
Dynamic Analysis

Tudor Gîrba
www.tudorgirba.com

The job of the reverse engineer is similar to the one of the doctor, as they both need to
reason about an unknown complex system.

One way to gain insights is to see the system in action. The first thing doctors do in an
emergency room is to attach various instruments to the patient to follow the evolution of
his condition.

Ball 1999

Dynamic analysis is the analysis of the properties of a
running program

What properties?

main()

Watching a system run, can reveal a great deal of information about the problem. For
example, some reverse engineering patterns mentioned before are related to observing
the system run:
- Interview during demo
- Step through the execution
- Tests, your life insurance

Thomas Ball, “The Concept of Dynamic Analysis,” Proceedings of the European
Software Engineering Conference and ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (ESEC/FSC'99), LNCS, no. 1687, Springer
Verlag, Heidelberg, September 1999, pp. 216—234.

First letʼs see what makes the dynamic analysis space. It all starts from the first
execution.

method()

The main method calls a method.

and so on.

After a method returns, another method is called. Thus, the totality of method executions
can be seen as a tree.

Dynamic analysis offers precise information

How to instrument

What to capture and why

How to model

What to execute

How to instrument

Dynamic information offers detailed information about the communication in the system.

Still, the problem is that the dynamic space offers too many details. Thus, we have to
know what data to gather and for what purpose. We need to know how to model that
data. And we need to know how to obtain the data.

…
public class BankAccount {
 private Money balance;

 public void deposit(Money amount) {
 System.out.println(“deposit“);
 this.balance += money;
 }
}

import org.apache.log4j.Logger;
…
public class BankAccount {
 private Money balance;

 public void deposit(Money amount) {
 logger.info(“deposit“);
 this.balance += money;
 }
}

Method Wrappers and Aspects intervene before
and after each interesting method

The most primitive way of debugging is to print the state of the system at a certain
moment. Letʼs call this the the poor manʼs debugging.

Using a logging framework improves the situation by being able to customize what
happens with the data.
Still, we have to add the hooks by hand directly in the code. We also do not keep
information about the control flow.

Another possibility is to insert the instrumentation code around the methods of interests.
Two solutions are Aspects and Method Wrappers. With Aspects we can inject the
instrumentation in the code. Method Wrappers wrap the original methods and thus can
be used to control the instrumentation.

Profilers probe the system

3 + 4

pushConstant: 3
pushConstant: 4
popIntoTemp: 0 “put argument in temp 0”
popIntoTemp: 1 “put receiver in temp 1”
send: + “perform addition”
returnTop

Denker 2008

pushConstant: 3
pushConstant: 4
popIntoTemp: 0 "put argument in temp 0"
popIntoTemp: 1 "put receiver in temp 1"
pushLit: ##Transcript "start of inserted code"
pushTemp: 1 "push receiver for

 printing"
send: asString
send: show:
pop "end of inserted code"
pushTemp: 1 "rebuild the stack"
pushTemp: 0
send: +
returnTop

3 + 4
… insertBefore: 'Transcript show: <meta: #receiver>'

Yet another possibility is to run the original program in a process and in another process
of higher priority to run a loop that probes the original process.

And yet another possibility is to insert the instrumentation code directly in the bytecode.
This example shows the bytecode of a Smalltalk method returning 3+4.

Marcus Denker, Stéphane Ducasse and Éric Tanter, “Runtime Bytecode Transformation
for Smalltalk,” Journal of Computer Languages, Systems and Structures, vol. 32, no.
2-3, July 2006, pp. 125-139.

When we want to insert before this method execution a printout of the receiver, the code
can look like in the picture. The main benefit here is that we have no intermediary code
that needs to be executed (like for example in the case of Method Wrappers). Still, the
problem is that

Denker etal 2007

Message (+)

Receiver (3)

Arguments (4)

3 + 4

Denker etal 2007

Message (+)

Receiver (3)

Arguments (4)

Message (+)

Receiver (3)

Arguments (4)

Transcript show: <meta: #receiver>before

3 + 4
… insertBefore: 'Transcript show: <meta: #receiver>'

How to instrument
What to capture and why

Marcus Denker, Stéphane Ducasse, Adrian Lienhard and Philippe Marschall, “Sub-
Method Reflection,” Journal of Object Technology, Special Issue. Proceedings of
TOOLS Europe 2007, vol. 6/9, ETH, October 2007, pp. 231—251.

Marcus Denker, Stéphane Ducasse, Adrian Lienhard and Philippe Marschall, “Sub-
Method Reflection,” Journal of Object Technology, Special Issue. Proceedings of
TOOLS Europe 2007, vol. 6/9, ETH, October 2007, pp. 231—251.

Collecting Garbage is a Dynamic Analysis

The Control Flow is the most common focus

One common use of dynamic analysis is profiling. Targets can be:
- CPU and memory usage (top)
- Network usage (netstat, tcpdump)
- Open files, pipes, sockets (lsof)

Possible implementations are:
- reference counter: it counts the number of references for each object and the objects
with 0 references are discarded (rarely used now)
- traverse, mark and clean: another solution is to traverse the memory and mark each
objects as they are reached. Those that are not reached get cleaned.

