Thanks to Jens Palsberg and Tony Hosking for their kind permission to
reuse and adapt the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap

> Context-free grammars

> Derivations and precedence

> Top-down parsing

> Left-recursion

> Look-ahead

> Table-driven parsing

See, Modern compiler implementation in
Java (Second edition), chapter 3.

Roadmap

> Context-free grammars

> Derivations and precedence
> Top-down parsing

> Left-recursion

> Look-ahead

> Table-driven parsing

The role of the parser

tokens
source code —> scanner parser

— IR

N 7

errors

> performs context-free syntax analysis

> guides context-sensitive analysis

> constructs an intermediate representation
> produces meaningful error messages

> attempts error correction

Syntax analysis

> Context-free syntax is specified with a context-free grammar.

> Formally a CFG G = (V,V,,S,P), where:
—V, is the set of terminal symbols in the grammar
(i.e.,the set of tokens returned by the scanner)
—V,, the non-terminals, are variables that denote sets of (sub)strings
occurring in the language. These impose a structure on the grammar.
— S is the goal symbol, a distinguished non-terminal in V,, denoting the
entire set of strings in L(G).

—P is a finite set of productions specifying how terminals and non-
terminals can be combined to form strings in the language.
Each production must have a single non-terminal on its left hand side.

> The set V =V, U V, is called the vocabulary of G

Notation and terminology

> a,b,c ..eV,

> A BC,..eV,
> U, VW, ..eV
> a,B,Y,..€V”
> U V,W,...eV”

If A—y then aAB = ayp is a single-step derivation using A — y
="* and =+*denote derivations of =0 and =1 steps

If S =* B then 3 is said to be a sentential form of G
L(G)={weEV,* | S=+w}, win L(G) is called a sentence of G

NB:L(G)={BEV* | S=*B}NV,*

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).

Example: 1. <goal> 1= <expr>
2. <expr> = <expr><op> <expr>
3 I num
4. I id
5. <op> =+
6 I -
7 I *
8 I

In a BNF for a grammar, we represent

1. non-terminals with <angle brackets> or CAPITAL LETTERS
2. terminals with typewriter font or underline

3. productions as in the example

This describes simple expressions over numbers and identifiers.

Scanning vs. parsing

\ term = [a-zA-Z] ([a-zA-Z] | [0-9])*
Where do we draw the line? 10| [1-9][0-9]"
op u= 4+ [—[*x]|/
expr ;= (termop)* term

Regular expressions:
—Normally used to classify identifiers, numbers, keywords ...
—Simpler and more concise for tokens than a grammar
—NMore efficient scanners can be built from REs

CFGs are used to impose structure
—Brackets: (), begin .. end, if .. then .. else
—EXxpressions, declarations ...

Factoring out lexical analysis simplifies the compiler

Syntactic analysis is complicated enough: grammar for C has around 200 productions.

Hierarchy of grammar classes

Unambiguous Grammars

LL(K)

LL(1)

LR(K)

LR(1)

LALR(1)

SLR

LR(0)

Ambiguous
Grammars

LL(k):

— Left-to-right, Leftmost
derivation, k tokens
lookahead, top-down

LR(K):

— Left-to-right, Rightmost
derivation, k tokens
lookahead, bottom-up

SLR:

—Simple LR (uses “follow
sets”)

LALR:

— LookAhead LR (uses
“lookahead sets”)

http://en.wikipedia.org/wiki/LL_parser ...

LL(1) and LR(1) are “sweet spots”

Roadmap

> Context-free grammars

> Derivations and precedence
> Top-down parsing

> Left-recursion

> Look-ahead

> Table-driven parsing

Derivations

We can view the productions of a CFG as rewriting rules.

<goal> <expr>

<expr> <op> <expr>

<expr> <op> <expr> <op> <expr>
<id,x> <op> <expr> <op> <expr>
<id,x> + <expr> <op> <expr>
<id,x> + <num, 2> <op> <expr>
<id,x> + <num,2> * <expr>

<id,x> + <num,2> * <id,y>

I AR 2 I 2R A

We have derived the sentence: x + 2 * y
We denote this derivation (or parse) as: <goal>=" id + num * id

The process of discovering a derivation is called parsing.

