
Oscar Nierstrasz

4. Parsing in Practice

Thanks to Jens Palsberg and Tony Hosking for their kind permission to
reuse and adapt the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap

> Bottom-up parsing
> LR(k) grammars
> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

2

See, Modern compiler implementation in
Java (Second edition), chapters 3-4.

Roadmap

> Bottom-up parsing
> LR(k) grammars
> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

3

Some definitions

Recall:
> For a grammar G, with start symbol S, any string α such

that S ⇒* α is called a sentential form
—If α ∈ Vt*, then α is called a sentence in L(G)
—Otherwise it is just a sentential form (not a sentence in L(G))

> A left-sentential form is a sentential form that occurs in
the leftmost derivation of some sentence.

> A right-sentential form is a sentential form that occurs in
the rightmost derivation of some sentence.

4

Bottom-up parsing

Goal:
—Given an input string w and a grammar G, construct a parse tree by

starting at the leaves and working to the root.

> The parser repeatedly matches a right-sentential form
from the language against the tree’s upper frontier.

> At each match, it applies a reduction to build on the
frontier:
—each reduction matches an upper frontier of the partially built tree

to the RHS of some production
—each reduction adds a node on top of the frontier

> The final result is a rightmost derivation, in reverse.
5

Why rightmost?

Example

Consider the grammar:

1. S → aABe
2. A → Abc
3. | b
4. B → d

Sentential Form Action
abbcde shift a
abbcde no match; shift b
abbcde match; reduce (3)
aAbcde no match; shift b
aAbcde lookahead ⇒ shift c
aAbcde match; reduce (2)
aAde shift d
aABe match; reduce (4)
aABe shift e

S match; reduce (1)

and the input string: abbcde

6

Parse bottom up, replacing terms by non-terminals.
Reading in reverse, we have a rightmost derivation, first replacing S, then B, A and A again.
Note that you have more context than with top-down since you may have a whole AST on the stack (A)

Handles

> A handle of a right-sentential form γ is a production A → β
and a position in γ where β may be found and replaced
by A to produce the previous right-sentential form in a
rightmost derivation of γ

—Suppose: S ⇒* αAw ⇒ αβw
—Then A → β in the position following α is a handle of αβw

NB: Because γ is a right-sentential form, the substring to the
right of a handle contains only terminal symbols.

7

Non-terminals are only to the left (the stack) since you are parsing left-to-right.

Handles

The handle A → β in
the parse tree for αβw

8

The handles in our previous example correspond to the points where we prune (reduce).

Handles

> Theorem:
—If G is unambiguous then every right-sentential form has a

unique handle.

> Proof: (by definition)
1. G is unambiguous ⇒ rightmost derivation is unique
2.⇒ a unique production A → β applied to take γi—1 to γi
3.⇒ a unique position k at which A → β is applied
4.⇒ a unique handle A → β

9

Example — rightmost derivation

The left-recursive expression grammar (original form)

10

1. <goal> ::= <expr>
2. <expr> ::= <expr> + <term>
3. | <expr> - <term>
4. | <term>
5. <term> ::= <term> * <factor>
6. | <term> / <factor>
7. | <factor>
8. <factor> ::= num
9. | id

x — 2 * yHow do we parse (bottom-up)
to arrive at this derivation?

Once again, lookahead tells us to reduce <term>*<factor> and not <expr>—<term>
The question is, how do we arrive at this derivation?

Handle-pruning

The process to construct a bottom-up parse is called
handle-pruning

To construct a rightmost derivation
S = γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn—1 ⇒ γn = w

we set i to n and apply the following simple algorithm:
For i = n down to 1

1. Find the handle Ai → βi in γi

2. Replace βi with Ai to generate γi—1

This takes 2n steps, where n is the length of the derivation
11

Stack implementation

> One scheme to implement a handle-pruning, bottom-up
parser is called a shift-reduce parser.

> Shift-reduce parsers use a stack and an input buffer
1. initialize stack with $
2. Repeat until the top of the stack is the goal symbol and the input

token is $
a) Find the handle.  

If we don’t have a handle on top of the stack, shift (push) an
input symbol onto the stack

b) Prune the handle. 
If we have a handle A → β on the stack, reduce
I. Pop |β| symbols off the stack
II. Push A onto the stack

12

NB: In practice we also lookahead to
determine whether to shift or reduce!

Actually, this is an LR(0) parser algorithm, since no lookahead is used.

