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See, Modern compiler implementation in 
Java (Second edition), chapters 7-8.
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Why use intermediate representations?

1. Software engineering principle
—break compiler into manageable pieces

2. Simplifies retargeting to new host
— isolates back end from front end

3. Simplifies support for multiple languages
—different languages can share IR and back end

4. Enables machine-independent optimization
—general techniques, multiple passes
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IR scheme
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• front end produces IR
• optimizer transforms IR to more efficient program
• back end transforms IR to target code



Kinds of IR

> Abstract syntax trees (AST)
> Linear operator form of tree (e.g., postfix notation)
> Directed acyclic graphs (DAG)
> Control flow graphs (CFG)
> Program dependence graphs (PDG)
> Static single assignment form (SSA)
> 3-address code
> Hybrid combinations
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Categories of IR

> Structural
—graphically oriented (trees, DAGs)
—nodes and edges tend to be large
—heavily used on source-to-source translators

> Linear
—pseudo-code for abstract machine
— large variation in level of abstraction
—simple, compact data structures
—easier to rearrange

> Hybrid
—combination of graphs and linear code (e.g. CFGs)
—attempt  to achieve best of both worlds
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Important IR properties

> Ease of generation
> Ease of manipulation
> Cost of manipulation
> Level of abstraction
> Freedom of expression (!)
> Size of typical procedure
> Original or derivative
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Subtle design 
decisions in the IR can 
have far-reaching 
effects on the speed 
and effectiveness of 
the compiler!

è Degree of exposed 
detail can be crucial



Abstract syntax tree

9

An AST is a parse tree with 
nodes for most non-terminals 
removed.

Since the program is already 
parsed, non-terminals needed 
to establish precedence and 
associativity can be collapsed! A linear operator form of this 

tree (postfix) would be:

x 2 y * -



Directed acyclic graph
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A DAG is an AST with 
unique, shared nodes 
for each value.

x := 2 * y + sin(2*x)
z := x / 2



Control flow graph

> A CFG models transfer of control in a program
—nodes are basic blocks (straight-line blocks of code)
—edges represent control flow (loops, if/else, goto …)
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if x = y then
S1

else
S2

end
S3



3-address code
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> Statements take the form: x = y op z
—single operator and at most three names

x – 2 * y
t1 = 2 * y
t2 = x – t1

> Advantages:
—compact form
—names for intermediate values



Typical 3-address codes

assignments

x = y op z
x = op y
x = y[i]
x = y

branches goto L
conditional branches if x relop y goto L

procedure calls
param x
param y
call p

address and pointer 
assignments

x = &y
*y = z
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3-address code — two variants
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Quadruples Triples

• simple record structure
• easy to reorder
• explicit names

• table index is implicit name
• only 3 fields
• harder to reorder



IR choices

> Other hybrids exist
—combinations of graphs and linear codes
—CFG with 3-address code for basic blocks

> Many variants used in practice
—no widespread agreement
—compilers may need several different IRs!

> Advice:
—choose IR with right level of detail
—keep manipulation costs in mind
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SSA: Literature
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Books:
- SSA Chapter in Appel

- Chapter 8.11 Muchnik

SSA Creation:
 Cytron et. al: Efficiently computing Static Single
             Assignment Form and the Control Dependency Graph 
             (TOPLAS, Oct 1991)

Φ-Removal:  Sreedhar et at. Translating out of Static Single 
                            Assignment Form (SAS, 1999)
               



Static Single Assignment Form

> Goal: simplify procedure-global optimizations 

> Definition:  
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Program is in SSA form if every variable 
is only assigned once



Static Single Assignment (SSA)

> Each assignment to a temporary is given a unique 
name
—All uses reached by that assignment are renamed
—Compact representation
—Useful for many kinds of compiler optimization …
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Ron Cytron, et al., “Efficiently computing static single 
assignment form and the control dependence graph,” ACM  
TOPLAS., 1991. doi:10.1145/115372.115320

http://en.wikipedia.org/wiki/Static_single_assignment_form

x := 3;
x := x + 1;
x := 7;
x := x*2;

x1 := 3;
x2 := x1 + 1;
x3 := 7;
x4 := x3*2;

è



Why Static?