Derivation

> At each step, we choose a non-terminal to replace.
— This choice can lead to different derivations.

> Two strategies are especially interesting:
1. Leftmost derivation: replace the leftmost non-terminal at each step

2. Rightmost derivation: replace the rightmost non-terminal at each
step

The previous example was a leftmost derivation.

Rightmost derivation

Forthe string:x + 2 * y

<goal> <expr>

<expr> <op> <expr>

<expr> <op> <id,y>

<expr> * <id,y>

<expr> <op> <expr> * <id,y>
<expr> <op> <num,2> * <id,y>
<expr> + <num,2> * <id,y>

<id,x> + <num, 2> * <id,y>

I 2 2 2

Again we have: <goal>="*id + num * id

Precedence

Treewalk evaluation computes: (x+2) *y goal
expr
Should be: x+(2*y)
oxpe op expr
. op expr . <id,y>

<id,x> + <num, 2>

Precedence

> Our grammar has a problem: it has no notion of precedence, or
implied order of evaluation.

> To add precedence takes additional machinery:

<goal> n= <expr>

<expr> = <expr> + <term>
I <expr> - <term>
I <term>

<term> = <term> * <factor>
I <term> / <factor>
I <factor>

<factor> = num
I id

© 0N Ok OD -

> This grammar enforces a precedence on the derivation:
—terms must be derived from expressions
—forces the “correct” tree

Forcing the desired precedence

Now, for the string: x + 2 * y

<goal> =

U A AR

<expr>
<expr> + <term>

<expr> + <term> * <factor>
<expr> + <term> * <id,y>
<expr> + <factor> * <id,y>
<expr> + <num,2> * <id,y>
<term> + <num,2> * <id,y>
<factor> + <num,2> * <id,y>
<id,x> + <num,2> * <id,y>

Again we have: <goal>="* id + num * id,

but this time with the desired tree.

fachor

goal

facior

Ambiguity

If a grammar has more than one derivation for a single
sentential form, then it is ambiguous

<stmt> = if <expr> then <stmt>
| if <expr>then <stmt>else <stmt>
I

>Consider: if E; then if E; then S; else S,
—This has two derivations
—The ambiguity is purely grammatical
—It is called a context-free ambiguity

Resolving ambiguity

Ambiguity may be eliminated by rearranging the grammar:

<stmt> = <matched>
I <unmatched>
<matched> := if <expr> then <matched> else <matched>
I
<unmatched> ::= if <expr> then <stmt>
I if <expr> then <matched> else <unmatched>

This generates the same language as the ambiguous
grammar, but applies the common sense rule:
— match each else with the closest unmatched then

Ambiguity

> Ambiguity is often due to confusion in the context-free
specification. Confusion can arise from overloading, e.g.:

a = £(17)

> In many Algol-like languages, £ could be a function or a
subscripted variable.

> Disambiguating this statement requires context:
—need values of declarations
—not context-free
—really an issue of type

Rather than complicate parsing, we will handle this separately.

Roadmap

> Context-free grammars

> Derivations and precedence
> Top-down parsing

> Left-recursion

> Look-ahead

> Table-driven parsing

Parsing: the big picture

grammar ———=>

parser
generator

tokens

l

|

actions

parser

i

IR

Our goal is a flexible parser generator system

Top-down versus bottom-up

Top-down parser (LL):

—starts at the root of derivation tree and fills in
—picks a production and tries to match the input
—may require backtracking

—some grammars are backtrack-free (predictive)

Bottom-up parser (LR):
—starts at the leaves and fills in
—starts in a state valid for legal first tokens

—as input is consumed, changes state to encode possibilities
(recognize valid prefixes)

—uses a stack to store both state and sentential forms

Hand-written parsers are normally top-down.