Example: back to x—2*y

1. Shift until top of stack is the
right end of a handle

2. Find the left end of the handle
and reduce

5 shifts + 9 reduces + 1 accept
13

1. <goal> ::= <expr>
2. <expr> ::= <expr> + <term>
3. | <expr> - <term>
4. | <term>
5. <term> ::= <term> * <factor>
6. | <term> / <factor>
7. | <factor>
8. <factor> ::= num
9. | id

Why does <expr>—<term> produce a shift rather than a reduce?
Actually we need to lookahead at least one character (LR(1)) to decide whether to shift or reduce.

Shift-reduce parsing

A shift-reduce parser has just four canonical actions:

shift next input symbol is shifted (pushed) onto the
top of the stack

reduce

right end of handle is on top of stack;  
locate left end of handle within the stack; 
pop handle off stack and push appropriate non-
terminal LHS

accept terminate parsing and signal success
error call an error recovery routine

14

The key problem: to recognize handles (not covered in this course).
Ugh! Where is this covered?

Roadmap

> Bottom-up parsing
> LR(k) grammars
> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

15

LR(k) grammars

A grammar G is LR(k) iff:
1. S ⇒rm* αAw ⇒rm αβw

2. S ⇒rm* γBx ⇒rm αβy

3. FIRSTk(w) = FIRSTk(y) ⇒ αAy = γBx

I.e., if αβw and αβy have the same k-symbol
lookahead, then there is a unique handle to
reduce in the rightmost derivation.

16

Assume sentential forms αβw and αβy, with common prefix αβ and common k-symbol lookahead FIRSTk(w) = FIRSTk(y), such that αβw reduces to αAw and
αβy reduces to γBx.
But, the common prefix means αβy also reduces to αAy, for the same result.
Thus αAy = γBx

Why study LR grammars?

LR(1) grammars are used to construct LR(1) parsers.
—everyone’s favorite parser
— virtually all context-free programming language constructs can be

expressed in an LR(1) form
—LR grammars are the most general grammars parsable by a deterministic,

bottom-up parser
—efficient parsers can be implemented for LR(1) grammars
—LR parsers detect an error as soon as possible in a left-to-right scan of the

input
—LR grammars describe a proper superset of the languages recognized by

predictive (i.e., LL) parsers

LL(k): recognize use of a production A → β seeing first k symbols of β
LR(k): recognize occurrence of β (the handle) having seen all of what

is derived from β plus k symbols of look-ahead
17

Recall: LL(k) is top-down, LR(k) is bottom-up.

Left versus right recursion

> Right Recursion:
—needed for termination in predictive parsers
—requires more stack space
—right associative operators

> Left Recursion:
—works fine in bottom-up parsers
—limits required stack space
—left associative operators

> Rule of thumb:
—right recursion for top-down parsers
—left recursion for bottom-up parsers

18

Parsing review

> Recursive descent
—A hand coded recursive descent parser directly encodes a grammar

(typically an LL(1) grammar) into a series of mutually recursive
procedures. It has most of the linguistic limitations of LL(1).

> LL(k):
—must be able to recognize the use of a production after seeing only the

first k symbols of its right hand side.
> LR(k):

—must be able to recognize the occurrence of the right hand side of a
production after having seen all that is derived from that right hand side
with k symbols of look-ahead.

> The dilemmas:
—LL dilemma: pick A → b or A → c ?
—LR dilemma: pick A → b or B → b ?

19

Roadmap

> Bottom-up parsing
> LR(k) grammars
> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

20

The Java Compiler Compiler

> “Lex and Yacc for Java.”
> Based on LL(k) rather than LR(1) or LALR(1).
> Grammars are written in EBNF.
> Transforms an EBNF grammar into an LL(k) parser.
> Supports embedded action code written in Java (just like

Yacc supports embedded C action code)
> The look-ahead can be changed by writing
LOOKAHEAD(…)

> The whole input is given in just one file (not two).

21

LALR parsers start with an LR(0) state machine and then compute lookahead *sets* for all rules in the grammar, checking for ambiguity.

The JavaCC input format

> Single file:
—header
—token specifications for lexical analysis
—grammar

22

Examples

Token specification:

Production:

23

TOKEN : /* LITERALS */
{
 < INTEGER_LITERAL: (["1"-"9"] ([“0"-"9"])* | "0") >
}

void StmList() :
{}
{
 Stm() (";" Stm()) *
}

Declarations

Productions
and actions

NB: with Java Tree Builder, the actual declarations and actions are inferred and generated.

