
Oscar Nierstrasz

6. Intermediate Representation

Thanks to Jens Palsberg and Tony Hosking for their kind permission to
reuse and adapt the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

SSA lecture notes by Marcus Denker

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap

2

> Intermediate representations
> Static Single Assignment
> SSA generation
> Dominance and SSA generation
> Applications of SSA
> Φ-congruence and SSA removal

See, Modern compiler implementation in
Java (Second edition), chapters 7-8.

Roadmap

3

> Intermediate representations
> Static Single Assignment
> SSA generation
> Dominance and SSA generation
> Applications of SSA
> Φ-congruence and SSA removal

Why use intermediate representations?

1. Software engineering principle
—break compiler into manageable pieces

2. Simplifies retargeting to new host
— isolates back end from front end

3. Simplifies support for multiple languages
—different languages can share IR and back end

4. Enables machine-independent optimization
—general techniques, multiple passes

4

IR scheme

5

• front end produces IR
• optimizer transforms IR to more efficient program
• back end transforms IR to target code

Kinds of IR

> Abstract syntax trees (AST)
> Linear operator form of tree (e.g., postfix notation)
> Directed acyclic graphs (DAG)
> Control flow graphs (CFG)
> Program dependence graphs (PDG)
> Static single assignment form (SSA)
> 3-address code
> Hybrid combinations

6

Categories of IR

> Structural
—graphically oriented (trees, DAGs)
—nodes and edges tend to be large
—heavily used on source-to-source translators

> Linear
—pseudo-code for abstract machine
— large variation in level of abstraction
—simple, compact data structures
—easier to rearrange

> Hybrid
—combination of graphs and linear code (e.g. CFGs)
—attempt to achieve best of both worlds

7

Important IR properties

> Ease of generation
> Ease of manipulation
> Cost of manipulation
> Level of abstraction
> Freedom of expression (!)
> Size of typical procedure
> Original or derivative

8

Subtle design
decisions in the IR can
have far-reaching
effects on the speed
and effectiveness of
the compiler!

è Degree of exposed
detail can be crucial

Abstract syntax tree

9

An AST is a parse tree with
nodes for most non-terminals
removed.

Since the program is already
parsed, non-terminals needed
to establish precedence and
associativity can be collapsed! A linear operator form of this

tree (postfix) would be:

x 2 y * -

Directed acyclic graph

10

A DAG is an AST with
unique, shared nodes
for each value.

x := 2 * y + sin(2*x)
z := x / 2

Control flow graph

> A CFG models transfer of control in a program
—nodes are basic blocks (straight-line blocks of code)
—edges represent control flow (loops, if/else, goto …)

11

if x = y then
S1

else
S2

end
S3

3-address code

12

> Statements take the form: x = y op z
—single operator and at most three names

x – 2 * y
t1 = 2 * y
t2 = x – t1

> Advantages:
—compact form
—names for intermediate values

Typical 3-address codes

assignments

x = y op z
x = op y
x = y[i]
x = y

branches goto L
conditional branches if x relop y goto L

procedure calls
param x
param y
call p

address and pointer
assignments

x = &y
*y = z

13

3-address code — two variants

14

Quadruples Triples

• simple record structure
• easy to reorder
• explicit names

• table index is implicit name
• only 3 fields
• harder to reorder

IR choices

> Other hybrids exist
—combinations of graphs and linear codes
—CFG with 3-address code for basic blocks

> Many variants used in practice
—no widespread agreement
—compilers may need several different IRs!

> Advice:
—choose IR with right level of detail
—keep manipulation costs in mind

15

Roadmap

16

> Intermediate representations
> Static Single Assignment
> SSA generation
> Dominance and SSA generation
> Applications of SSA
> Φ-congruence and SSA removal

SSA: Literature

17

Books:
- SSA Chapter in Appel

- Chapter 8.11 Muchnik

SSA Creation:
 Cytron et. al: Efficiently computing Static Single
 Assignment Form and the Control Dependency Graph
 (TOPLAS, Oct 1991)

Φ-Removal: Sreedhar et at. Translating out of Static Single
 Assignment Form (SAS, 1999)

Static Single Assignment Form

> Goal: simplify procedure-global optimizations

> Definition:

18

Program is in SSA form if every variable
is only assigned once

Static Single Assignment (SSA)

> Each assignment to a temporary is given a unique
name
—All uses reached by that assignment are renamed
—Compact representation
—Useful for many kinds of compiler optimization …

19

Ron Cytron, et al., “Efficiently computing static single
assignment form and the control dependence graph,” ACM
TOPLAS., 1991. doi:10.1145/115372.115320

http://en.wikipedia.org/wiki/Static_single_assignment_form

x := 3;
x := x + 1;
x := 7;
x := x*2;

x1 := 3;
x2 := x1 + 1;
x3 := 7;
x4 := x3*2;

è

Why Static?