Bottom-up parsers are normally built by parser generators.
Parser generators can be used to build either top-down or bottom-up parsers.
LL parsers are top-down. LR parsers are bottom-up.

Top-down parsing

A top-down parser starts with the root of the parse tree,
labeled with the start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the
fringe of the parse tree matches the input string
1. At a node labeled A, select a production A — a and construct the
appropriate child for each symbol of a

2. When a terminal is added to the fringe that doesn’t match the input
string, backtrack

3. Find the next node to be expanded (must have a label in V,)

The key is selecting the right production in step 1
=> should be guided by input string

Simple expression grammar

Recall our grammar for simple expressions:

<goal> <expr>

<expr> = <expr>+ <term>
I <expr> - <term>
I <term>

<term> 1= <term> * <factor>
I <term> / <factor>
I <factor>

<factor> ::= num
I id

© 0N Ok WD~

Consider the input stringx — 2 * y

Top-down derivation
Prod'n = Sentential form | Input

- goal Tx 2 Yy
1 expr) Tx 2 y
2 expr) + (term Tx 2 y
E term) + (tern Tx 2 y
7 factor) + {lerm Tx 2 y
9 id + {term Tx 2 y
- id + (term X - 2 y
- expr) - 2 y 1. <goal> := <expr>
3 expr) — (term tx 2 ¥ 2. <expr> := <expr>+ <term>
4 term term Tx 2 y 3. | <expr> - <term>
7 factor’ term Tx 2 y 4. I <term>
e A i = E y 5. <term> :i= <term> * <factor>
- id ~ (term x 2 y
e id — (term x *9 ¥ 6. I <term>/ <factor>
7 id — {factor x 2 y 7. I <factor>
8 id — num x 12 y 8. <factor> ::=num
- id ~ num x 2 y 9. I id
- id term x 12 y
5 id — {term) = (factor x 12 b
7 id — {factor) « (factor) x 12
8 id ~ num « {factor x 2 y
- id ~ num « (factor x 2 y
- id ~ num + (fctor) x 2 ly
9 id — num » id x 2 ty
- id — num + id x 2 y

The horizontal lines denote the backtracking points.
Whenever a token cannot be read, or input is left, then we must backtrack to an alternative rule.
NB: This example does not show how we pick which rule to expand! (be patient)

Roadmap

> Context-free grammars

> Derivations and precedence
> Top-down parsing

> Left-recursion

> Look-ahead

> Table-driven parsing

Non-termination

Another possible parse forx — 2 * y

Prod’'n | Sentential form - Input
- (goal) ™ — 2 %y
1 (expr) T — 2 %y
2 (expr) + (term) tx — 2 % y
2 (expr) + (term) + (term) | Tx — 2 * y
2 (expr) + (term) + --- tx — 2 xy
2 (expr) + (term) + --- T — 2%y
2 [tx — 2 % y

If the parser makes the wrong choices, expansion doesn’t terminate!

Left-recursion

Top-down parsers cannot handle left-recursion in a grammar

Formally, a grammar is left-recursive if

JA €V, such that A=+ Aa for some string a

<goal> :=
<expr> = <expr>+ <term>
| <expr> - <term>

<expr>

| <term>

Our simple expression
grammar is left-recursive!

<term> * <factor>
| <term> / <factor>
| <factor>
<factor>:= num
| id

© © N oA~ DN~
A
(]
=
3
\'
]

Eliminating left-recursion

To remove left-recursion, we can transform the grammar

<foo> = <foo>a
B)

<foo> ::=
<bar> ::

B <bar>
a <bar>
€

NB: a and B do not start with <foo>!