Dynamic analysis comes from procedural programming, that is why many dynamic
analyses focus on the control flow.

De Pauw etal 1998

De Pauw etal 1998

Kuhn, Greevy 2006

Trace Signals reveal similar execution traces

Wim De Pauw, David Lorenz, John Vlissides and Mark Wegman, “Execution Patterns in
Object-Oriented Visualization,” Proceedings of Conference on Object-Oriented
Technologies and Systems (COOTS'98), USENIX, 1998, pp. 219—234.

The runtime of a system contains tons of data. We need effective means to distill
relevant information from this data.

This picture shows a compressed view an execution trace. The orange line at the
bottom represents the root of the tree, and the dots from on top represent the leaves of
the tree. The colors denote various activation types and reveal repeating patterns.

Adrian Kuhn and Orla Greevy, “Exploiting the Analogy Between Traces and Signal
Processing,” Proceedings IEEE International Conference on Software Maintainance
(ICSM 2006), IEEE Computer Society Press, Los Alamitos CA, September 2006, pp.
320-329.

Another approach summarizes traces into signals (each dot represents an activation)
and orders several traces to reveal similarities.

De Pauw etal 1998

De Pauw etal 1993

Inter Class Call Matrix shows how classes
collaborate at runtime

Ducasse etal 2004

Communication Interaction shows how classes
collaborate at runtime

Wim De Pauw, David Lorenz, John Vlissides and Mark Wegman, “Execution Patterns in
Object-Oriented Visualization,” Proceedings of Conference on Object-Oriented
Technologies and Systems (COOTS'98), USENIX, 1998, pp. 219—234.

Another use case for dynamic analysis is the recovery of sequence diagrams. In this
case, activations are related to instances. Such a visualization is only useful when fine
grained details are needed.

Wim De Pauw, Richard Helm, Doug Kimelman and John Vlissides, “Visualizing the
Behavior of Object-Oriented Systems,” Proceedings of International Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA'93),
October 1993, pp. 326—337.

A more coarse grained view is to relate instances to their classes and to recover the
runtime communication between classes.

Stéphane Ducasse, Michele Lanza and Roland Bertuli, “High-Level Polymetric Views of
Condensed Run-Time Information,” Proceedings of 8th European Conference on
Software Maintenance and Reengineering (CSMR'04), IEEE Computer Society Press,
Los Alamitos CA, 2004, pp. 309—318.

Another example of class runtime communication. Classes are shown as nodes, and
method executions as edges. The graph is arranged according to a spring layout.

How to instrument
What to capture and why
How to model

0..1 *

sender

Activation

A meta-model guides the way we think of a problem domain. What is a good meta-
model for dynamic analysis?

This is the space that needs to be modeled.

Each node in the trace is called an Activation.

0..1 *

sender

Method* 1

Class

*

1

Activation

Eisenbarth etal 2003

A feature is an observable unit of behavior of a system
triggered by the user

Feature 1 Feature 2 Feature n...

It represents an Activation of a Method. The relationship between Activation and Method
allows us to link dynamic information with static information.

While engineers see internal structure, users see features. One particular opportunity
offered by dynamic analysis is to bridge the two worlds by recovering the mapping
between features and the code parts that implement them.

We can manually pick the start and end of a feature while we instrument the system.

0..1 *

sender

Method* 1

Class

*

1

Activation

Feature

*

Wilde, Scully 1995

Software Reconnaissance identifies
where features are implemented

Zaidman, Demeyer 2004

Thus, a Feature is a set of activations.

Norman Wilde and Michael Scully, “Software Reconnaisance: Mapping Program
Features to Code,” Journal on Software Maintenance: Research and Practice, vol. 7, no.
1, 1995, pp. 49—62.

Software Reconnaisance is a technique to recover the mapping between code parts and
features. First, the program is ran by exercising the feature (blue classes), and then it is
ran without exercising the feature (red classes). Thus, candidates for most specific
classes for a feature are those that appear in the first run, but do not appear in the
second one.

Andy Zaidman and Serge Demeyer, “Managing trace data volume through a heuristical
clustering process based on event execution frequency,” Proceedings IEEE European
Conference on Software Maintenance and Reengineering (CSMR'04), IEEE Computer
Society Press, Los Alamitos CA, March 2004, pp. 329—338.

In this approach, to identify where to start implementing a new feature is to first identify
the most specific part of a similar feature. Shown in the graph is a signal of an execution
trace. The signal shows repeating patterns in the execution of the similar feature that
can be good starting points.