Generating a parser with JavaCC

javacc fortran.jj // generates a parser
javac Main.java // Main.java calls the parser
java Main < prog.f // parses the program prog.f

24

NB: JavaCC is just one of many tools available …
See: http://catalog.compilertools.net/java.html

The Visitor Pattern

> Intent:
—Represent an operation to be performed on the elements

of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on
which it operates.

25

Sneak Preview

> When using the Visitor pattern,
—the set of classes must be fixed in advance, and
—each class must have an accept method.

26

First Approach: instanceof and downcasts

The running Java example: summing an integer list.
public interface List {}
public class Nil implements List {}
public class Cons implements List {
int head;
List tail;
Cons(int head, List tail) {
this.head = head;
this.tail = tail;
}
}

public class SumList {
public static void main(String[] args) {
List l = new Cons(5, new Cons(4,  
new Cons(3, new Nil())));

int sum = 0;
boolean proceed = true;
while (proceed) {
if (l instanceof Nil) {
proceed = false;
} else if (l instanceof Cons) {
sum = sum + ((Cons) l).head;
l = ((Cons) l).tail;
}
}
System.out.println("Sum = " + sum);
}
}

Advantage: The code does not
touch the classes Nil and Cons.
Drawback: The code must use
downcasts and instanceof to
check what kind of List object it has.

27

Second Approach: Dedicated Methods

public interface List {
public int sum();
}
public class Nil implements List {
public int sum() {
return 0;
}
}
public class Cons implements List {
int head;
List tail;
Cons(int head, List tail) {
this.head = head;
this.tail = tail;
}
public int sum() {
return head + tail.sum();
}
}

public class SumList {
public static void main(String[] args) {
List l = new Cons(5, new Cons(4,

 new Cons(3, new Nil())));
System.out.println("Sum = “
+ l.sum());

}
}

The classical OO approach is to offer dedicated
methods through a common interface.

Advantage: Downcasts and instanceof
calls are gone, and the code can be written in a
systematic way.
Disadvantage: For each new operation on
List-objects, new dedicated methods have to
be written, and all classes must be recompiled.

28

Third Approach: The Visitor Pattern

> The Idea:
—Divide the code into an object structure and a Visitor
—Insert an accept method in each class. Each accept method

takes a Visitor as argument.
—A Visitor contains a visit method for each class (overloading!).  

A method for a class C takes an argument of type C.

29

NB: In a dynamically typed language you would introduce a visitC method for each class C.

Third Approach: The Visitor Pattern

public interface List {
public void accept(Visitor v);
}
public class Nil implements List {
public void accept(Visitor v) {
v.visit(this);
}
}
public class Cons implements List {
int head;
List tail;
Cons(int head, List tail) {… }
public void accept(Visitor v) {
v.visit(this);
}
}
public interface Visitor {
void visit(Nil l);
void visit(Cons l);
}

public class SumVisitor implements Visitor
{
int sum = 0;
public void visit(Nil l) { }

public void visit(Cons l) {
sum = sum + l.head;
l.tail.accept(this);
}

public static void main(String[] args) {
List l = new Cons(5, new Cons(4,

new Cons(3, new Nil())));
SumVisitor sv = new SumVisitor();
l.accept(sv);
System.out.println("Sum = " + sv.sum);
}
}

NB: The visit methods capture both (1) actions,
and (2) access of subobjects. 30

Note how in Java the type system is used to disambiguate the different visit() methods. In a dynamic language, there would
be visitNil() and visitCons() methods.

Comparison

The Visitor pattern combines the advantages of the two other approaches.

Frequent
downcasts?

Frequent
recompilation?

instanceof + downcasting Yes No

dedicated methods No Yes

Visitor pattern No No

JJTree (Sun) and Java Tree Builder (Purdue/UCLA)
are front-ends for JavaCC that are based on Visitors

31

Visitors: Summary

> A visitor gathers related operations.
— It also separates unrelated ones.
—Visitors can accumulate state.

> Visitor makes adding new operations easy.
— Simply write a new visitor.

> Adding new classes to the object structure is hard.
— Key consideration: are you most likely to change the algorithm applied over an

object structure, or are you most like to change the classes of objects that
make up the structure?

