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Roadmap

> Introduction
> Optimizations in the Back-end
> The Optimizer
> SSA Optimizations
> Advanced Optimizations
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Literature

> Muchnick: Advanced 
Compiler Design and 
Implementation
—>600 pages on optimizations

> Appel: Modern Compiler 
Implementation in Java
—The basics
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Optimization: The Idea

> Transform the program to improve efficiency

> Performance: faster execution
> Size: smaller executable, smaller memory footprint

Tradeoffs:              1) Performance vs. Size

                              2) Compilation speed and memory
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No Magic Bullet!

> Rice (1953): For every compiler there is a modified 
compiler that generates shorter code.

> Proof: Assume there is a compiler U that generates the 
shortest optimized program Opt(P) for all P. 
—Assume P to be a program that does not stop and has no output
—Opt(P) will be L1 goto L1
—Halting problem. Thus: U does not exist.

> There will be always a better optimizer! 
—Job guarantee for compiler architects :-)
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Optimization at many levels

> Optimizations both in the optimizer and back-end

7

Back-end optimizations may focus on how the machine code is optimally generated.



Roadmap

> Introduction
> Optimizations in the Back-end
> The Optimizer
> SSA Optimizations
> Advanced Optimizations

8



Optimizations in the Backend

> Register Allocation
> Instruction Selection
> Peep-hole Optimization
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Register Allocation

> Processor has only finite amount of registers
—Can be very small (x86)

> Temporary variables
—non-overlapping temporaries can share one register

> Passing arguments via registers

> Optimizing register allocation very important for good 
performance
—Especially on x86

10

Problems with x86 architecture: few registers, overlapping register classes, irregular access to registers (some encoded in instructions), fixed registers for 
multiplication/division, ...
Source: http://news.ycombinator.com/item?id=276418



Instruction Selection

> For every expression, there are many ways to realize 
them for a processor

> Example: Multiplication*2 can be done by bit-shift

Instruction selection is a form of optimization
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Peephole Optimization

> Simple local optimization
> Look at code “through a hole”

—replace sequences by known shorter ones
—table pre-computed

store R,a; 
load a,R

store R,a; 

imul 2,R; ashl 1,R;

Important when using simple instruction selection!
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ashl = shift left
peephole typically considers 2-3 lines
good for simple compilers
for longer instructions sequences use graph matching



Optimization at many levels

Most optimization is done in a special phase
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Roadmap

> Introduction
> Optimizations in the Back-end
> The Optimizer
> SSA Optimizations
> Advanced Optimizations
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Examples for Optimizations

> Constant Folding / Propagation
> Copy Propagation
> Algebraic Simplifications
> Strength Reduction
> Dead Code Elimination

—Structure Simplifications
> Loop Optimizations
> Partial Redundancy Elimination
> Code Inlining
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Constant Folding

> Evaluate constant expressions at compile time
> Only possible when side-effect freeness guaranteed

c:= 1 + 3 c:= 4

true not false

Caveat: Floats — implementation could be different 
between machines!  
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A form of partial evaluation.
Some of this can be done early while generating IR from AST.



Constant Propagation

> Variables that have constant value, e.g. c := 3
—Later uses of c can be replaced by the constant
—If no change of c between!

b := 3
c := 1 + b
d := b + c

b := 3
c := 1 + 3
d := 3 + c

Analysis needed, as b can be assigned more than once!
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Later we will see SSA is ideal to analyze this



Copy Propagation

> for a statement x := y
> replace later uses of x with y, if x and y have not been 

changed.

x := y
c := 1 + x
d := x + c

x := y
c := 1 + y
d := y + c

Analysis needed, as y and x can be assigned more than 
once!
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Again we will use SSA



Algebraic Simplifications

> Use algebraic properties to simplify expressions

-(-i) i

b or: true true

Important to simplify code for later optimizations
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Strength Reduction

> Replace expensive operations with simpler ones
> Example: Multiplications replaced by additions

y := x * 2 y := x + x

Peephole optimizations are often strength reductions
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Actually here a bit shift would be even better



Dead Code

> Remove unnecessary code
—e.g. variables assigned but never read

b := 3
c := 1 + 3
d := 3 + c

c := 1 + 3
d := 3 + c

> Remove code never reached

if (false) 
{a := 5}

if (false) 
{}

21



Simplify Structure

> Similar to dead code: Simplify CFG Structure
— Eg delete empty basic blocks, fuse basic blocks (next slides)

> Optimizations will degenerate CFG
— Needs to be cleaned to simplify further optimization!
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E.g., simplify jumps to jumps. Also next slide.



Delete Empty Basic Blocks
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Fuse Basic Blocks
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Here we have “conditional” jumps between basic blocks, where the conditions are always true.
So we can fuse together these basic blocks and eliminate the jumps.



Common Subexpression Elimination (CSE)
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> Common Subexpression:
—There is another occurrence of the expression whose evaluation 

always precedes this one
—operands remain unchanged

> Local (inside one basic block): When building IR

> Global (complete flow-graph)



Example CSE

b := a + 2
c := 4 * b
    b < c?

b := 1

d := a + 2

t1 := a + 2
b := t1
c := 4 * b
    b < c?

b := 1

d := t1
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Need to verify that a has not changed in between!