> Why Static?
—We only look at the static program
—One assignment per variable in the program

> At runtime variables are assigned multiple times!

20



Example: Sequence
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a := b + c
b := c + 1
d := b + c
a := a + 1
e := a + b

a1 := b1 + c1
b2 := c1 + 1
d1 := b2 + c1
a2 := a1 + 1
e1 := a2 + b2

Original SSA

Easy to do for sequential programs: 



Example: Condition
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if B then
a := b

else
a := c

end
… a …

if B then
a1 := b

else
a2 := c

end
… a? …

Original SSA

Conditions: what to do on control-flow merge?



Solution: Φ-Function
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if B then
a := b

else
a := c

end
… a …

if B then
a1 := b

else
a2 := c

end
a3 := Φ(a1,a2)
… a3 …

Original SSA

Conditions: what to do on control-flow merge?



The Φ-Function

> Φ-functions are always at the beginning of a basic block

> Selects between values depending on control-flow

> ak+1 := Φ(a1…ak): the block has k preceding blocks

Φ-functions are evaluated simultaneously within a basic 
block.
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SSA and CFG

> SSA is normally used for control-flow graphs (CFG)

> Basic blocks are in 3-address form
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Recall: Control flow graph

> A CFG models transfer of control in a program
—nodes are basic blocks (straight-line blocks of code)
—edges represent control flow (loops, if/else, goto …)
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if x = y then
S1

else
S2

end
S3



B

a2 := 2a1 := 1

a3 := PHI(a1,a2)
… a3 ...

SSA: a Simple Example
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if B then
a1 := 1

else
a2 := 2

end
a3 := Φ(a1,a2)
… a3 …
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Recall: IR
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• front end produces IR
• optimizer transforms IR to more efficient program
• back end transform IR to target code



SSA as IR
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Transforming to SSA

> Problem: Performance / Memory
—Minimize number of inserted Φ-functions
—Do not spend too much time

> Many relatively complex algorithms
—We do not go too much into detail
—See literature!
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Minimal SSA

> Two steps: 
—Place Φ-functions
—Rename Variables

> Where to place Φ-functions?

> We want minimal amount of needed Φ
—Save memory
—Algorithms will work faster
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Path Convergence Criterion

> There should be a Φ for a at node Z if:
1. There is a block X containing a definition of a
2. There is a block Y (Y ≠ X) containing a definition of a
3. There is a nonempty path Pxz of edges from X to Z
4. There is a nonempty path Pyz of edges from Y to Z
5. Path Pxz and Pyz do not have any nodes in common other than Z
6. The node Z does not appear within both Pxz and Pyz prior to the end 

(although it may appear in one or the other)

> I.e., Z is the first place where two definitions of a collide
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X Y

Z



Iterated Path-Convergence

> Inserted Φ is itself a definition!
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while there are nodes X,Y,Z satisfying conditions 1-5
and Z does not contain a Φ-function for a

 do
   insert Φ at node Z.

A bit slow, other algorithms
used in practice



B

a2 := 2a1 := b

a3 := PHI(a1,a2)
… a3 ...

Example (Simple)
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1. block X contains a definition of a
2. block Y (Y ≠ X) contains a 

definition of a
3. path Pxz of edges from X to Z.
4. path Pyz of edges from Y to Z.
5. path Pxz and Pyz do not have any 

nodes in common other than Z
6. node Z does not appear within 

both Pxz and Pyz prior to the end
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Dominance Property of SSA

> Dominance: node D dominates node N if every path from the 
start node to N goes through D. 

(“strictly dominates”: D ≠ N)
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Dominance Property of SSA:

1. If x is used in a Φ-function in block N, then the node 
defining x dominates every predecessor of N.

2. If x is used in a non-Φ statement in N, then the node 
defining x dominates N

“Definition dominates use”



> Dominance can be used to efficiently build SSA

> Φ-Functions are placed in all basic blocks of the 
Dominance Frontier

—DF(D) = the set of all nodes N such that D dominates an immediate 
predecessor of N but does not strictly dominate N.