> Visitor can break encapsulation.
— Visitor’s approach assumes that the interface of the data structure classes is

powerful enough to let visitors do their job. As a result, the pattern often forces
you to provide public operations that access internal state, which may
compromise its encapsulation.

32

The Java Tree Builder (JTB)

> front-end for The Java Compiler Compiler.
> supports the building of syntax trees which can be

traversed using visitors.
> transforms a bare JavaCC grammar into three

components:
—a JavaCC grammar with embedded Java code for building a syntax

tree;
—one class for every form of syntax tree node; and
—a default visitor which can do a depth-first traversal of a syntax

tree.
http://compilers.cs.ucla.edu/jtb/

33

The Java Tree Builder

The produced JavaCC grammar can then be processed by the Java
Compiler Compiler to give a parser which produces syntax trees.
The produced syntax trees can now be traversed by a Java program by
writing subclasses of the default visitor.

34

Using JTB

jtb fortran.jj // generates jtb.out.jj
javacc jtb.out.jj // generates a parser
javac Main.java // Main.java calls the parser and visitors
java Main < prog.f // builds a syntax tree and executes visitors

35

Roadmap

> Bottom-up parsing
> LR(k) grammars
> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

36

Recall our straight-line grammar

Stm → Stm ; Stm CompoundStm
Stm → id := Exp AssignStm
Stm → print (ExpList) PrintStm
Exp → id IdExp
Exp → num NumExp
Exp → Exp Binop Exp OpExp
Exp → (Stm , Exp) EseqExp
ExpList → Exp , ExpList PairExpList
ExpList → Exp LastExpList
Binop → + Plus
Binop → – Minus
Binop → × Times
Binop → / Div 37

Straightline Interpreter Files

38

«Grammar spec»

slpl.jj

«Syntax Tree Nodes»

Goal ...

«Grammar spec
with actions»

jtb.out.jj

«Default visitors
and interfaces»

Visitor ...

«Parser source»

StraightLineParser ...
JavaCC

generates

Key

JTB

visits

Source files Generated files

«Bytecode»

StraightLineParser ...

produces

«Interpreter source»

InterpreterVisitor ...

«Abstract Machine for
Interpreter»

Machine

uses

Tokens
options {
 JAVA_UNICODE_ESCAPE = true;
}

PARSER_BEGIN(StraightLineParser)
 package parser;
 public class StraightLineParser {}
PARSER_END(StraightLineParser)

SKIP : /* WHITE SPACE */
{ " " | "\t" | "\n" | "\r" | "\f" }

TOKEN :
{ < SEMICOLON: ";" >
| < ASSIGN: ":=" >
...
}

TOKEN : /* LITERALS */
{ < INTEGER_LITERAL: (["1"-"9"] (["0"-"9"])*
| "0") >
}

TOKEN : /* IDENTIFIERS */
{ < IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
| < #LETTER: ["a"-"z", "A"-"Z"] >
| < #DIGIT: ["0"-"9"] >
}

slpl.jj starts with the
scanner declarations

more tokens here!

39

Rewriting our grammar

Goal → StmList
StmList → Stm (; Stm) *
Stm → id := Exp

⎜ print “(” ExpList “)”
Exp → MulExp ((+ ⎜ -) MulExp) *
MulExp → PrimExp ((* ⎜ /) PrimExp) *
PrimExp → id

⎜ num
⎜ “(” StmList , Exp “)”

ExpList → Exp (, Exp) *

We introduce a start rule, eliminate all left-
recursion, and establish precedence. 40

Grammar rules

The grammar
rules directly
reflect our BNF!

NB: We add some
non-terminals to
help our visitors.

void Goal() : {} { StmList() <EOF> }
void StmList() : {}{ Stm() (";" Stm()) * }

void Stm() : {} { Assignment() | PrintStm() }

/* distinguish reading and writing Id */
void Assignment() : {} { WriteId() ":=" Exp() }
void WriteId() : {} { <IDENTIFIER> }

void PrintStm() : {} { "print" "(" ExpList() ")" }

void ExpList() : {} { Exp() (AppendExp()) * }
void AppendExp() : {} { "," Exp() }

void Exp() : {} { MulExp() (PlusOp() | MinOp()) * }
void PlusOp() : {} { "+" MulExp() }
void MinOp() : {} { "-" MulExp() }

void MulExp() : {} { PrimExp() (MulOp() | DivOp()) * }
void MulOp() : {} { "*" PrimExp() }
void DivOp() : {} { "/" PrimExp() }

void PrimExp() : {}{ ReadId() | Num() | StmExp() }
void ReadId() : {}{ <IDENTIFIER> }
void Num() : {} { <INTEGER_LITERAL> }
void StmExp() : {}{ "(" StmList() "," Exp() ")" } 41

Java Tree Builder

JTB automatically
generates actions to
build the syntax tree,
and visitors to visit it.