Example

<foo> ::=

I B

<foo> a

<expr> =

<term> =

<expr> + <term>
<expr> - <term>
<term>

<term> * <factor>
<term> / <factor>
<factor>

.-

<foo> = B <bar>
<bar> = a<bar>
€
<expr> 1= <term> <expr>
<expr> 1= + <term> <expr>

<term>

<term™> ::

- <term> <expr'>

)

<factor> <term’>

* <factor> <term’>
/ <factor> <term’>

€

Example

Our long-suffering expression grammar :

With this grammar, a
top-down parser will

* terminate

 backtrack on some
inputs

T3P0 NOO AN~

<goal>
<expr>
<expr’>

<term>
<term’™>

. <factor> ::

<expr>

<term> <expr’>

+ <term> <expr’>
- <term> <expr’>
€

<factor> <term’>

* <factor> <term’>
/ <factor> <term’>
€

num

id

Example

This cleaner grammar defines the same language:

1. <goal> := <expr>

2. <expr> 1= <term> + <expr>

3. I <term> - <expr>

4. I <term>

5. <term> := <factor> * <term>

6. I <factor> / <term>

7. I <factor>

8. <factor> := num

9. I id
Itis: Unfortunately, it generates
* right-recursive different associativity.

- free of € productions Same syntax, different meaning!

Roadmap

> Context-free grammars

> Derivations and precedence
> Top-down parsing

> Left-recursion

> Look-ahead

> Table-driven parsing

How much look-ahead is needed?

We saw that top-down parsers may need to
backtrack when they select the wrong production

Do we need arbitrary look-ahead to parse CFGs?
—in general, yes
—use the Earley or Cocke-Younger, Kasami algorithms

- Aho, Hopcroft, and Ullman, Problem 2.34 Parsing, Translation
and Compiling, Chapter 4

Fortunately
—Ilarge subclasses of CFGs can be parsed with limited lookahead

—most programming language constructs can be expressed in a
grammar that falls in these subclasses

Among the interesting subclasses are:

—LL(1): Left to right scan, Left-most derivation, 1-token look-ahead;
and

—LR(1): Left to right scan, Right-most derivation, 1-token look-ahead

Predictive parsing

Basic idea:
— For any two productions A — a | B, we would like a distinct way of choosing the
correct production to expand.

For some RHS a € G, define FIRST(a) as the set of tokens that appear
first in some string derived from a
l.e., for some w € V*, w € FIRST(q) iff a =*wy

Key property:
Whenever two productions A — a and A — 3 both appear in the
grammar, we would like:
FIRST(a) N FIRST(B) = &

This would allow the parser to make a correct choice with a look-ahead
of only one symbol!

The example grammar has this property!

Left factoring

What if a grammar does not have this property?

Sometimes, we can transform a grammar to have this
property:

—For each non-terminal A find the longest prefix a common to two or
more of its alternatives.

—if a = € then replace all of the A productions
A—aB;|aB,]|...|aB,

A—aA
A — By |Ba]-.- | By
where A’ is fresh

—Repeat until no two alternatives for a single non-terminal have a
common prefix.

with

Example

Consider our right-recursive version of the expression grammar :

1. <goal> <expr>

2. <expr> <term> + <expr>
3. I <term> - <expr>
I <term>

. <term> = <factor> * <term>
<factor> / <term>
| <factor>

. <factor> = num

| id

To choose between productions 2, 3, & 4, the parser must see past the
num or id and look at the +, —, * or /.

FIRST(2) N FIRST(3) N FIRST(4) = &

©®~No oM

This grammar fails the test.

l.e., they all have the same FIRST set, namely { num, id }
NB: This grammar is right-associative.

Example

Two non-terminals must be left-factored:

<expr> =

<term> + <expr>
<term> - <expr>
<term>

<factor> * <term>
<factor> / <term>

<factor>

<expr> =
<expr> =

<term> <expr’>
+ <expr>

- <expr>

€

<factor> <term’>
* <term>

/ <term>

€

Example

Substituting back into the grammar yields

1. <goal> = <expr>

2. <expr> = <term> <expr>
3. <expr> 1= +<expr>

4, I - <expr>

5. I €

6. <term> = <factor> <term™>
7. <term’> = * <term>

8. I / <term>

9. I €

10. <factor> ::= num

11. I id

Now, selection requires only a single token look-ahead.

NB: This grammar is still right-associative.

NB: This is a different grammar than the one we obtained by factoring out left recursion in the previous chapter.