38

Dominance and SSA Creation
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Dominance frontier



Node 5 dominates all 
nodes in the gray area
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Dominance frontier
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DF(5)= {4, 5, 12, 13}

Follow edges leaving 
the region dominated 
by node 5 to the 
region not strictly 
dominated by 5.

Dominance frontier



Simple Example
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DF(B1)=
DF(B2)=
DF(B3)=
DF(B4)=



Simple Example
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DF(B1)={?}
DF(B2)=
DF(B3)=
DF(B4)=



Simple Example
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DF(B1)={}
DF(B2)=
DF(B3)=
DF(B4)=



Simple Example
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DF(B1)={}
DF(B2)={?}
DF(B3)=
DF(B4)=



Simple Example
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DF(B1)={}
DF(B2)={B4}
DF(B3)=
DF(B4)=



Simple Example
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DF(B1)={}
DF(B2)={B4}
DF(B3)={B4}
DF(B4)=



Simple Example

48

DF(B1)={}
DF(B2)={B4}
DF(B3)={B4}
DF(B4)={}



Simple Example
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DF(B1)={}
DF(B2)={B4}
DF(B3)={B4}
DF(B4)={}

Φ-Function needed in B4 (for a)
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Properties of SSA

> Simplifies many optimizations
—Every variable has only one definition
—Every use knows its definition, every definition knows its uses
—Unrelated variables get different names

> Examples:
—Constant propagation
—Value numbering
—Invariant code motion and removal
—Strength reduction
—Partial redundancy elimination
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Next lecture!



SSA in the Real World

> Invented end of the 80s, a lot of research in the 90s

> Used in many modern compilers
—ETH Oberon 2
—LLVM
—GNU GCC 4
—IBM Jikes Java VM
—Java Hotspot VM
—Mono
—Many more…

52
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Vugranam C. Sreedhar, et al, “Translating Out of Static Single 
Assignment Form”, LNCS 1694, 1999, doi:10.1007/3-540-48294-6_13



 Transforming out-of SSA

> Processor cannot execute Φ-Function

> How do we remove it?

54



Simple Copy Placement
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Naive copy placement may produce 
incorrect results after optimization …



Φ-Congruence

> Insert Copies
> Rename Variables
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Idea: transform program so that all variables in 
Φ are the same:

a1 = Φ(a1,a1) a1 = a1 



Φ-Congruence: Definitions
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Φ-connected(x): 

a3 = Φ(a1, a2)
          a5 = Φ(a3, a4)

a1, a2, a3 are Φ-connected
a3, a4, a5 are Φ-connected

Φ-congruence-class: 
Transitive closure of Φ-connected(x).

a1-a5 are Φ-congruent



Φ-congruence property:

All variables of the same congruence class can be
           replaced by one representative variable without 
           changing the semantics.

SSA without optimizations has Φ-congruence 
property

 Variables of the congruence class never live 
            at the same time (by construction)

Φ-Congruence Property
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Liveness
Code Generation
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A variable v is live on edge e if there is a path through e 
to a use of v not passing through an assignment to v

a and b are never live on the same edges, 
so two registers suffice to hold a, b and c 



Interference

60a and c are live at the same time: interference



Φ-Removal: Big picture

> CSSA: SSA with Φ-congruence-property.
—directly after SSA generation
—no interference

          
> TSSA: SSA without Φ-congruence-property.

—after optimizations
—Interference

1. Transform TSSA into CSSA (fix interference)
2. Rename Φ-variables
3. Delete Φ

61



SSA and Register Allocation

> Idea: remove Φ as late as possible

> Variables in Φ-function never live at the same time!
—Can be stored in the same register

> Do register allocation on SSA!
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What you should know!

✎ Why do most compilers need an intermediate 
representation for programs?

✎ What are the key tradeoffs between structural and linear 
IRs?

✎ What is a “basic block”?
✎ What are common strategies for representing case 

statements?
✎ When a program has SSA form.
✎ What is a Φ-function.
✎ When do we place Φ-functions
✎ How to remove Φ-functions
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Can you answer these questions?

✎Why can’t a parser directly produced high quality 
executable code?

✎What criteria should drive your choice of an IR?
✎What kind of IR does JTB generate?
✎Why can we not directly generate executable code from 

SSA?
✎Why do we use 3-address code and CFG for SSA?

64
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