Greevy etal 2006

Feature Views show how features cover classes

addFolder addPage

addFolder addPage

Greevy etal 2007

Team Collaboration shows how
authors develop features

Orla Greevy, Stéphane Ducasse and Tudor Gîrba, “Analyzing Software Evolution
through Feature Views,” Journal of Software Maintenance and Evolution: Research and
Practice (JSME), vol. 18, no. 6, 2006, pp. 425—456.

In this case, boxes are features and squares are classes. The color of a class is given
by the degree of class participation in features:
- cyan denotes classes that only appear in this feature
- yellow denotes classes that appear in less than 50% of features
- orange denotes classes that appear in more than 50% of features
- red denotes classes that appear in all features

Here we show an example of how we can combine two analyses (namely, ownership
map and feature views) to obtain identify how developers work on features.

Orla Greevy, Tudor Gîrba and Stéphane Ducasse, “How Developers Develop Features,”
Proceedings of 11th European Conference on Software Maintenance and
Reengineering (CSMR 2007), IEEE Computer Society, Los Alamitos CA, 2007, pp. 256
—274.

In this view, each box represents a feature, and each square represents a class. This
time, the color of a class is given by the owner of that class. Thus, the totality of colors in
a box represents the team that develops it. The boxes are arranged according to a
partial order (the features on top have a large team than those on the bottom).

How to instrument
What to capture and why
How to model

The runtime is more than method activations

Method execution traces do not reveal how
… objects refer to each other
… object references evolve

The Smalltalk inspector allows us to check the state of objects at runtime.

allocation

field-write field-read

parameter
field-read

return

return

Lienhard 2009

Object Flow captures object aliases

0..1 *

sender

Method* 1

Class

*

1

Activation

Feature

*

Because of side effects (storing values in instance variables), the way an object gets
into a specific state is not obvious.

Adrian Lienhard and Stéphane Ducasse and Tudor Gîrba. Taking an Object-Centric
View on Dynamic Information with Object Flow Analysis. In Journal of Computer
Languages, Systems and Structures 35(1) p. 63--79, 2009.

In this example, the gray tree represents the control flow, while the red tree represents
the flow of one object. The object flow intertwines the control flow and tells a
complementary story.

Instance

0..1 *

sender

Method* 1

Class
1*

*

1

Activation

Feature

*

Alias

Instance

*
0..1

0..1 *

sender

Method* 1

Class
1*

*

1

Activation
parent receiver

subject

creator

Feature

*

Alias

Instance

*
0..1

0..1 *

sender

Method* 1

Class
1*

*

1

Attribute

1

Activation
parent receiver

subject

ArgumentAlias TempAlias FieldAlias

creator

ReturnAlias

*

Feature

*

To model how objects flow, we first model instances.

Aliases model a reference to an Instance. An alias is obtained from a possible parent
Alias. Thus, Aliases form a tree.

Both the receiver of an Activation and its creator are not represented directly by
Instances but by Aliases. As such, we can know exactly where an alias was used.

There can be several types of creating an alias:
- by passing it via an argument
- by returning it from a method
- by storing in/reading from a temp variable
- by storing in/reading from a field

The field alias is shown as linked to its static counter part, Attribute. Similar relationships
exist for ArgumentAliases and TemoAliases.

Lienhard etal 2007

Inter Unit Flow shows how objects move

Lienhard etal 2007

Object Dependencies reveal features dependencies

Open
Connect

Join Channel
Send Message

Liblit etal 2005

In 50% of the cases the execution stack contains

essentially no information about the bug’s cause

Adrian Lienhard, Stéphane Ducasse and Tudor Gîrba, “Object Flow Analysis — Taking
an Object-Centric View on Dynamic Analysis,” Proceedings of the 2007 International
Conference on Dynamic Languages (ICDL'07), ACM Digital Library, New York, NY, USA,
2007, pp. 121—140.

The view shows modules or units as nodes and the amount of objects transmitted as
edges. The system under study is an compiler: the objects flow from the Scanner to the
Parser, then to the Intermediate Representation Builder and finally to the
ByteCodeGenerator.

drian Lienhard, Orla Greevy and Oscar Nierstrasz, “Tracking Objects to detect Feature
Dependencies,” Proceedings of International Conference on Program Comprehension
(ICPC'07), IEEE Computer Society, Washington, DC, USA, June 2007, pp. 59—68.

This view shows objects and references. The color denotes the moment of the creation
of the object. The scale of gray is given by the different features exercised. In this
example, the system is an IRC client and the features are executed in order: open,
connect, join channel, send message to the channel.

Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken and Michael I. Jordan, “Scalable
statistical bug isolation,” Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation (PLDI'05), ACM, New York, NY,
USA, 2005, pp. 15—26.

Fierz 2008

Back in time debuggers remember
more than the current stack

How to instrument
What to capture and why
How to model
What to execute

The runtime is more than method activations

Tudor Gîrba
www.tudorgirba.com

creativecommons.org/licenses/by/3.0/

The screenshot is taken from the Compass prototype developed by Julien Fierz.

To interpret the result of a dynamic analysis, you have to control what is executed.