> Why Static?
—We only look at the static program
—One assignment per variable in the program

> At runtime variables are assigned multiple times!

20

Example: Sequence

21

a := b + c
b := c + 1
d := b + c
a := a + 1
e := a + b

a1 := b1 + c1
b2 := c1 + 1
d1 := b2 + c1
a2 := a1 + 1
e1 := a2 + b2

Original SSA

Easy to do for sequential programs:

Example: Condition

22

if B then
a := b

else
a := c

end
… a …

if B then
a1 := b

else
a2 := c

end
… a? …

Original SSA

Conditions: what to do on control-flow merge?

Solution: Φ-Function

23

if B then
a := b

else
a := c

end
… a …

if B then
a1 := b

else
a2 := c

end
a3 := Φ(a1,a2)
… a3 …

Original SSA

Conditions: what to do on control-flow merge?

The Φ-Function

> Φ-functions are always at the beginning of a basic block

> Selects between values depending on control-flow

> ak+1 := Φ(a1…ak): the block has k preceding blocks

Φ-functions are evaluated simultaneously within a basic
block.

24

SSA and CFG

> SSA is normally used for control-flow graphs (CFG)

> Basic blocks are in 3-address form

25

Recall: Control flow graph

> A CFG models transfer of control in a program
—nodes are basic blocks (straight-line blocks of code)
—edges represent control flow (loops, if/else, goto …)

26

if x = y then
S1

else
S2

end
S3

B

a2 := 2a1 := 1

a3 := PHI(a1,a2)
… a3 ...

SSA: a Simple Example

27

if B then
a1 := 1

else
a2 := 2

end
a3 := Φ(a1,a2)
… a3 …

Roadmap

28

> Intermediate representations
> Static Single Assignment
> SSA generation
> Dominance and SSA generation
> Applications of SSA
> Φ-congruence and SSA removal

Recall: IR

29

• front end produces IR
• optimizer transforms IR to more efficient program
• back end transform IR to target code

SSA as IR

30

Transforming to SSA

> Problem: Performance / Memory
—Minimize number of inserted Φ-functions
—Do not spend too much time

> Many relatively complex algorithms
—We do not go too much into detail
—See literature!

31

Minimal SSA

> Two steps:
—Place Φ-functions
—Rename Variables

> Where to place Φ-functions?

> We want minimal amount of needed Φ
—Save memory
—Algorithms will work faster

32

Path Convergence Criterion

> There should be a Φ for a at node Z if:
1. There is a block X containing a definition of a
2. There is a block Y (Y ≠ X) containing a definition of a
3. There is a nonempty path Pxz of edges from X to Z
4. There is a nonempty path Pyz of edges from Y to Z
5. Path Pxz and Pyz do not have any nodes in common other than Z
6. The node Z does not appear within both Pxz and Pyz prior to the end

(although it may appear in one or the other)

> I.e., Z is the first place where two definitions of a collide

33

X Y

Z

Iterated Path-Convergence

> Inserted Φ is itself a definition!

34

while there are nodes X,Y,Z satisfying conditions 1-5
and Z does not contain a Φ-function for a

 do
 insert Φ at node Z.

A bit slow, other algorithms
used in practice

B

a2 := 2a1 := b

a3 := PHI(a1,a2)
… a3 ...

Example (Simple)

35

1. block X contains a definition of a
2. block Y (Y ≠ X) contains a

definition of a
3. path Pxz of edges from X to Z.
4. path Pyz of edges from Y to Z.
5. path Pxz and Pyz do not have any

nodes in common other than Z
6. node Z does not appear within

both Pxz and Pyz prior to the end

Roadmap

36

> Intermediate representations
> Static Single Assignment
> SSA generation
> Dominance and SSA generation
> Applications of SSA
> Φ-congruence and SSA removal

Dominance Property of SSA

> Dominance: node D dominates node N if every path from the
start node to N goes through D.

(“strictly dominates”: D ≠ N)

37

Dominance Property of SSA:

1. If x is used in a Φ-function in block N, then the node
defining x dominates every predecessor of N.

2. If x is used in a non-Φ statement in N, then the node
defining x dominates N

“Definition dominates use”

> Dominance can be used to efficiently build SSA

> Φ-Functions are placed in all basic blocks of the
Dominance Frontier

—DF(D) = the set of all nodes N such that D dominates an immediate
predecessor of N but does not strictly dominate N.