// Generated by JTB 1.3.2
options {
 JAVA_UNICODE_ESCAPE = true;
}
PARSER_BEGIN(StraightLineParser)
package parser;
import syntaxtree.*;
import java.util.Vector;

public class StraightLineParser
{
}
…
Goal Goal() :
{
 StmList n0;
 NodeToken n1;
 Token n2;
}
{
 n0=StmList()
 n2=<EOF> {
 n2.beginColumn++; n2.endColumn++;
 n1 = JTBToolkit.makeNodeToken(n2);
 }

 { return new Goal(n0,n1); }
}
...

original source LOC 441

generated source LOC 4912

42

Straightline Interpreter Runtime

43

«Straightline
source code»

Examples
StraightLineParser

«Syntax Tree»

Goal ...

generates

Key

visits

InterpreterVisitor ...

output

Machine

instructs

The interpreter
package interpreter;
import ...;
public class StraightLineInterpreter {
Goal parse;
StraightLineParser parser;

public static void main(String [] args) {
System.out.println(new StraightLineInterpreter(System.in).interpret());

}

public StraightLineInterpreter(InputStream in) {
parser = new StraightLineParser(in);
this.initParse();

}

private void initParse() {
try { parse = parser.Goal(); }
catch (ParseException e) { ... }

}

public String interpret() {
assert(parse != null);
Visitor visitor = new Visitor();
visitor.visit(parse);
return visitor.result();

}
}

The interpreter simply
runs the parser and
visits the parse tree.

44

An abstract machine for straight line code

package interpreter;
import java.util.*;
public class Machine {
private Hashtable<String,Integer> store; // current values of variables
private StringBuffer output; // print stream so far
private int value; // result of current expression
private Vector<Integer> vlist; // list of expressions computed

public Machine() {
store = new Hashtable<String,Integer>();
output = new StringBuffer();
setValue(0);
vlist = new Vector<Integer>();

}
void assignValue(String id) { store.put(id, getValue()); }
void appendExp() { vlist.add(getValue()); }
void printValues() {...}
void setValue(int value) {...}
int getValue() { return value; }
void readValueFromId(String id) {
assert isDefined(id); // precondition
this.setValue(store.get(id));

}
private boolean isDefined(String id) { return store.containsKey(id); }
String result() { return this.output.toString(); }

}

The Visitor
interacts with
this machine as
it visits nodes of
the program.

45

The visitor
package interpreter;
import visitor.DepthFirstVisitor;
import syntaxtree.*;

public class Visitor extends DepthFirstVisitor {
Machine machine;
public Visitor() { machine = new Machine(); }
public String result() { return machine.result(); }

public void visit(Assignment n) {
n.f0.accept(this);
n.f1.accept(this);
n.f2.accept(this);
String id = n.f0.f0.tokenImage;
machine.assignValue(id);

}
public void visit(PrintStm n) { ... }
public void visit(AppendExp n) { ... }
public void visit(PlusOp n) { ... }
public void visit(MinOp n) { ... }
public void visit(MulOp n) { ... }
public void visit(DivOp n) { ... }
public void visit(ReadId n) { ... }
public void visit(Num n) { ... }

}

The Visitor interprets
interesting nodes by
directly interacting with
the abstract machine.

f0 → WriteId()
f1 → “:=”
f2 → Exp()

46

What you should know!

✎ Why do bottom-up parsers yield rightmost derivations?
✎ What is a “handle”? How is it used?
✎ What is “handle-pruning”?How does a shift-reduce parser

work?
✎ When is a grammar LR(k)?
✎ Which is better for hand-coded parsers, LL(1) or LR(1)?
✎ What kind of parsers does JavaCC generate?
✎ How does the Visitor pattern help you to implement

parsers?

47

Can you answer these questions?

✎What are “shift-reduce” errors?
✎How do you eliminate them?
✎Which is more expressive? LL(k) or LR(k)?
✎How would you implement the Visitor pattern in a

dynamic language (without overloading)?
✎How can you manipulate your grammar to simplify your

JTB-based visitors?

48

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

