.
Michael Meyer and Tudor Gîrba, “Mondrian: Scripting Visualizations,” European
Smalltalk User Group 2006 Technology Innovation Awards, August 2006, It received the
2nd prize.
http://moose.unibe.ch/mondrian

Composition with Red, Yellow and Blue
Piet Mondrian (1921)

The simplest script is an empty view

view := ViewRenderer new.

view open.

view = nodes, edges, layout

view := ViewRenderer new.

view nodes: classes.

view edges: classes

 from: [:each | each superclass]

 to: [:each | each].

view treeLayout.

view open.

Mondrian was a painter that saw the world as boxes and lines. Similarly, the
visualization engine takes the point of view.

Shapes are responsible for drawing

view := ViewRenderer new.

view newShape rectangle;

 height: [:each | each numberOfMethods];

 withBorder.

view nodes: classes.

view edges: classes

 from: [:each | each superclass]

 to: [:each | each].

view treeLayout.

view open.

Blocks can be replaced by symbols

view := ViewRenderer new.

view newShape rectangle;

 height: #numberOfMethods;

 withBorder.

view nodes: classes.

view edgesFrom: #superclass.

view treeLayout.

view open.

Nesting is done through blocks

view := ViewRenderer new.

view newShape rectangle; withBorder.

view nodes: classes forEach: [:each |

view nodes: each methods.

view gridLayout

].

view edgesFrom: #superclass.

view treeLayout.

view open.

Mondrian is about

visualization

Mondrian is about

interactive visualization

Interaction is scriptable, too

view := ViewRenderer new.

view2 := ViewRenderer new.

view interaction onSelect: [:each | each viewOn: view2].

view interaction

 popupView: [:each :aView | each viewOn: aView].

...

view open.

view2 open.

How is it implemented?

view n
ewShap

e rect
angle;

 h
eight:

 #numb
erOfMe

thods;

 w
idth:

#numbe
rOfAtt

ribute
s;

 l
inearF

illCol
or: #n

umberO
fLines

OfCode

 wit
hin: c

lasses
;

 w
ithBor

der.

view n
odes:

classe
s.

view e
dgesFr

om: #s
upercl

ass.

view t
reeLay

out.

Terminology
Analysis and meta-models
Analysis tools
Analysis as transformation
Issues

So, how is this implemented?

Analysis = meta-model + technique + glue.
In this case, the visualization was specified using a generic graph technique. The nodes
are drawn according to the metrics that are defined on top of the basic meta-model of
the code structure and that are directly accessible as properties. Furthermore, edges
are obtained by navigating from each class to the superclass, again according to the
meta-model.

Although the visualization is not trivial, the glue code is small.

model

subject

meta-model What to model?

model

subject

meta-model

another model

another meta-model

model

subject

meta-model

What gets extracted?

Any given subject can be modeled in several ways according to the point of interest. For
example, some meta-models will make explicit as many things as possible, while others
could favor memory space and keep the explicitness to a minimum.

While the meta-model specifies what kind of information can get in the model, there is
still the question of how much information from the actual system did get in the model.
For example, when parsing a system, did the parser resolve all invocations, or did it
leave out all the invocations to the library methods?

Is the technique suitable for your task?

The meta-model dictates the problem decomposition

Tudor Gîrba
www.tudorgirba.com

creativecommons.org/licenses/by/3.0/

When you have a hammer, everything looks like a nail. When the glue code can get long
and ugly also because the technique is not appropriate for what you want to achieve.