38

Dominance and SSA Creation

39

Dominance frontier

Node 5 dominates all
nodes in the gray area

40

Dominance frontier

41

DF(5)= {4, 5, 12, 13}

Follow edges leaving
the region dominated
by node 5 to the
region not strictly
dominated by 5.

Dominance frontier

Simple Example

42

DF(B1)=
DF(B2)=
DF(B3)=
DF(B4)=

Simple Example

43

DF(B1)={?}
DF(B2)=
DF(B3)=
DF(B4)=

Simple Example

44

DF(B1)={}
DF(B2)=
DF(B3)=
DF(B4)=

Simple Example

45

DF(B1)={}
DF(B2)={?}
DF(B3)=
DF(B4)=

Simple Example

46

DF(B1)={}
DF(B2)={B4}
DF(B3)=
DF(B4)=

Simple Example

47

DF(B1)={}
DF(B2)={B4}
DF(B3)={B4}
DF(B4)=

Simple Example

48

DF(B1)={}
DF(B2)={B4}
DF(B3)={B4}
DF(B4)={}

Simple Example

49

DF(B1)={}
DF(B2)={B4}
DF(B3)={B4}
DF(B4)={}

Φ-Function needed in B4 (for a)

Roadmap

50

> Intermediate representations
> Static Single Assignment
> SSA generation
> Dominance and SSA generation
> Applications of SSA
> Φ-congruence and SSA removal

Properties of SSA

> Simplifies many optimizations
—Every variable has only one definition
—Every use knows its definition, every definition knows its uses
—Unrelated variables get different names

> Examples:
—Constant propagation
—Value numbering
—Invariant code motion and removal
—Strength reduction
—Partial redundancy elimination

51

Next lecture!

SSA in the Real World

> Invented end of the 80s, a lot of research in the 90s

> Used in many modern compilers
—ETH Oberon 2
—LLVM
—GNU GCC 4
—IBM Jikes Java VM
—Java Hotspot VM
—Mono
—Many more…

52

Roadmap

53

> Intermediate representations
> Static Single Assignment
> SSA generation
> Dominance and SSA generation
> Applications of SSA
> Φ-congruence and SSA removal

Vugranam C. Sreedhar, et al, “Translating Out of Static Single
Assignment Form”, LNCS 1694, 1999, doi:10.1007/3-540-48294-6_13

 Transforming out-of SSA

> Processor cannot execute Φ-Function

> How do we remove it?

54

Simple Copy Placement

55

Naive copy placement may produce
incorrect results after optimization …

Φ-Congruence

> Insert Copies
> Rename Variables

56

Idea: transform program so that all variables in
Φ are the same:

a1 = Φ(a1,a1) a1 = a1

Φ-Congruence: Definitions

57

Φ-connected(x):

a3 = Φ(a1, a2)
 a5 = Φ(a3, a4)

a1, a2, a3 are Φ-connected
a3, a4, a5 are Φ-connected

Φ-congruence-class:
Transitive closure of Φ-connected(x).

a1-a5 are Φ-congruent

Φ-congruence property:

All variables of the same congruence class can be
 replaced by one representative variable without
 changing the semantics.

SSA without optimizations has Φ-congruence
property

 Variables of the congruence class never live
 at the same time (by construction)

Φ-Congruence Property

58

Liveness
Code Generation

59

A variable v is live on edge e if there is a path through e
to a use of v not passing through an assignment to v

a and b are never live on the same edges,
so two registers suffice to hold a, b and c

Interference

60a and c are live at the same time: interference

Φ-Removal: Big picture

> CSSA: SSA with Φ-congruence-property.
—directly after SSA generation
—no interference

> TSSA: SSA without Φ-congruence-property.

—after optimizations
—Interference

1. Transform TSSA into CSSA (fix interference)
2. Rename Φ-variables
3. Delete Φ

61

SSA and Register Allocation

> Idea: remove Φ as late as possible

> Variables in Φ-function never live at the same time!
—Can be stored in the same register

> Do register allocation on SSA!

62

What you should know!

✎ Why do most compilers need an intermediate
representation for programs?

✎ What are the key tradeoffs between structural and linear
IRs?

✎ What is a “basic block”?
✎ What are common strategies for representing case

statements?
✎ When a program has SSA form.
✎ What is a Φ-function.
✎ When do we place Φ-functions
✎ How to remove Φ-functions

63

Can you answer these questions?

✎Why can’t a parser directly produced high quality
executable code?

✎What criteria should drive your choice of an IR?
✎What kind of IR does JTB generate?
✎Why can we not directly generate executable code from

SSA?
✎Why do we use 3-address code and CFG for SSA?

64

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