Example derivation
| Sentential form

{goal)

(expr)

(term) (expr”)

(factor) (term”) (expr”)

id{term’) (expr’)

id(term’) {expr’)

ide (expr')

id— (expr)

id— (expr)

| id~ {term) (expr’)

id— (factor){term’) (expr’)

id— num(term’) {(expr’)

—_—

—
N | DI NI OON | 5O | -~ON - |

id~ num{term'}{(expr’)
id— num+ (term)(expr)
id— num+ {term){expr’)

id— num#

1 id— num+ id{term’){expr’)
id— nums+ id(term’)(expr’)
id— nume« id{expr’)

id— num+ id

(factor) (term”) (expr”) |

MM MM MMM MMM M MMM

<goal>
<expr>
<expr> ::

. I
0. <factor> ::=
11. |

<expr>
<term> <expr’>
+ <expr>

- <expr>

€

<factor> <term™>
* <term>

/ <term>

€

num

id

The next symbol determines each choice correctly.

Back to left-recursion elimination

> @Given a left-factored CFGQG, to eliminate left-recursion:

—if 3 A — Aa then replace all of the A productions
A—=Aa|B]|...]Y

with
A — NA’
N—=B|..|y
A" —aA|e

where N and A” are fresh
—Repeat until there are no left-recursive productions.

Generality

> Question:

— By left factoring and eliminating left-recursion, can we transform an
arbitrary context-free grammar to a form where it can be predictively
parsed with a single token look-ahead?

> Answer:

— Given a context-free grammar that doesn’t meet our conditions, it is
undecidable whether an equivalent grammar exists that does meet our
conditions.

> Many context-free languages do not have such a grammar:

S = ROIR1
{an0bn [n =1} U {a"b2n |n=1} RO = aRObIO
R1 == aR1bbl1

> Must look past an arbitrary number of a’s to discover the 0 or the
1 and so determine the derivation.

Recursive descent parsing

Now, we can produce a simple recursive descent
parser from the (right- associative) grammar.

goal:
token ¢« next token();

if (expr() = ERROR | token # EOF) then

yoturn ERROR;

oXpr:
if (term() = ERROR) then
return ERROR;
olse return oxpr prime();
expr prime:
if (token = PLUS) then
token ¢ next token();
return expr();
else if (token = MINUS) then
token ¢+ next token();
return expr();
else return 0OK;

ternm:
if (factor() = ERROR) then
return ERROR:
else return term prime();
torn prime:
if (token = NULT) then
token ¢ next token();
roturn torm();
olse if (token = DIV) then
token ¢« next token();
return term();
else return 0X;

factor:

if (token = NUM) then
token + next token();
return OK;

else if (token = ID) then
token ¢+ next token();
return 0K;

else return ERROR;

Building the tree

> One of the key jobs of the parser is to build an
intermediate representation of the source code.

> To build an abstract syntax tree, we can simply insert
code at the appropriate points:
—factor() can stack nodes id, num
—term_prime() can stack nodes *, /
—term() can pop 3, build and push subtree
—expr_prime() can stack nodes +, -
—expr() can pop 3, build and push subtree
—goal() can pop and return tree

Roadmap

> Context-free grammars

> Derivations and precedence
> Top-down parsing

> Left-recursion

> Look-ahead

> Table-driven parsing

Non-recursive predictive parsing

> Observation:

— Our recursive descent parser encodes state information in its run-
time stack, or call stack.

> Using recursive procedure calls to implement a stack
abstraction may not be particularly efficient.

> This suggests other implementation methods:
—explicit stack, hand-coded parser
—stack-based, table-driven parser

Non-recursive predictive parsing

Now, a predictive parser looks like:

stack

\)

source tokens
—— scanner
code

table-driven
parser

—— IR

\)

Rather than writing code, we build tables.

parsing
tables

Building tables can be automated!

Table-driven parsers

A parser generator system often looks like:

source
code

grammar —=>

scanner

tokens

stack

\)

parser
generator

table-driven
parser

\)

parsing
tables

This is true for both top-down (LL) and bottom-up (LR) parsers

Non-recursive predictive parsing

tos « 0

Stack([tos] « EOF
Stack[++tos] ¢« Start Symbol
token ¢ next token()

repeat
X « Stack[tos]
if X is a terminal or EOF then

Input: a string w and a A e
parsing table M for G pop X
token < next token()

else error()
else /+ Xis anon-terminal #/
if M[X,token] = X =Y Y>---¥; then
pop X
pUSh Yk')/\ ~]3°""3)"|
else error()
until X = EOF

tos = “top of stack”

The top of the stack holds the current symbol (terminal or non-terminal) you are trying match.

The bottom of the stack, then, is the target. The lookahead tells you which rule to use to expand a NT, and then the top of stack is replaced by pushing all the
symbols of the RHS of the rule.

Non-recursive predictive parsing

What we need now is a parsing table M.

Our expression grammar :

. <goal>
. <expr>
. <expr> =

1
2

3

4.

5. I
6. <term> =
7. <term’> =
8.

9. I
10. <factor> ::=
11. I

<expr>
<term> <expr’'>
+ <expr>

- <expr>

€

<factor> <term’>
* <term>

/ <term>

€

num

id

lts parse table:

| _idAnumAIA

(goal) 1 1 |-
{expr) 2| 2 |-
(expr) | = | - 13
(term) 6 6 | -
term’) | - - | 9
(factor) - 1 10 -

we use $ to represent EOF

|

@ | |& |

@ | |

@

LL(1) grammars

Previous definition:
—A grammar G is LL(1) iff for all non-terminals A, each distinct pair of
productions A — 3 and A — y satisfy the condition FIRST(3) N

FIRST(y) = @
> But what if A =" ¢&?

Revised definition:
—A grammar G is LL(1) iff for each set of productions
A—a;|ay]...|q,
1. FIRST(q,), FIRST(a,), ..., FIRST(a,) are pairwise disjoint
2. If a;=" € then FIRST(a) N FOLLOW(A) = &, V 1sj<n, i=]

NB: If G is e-free, condition 1 is sufficient

FOLLOW(A) must be disjoint from FIRST(a;), else we do not
know whether to go to a; or to take a; and skip to what follows.

FIRST

For a string of grammar symbols a, define FIRST(a) as:

—the set of terminal symbols that begin strings derived from a:
{a€V|a="aB}
—If a =" ¢ then € € FIRST(q)

FIRST(a) contains the set of tokens valid in the initial position in a.
To build FIRST(X):
1. If XeV, then FIRST(X) is{ X}
2. If X —= ethen add € to FIRST(X)
3. IfTX—=Y;Ys... Yy
a) Put FIRST(Y,) — {e} in FIRST(X)
b) Vi: 1 <i <k, if e € FIRST(Y,) N ... N FIRST(Y,4)
(i.,e., Y{Y5... Yy ="¢)
then put FIRST(Y,) — {&} in FIRST(X)
c) If e EFIRST(Y4) N ... N FIRST(Yy)
then put € in FIRST(X)
Repeat until no more additions can be made.

Straightforward recursive algorithm to build the FIRST set of a NT.

Nothing tricky here.

FOLLOW

> For a non-terminal A, define FOLLOW(A) as:

—the set of terminals that can appear immediately to the right of A in
some sentential form

—l.e., a non-terminal’s FOLLOW set specifies the tokens that can legally
appear after it.

— A terminal symbol has no FOLLOW set.
> To build FOLLOW(A):
1. Put $ in FOLLOW(<goal>)
2. If A — aBp:

a) Put FIRST(B) —{€} in FOLLOW(B)

b)If B =€ (i.e., A— aB) or € € FIRST(B) (i.e., p =") then put
FOLLOW(A) in FOLLOW(B)

Repeat until no more additions can be made

LL(1) parse table construction

Input: Grammar G
Output: Parsing table M
Method:

1. V production A — a:
a) Va € FIRST(a), add A — a to M[A,a]

b) If ¢ € FIRST(q):
. Vbe FOLLOW(A), add A— a to M[A,b]
. If$€ FOLLOW(A), add A — a to M[A,$]

2. Set each undefined entry of M to error

If AM[A,a] with multiple entries then G is not LL(1).

NB: recall thata,b& V,, so a, b = ¢

Example

Our long-suffering expression grammar: S—E
E— TE
E'—+E|—E|e
T—FT
T —>*T|/T|e
| FIRST | FOLLOW F —num |id
S {num.id} S}
E |{num,id} {s}
E{e,+.-} {5 [l id | oum | + | - | s | /
T |{num.id} {+,-.8} S| S—E | S—E - - - -
T'| {e,»./} | {+,-.S} E|E-STE|/E-TE| - - - -
F {num,id} {+.—, = /. S} E - - |[E'"9 +E|E"S -E| - -
id| {id} - T|[TSFT|ITSFT| - - - -
num {num} - T| - - T'—=e | T =e [T" =TT = /T
{*} - FIF—id |F 5 num| — - - -

Properties of LL(1) grammars

1. No left-recursive grammar is LL(1)
2. No ambiguous grammar is LL(1)
3. Some languages have no LL(1) grammar

4. An e—free grammar where each alternative expansion for A
begins with a distinct terminal is a simple LL(1) grammar.

Example:
S—aS|a
is not LL(1) because FIRST(aS) = FIRST(a) ={a}
S —aS’
S —aS|e
accepts the same language and is LL(1)

A grammar that is not LL(1)

<stmt> = if <expr>then <stmt>

I if <expr>then <stmt>else <stmt>
I

Left-factored: |<stmt> := if <expr>then <stmt><stmt>| ...
<stmt’> 1= else <simt>l¢g

Now, FIRST(<stmt’>) ={ €, else }
Also, FOLLOW(<stmt'>) ={ else, $}
But, FIRST(<stmt’>) N FOLLOW(<stmt'>) ={ else } = J
On seeing else, conflict between choosing
<stmt’> ;= else <stmt>and <stmt’>:=¢
=> grammar is not LL(1)!

Note that since <stmt> precedes <stmt’>, by recursion <stmt’> precedes <stmt’>, so FIRST(<stmt’>) is in FOLLOWS(<stmt’>).
NB: The fix, as before, is to put priority on <stmt™> ::= else <stmt> to associate else with closest previous then.

Error recovery

Key notion:
> For each non-terminal, construct a set of terminals on which
the parser can synchronize

> When an error occurs looking for A, scan until an element of
SYNC(A) is found

Building SYNC(A):
1. a€ FOLLOW(A) = a € SYNC(A)
2. place keywords that start statements in SYNC(A)
3. add symbols in FIRST(A) to SYNC(A)

If we can’t match a terminal on top of stack:
1. pop the terminal
2. print a message saying the terminal was inserted
3. continue the parse

l.e., SYNC(a) = V, —{a}

NB: popping the terminal means we matched it — since it wasn’t really there, in effect we have inserted it

What you should know!

~ What are the key responsibilities of a parser?

~ How are context-free grammars specified?

~ What are leftmost and rightmost derivations?

~ When is a grammar ambiguous? How do you remove
ambiguity?

~ How do top-down and bottom-up parsing differ?

~ Why are left-recursive grammar rules problematic?

~ How do you left-factor a grammar?

~ How can you ensure that your grammar only requires a
look-ahead of 1 symbol?

Can you answer these questions?

~ Why is it important for programming languages to have a
context-free syntax?

~ Which is better, leftmost or rightmost derivations?

~ Which is better, top-down or bottom-up parsing?

~ Why is look-ahead of just 1 symbol desirable?

~ Which is better, recursive descent or table-driven top-
down parsing?

~ Why is LL parsing top-down, but LR parsing is bottom up?

@creative
commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

changes were made. You may do so in any reasonable manner, but not in any way that

® Attribution — You must give appropriate credit, provide a link to the license, and indicate if
suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