Loop Optimizations

> Optimizing code in loops is important
—often executed, large payoff

> Various techniques
— fission/fusion: split/combine loops to improve locality or reduce 

overhead
— scheduling: run parts in multiple processors
— unrolling: duplicate body several times to decrease test cost
— loop-invariant code motion: move invariant code out of loop
— ...
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http://en.wikipedia.org/wiki/Loop_optimization

http://en.wikipedia.org/wiki/Loop_optimization


Loop Invariant Code Motion

> Move expressions that are constant over all iterations out 
of the loop
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Does not generally work for expressions with side effects.



Induction Variable Optimizations

> Values of variables form an arithmetic progression

integer a(100)
do i = 1, 100
 a(i) = 202 - 2 * i
endo

integer a(100)
t1 := 202
do i = 1, 100
  t1 := t1 - 2
  a(i) = t1
endo

value assigned to a 
decreases by 2 uses Strength Reduction
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FORTRAN example
Finding such optimizations is rather complicated (see chapter in Muchnick)



Partial Redundancy Elimination (PRE)

> Combines multiple optimizations:
—global common-subexpression elimination
— loop-invariant code motion

> Partial Redundancy: computation done more than once 
on some path in the flow-graph

> PRE: insert and delete code to minimize redundancy.
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Partial Redundancy Elimination
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http://en.wikipedia.org/wiki/Partial_redundancy_elimination

 if (some_condition) {
   // some code
   y = x + 4;
 }
 else {
   // other code
 }
 z = x + 4;

if (some_condition) {
   // some code
   t = x + 4;
   y = t;
 }
 else {
   // other code
   t = x + 4;
 }
 z = t;

http://en.wikipedia.org/wiki/Loop_optimization


Code Inlining

> All optimizations up to now were local to one procedure

> Problem: procedures or functions are very short 
—Especially in good OO code!

> Solution: Copy code of small procedures into the caller
—OO: Polymorphic calls. Which method is called?
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en.wikipedia.org/wiki/Inline_caching

Good OO code has small methods – great to inline if possible (eg only one implementor).
With polymorphic inline caching, a limited number of possible methods are cached. If that limit is exceeded, reverts to “megamorphic” (ie non-inlined) mode.

http://en.wikipedia.org/wiki/Loop_optimization


Example: Inlining

a := power2(b) power2(x) {
    return x*x
}

a := b * b
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NB: inlining can bloat the generated code. C++ added “inline” keyword as a hint, but modern compilers ignore this hint.
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Recall: SSA

> SSA: Static Single Assignment Form

> Definition:  Every variable is only assigned once
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Properties

> Definitions of variables (assignments) have a list of all 
uses

> Variable uses (reads) point to the one definition

> CFG of Basic Blocks
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Examples: Optimization on SSA

> We take three simple ones:
—Constant Propagation
—Copy Propagation
—Simple Dead Code Elimination
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Recall: Constant Propagation

> Variables that have constant value, e.g. c := 3
—Later uses of c can be replaced by the constant
—If no change of c between!

b := 3
c := 1 + b
d := b + c

b := 3
c := 1 + 3
d := 3 + c

Analysis needed, as b can be assigned more than once!
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Constant Propagation and SSA

> Variables are assigned once
> We know that we can replace all uses by the constant!

b1 := 3
c1 := 1 + b1
d1 := b1 + c1

b1 := 3
c1 := 1 + 3
d1 := 3 + c1
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Note that this example shows that your must optimize iteratively, since now c1 will also be a constant.
We also now get dead code (b1 := 3)



Recall: Copy Propagation

> for a statement x := y
> replace later uses of x with y, if x and y have not been 

changed.

x := y
c := 1 + x
d := x + c

x := y
c := 1 + y
d := y + c

Analysis needed, as y and x can be assigned more than 
once!
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Copy Propagation and SSA

> for a statement x1 := y1
> replace later uses of x1 with y1

x1 := y1
c1 := 1 + x1
d1 := x1 + c1

x1 := y1
c1 := 1 + y1
d1 := y1 + c1
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Dead Code Elimination and SSA

> Variable is live if the list of uses is not empty.

> Dead definitions can be deleted
—(If there is no side-effect)
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b1 := 3
c1 := 1 + 3
d1 := 3 + c
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Profile-guided optimization

> Approach:
—Generate code,
—profile it in a typical scenario,
—then use that information to optimize it

> Problem:
—usage scenarios can change in deployment, there is no way to 

react to that as profile is generated at compile time.
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Dynamic optimization

> Re-optimize at run time in the VM
—uses profile information gathered at run time
—for both hardware and language VM
—good way to exploit unused CPU cycles or unused CPUs (multi-

core)

45



Multicore

> Optimizing for using multiple processors
—Auto parallelization
—Very active area of research (again)
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Iterative Process

> There is no general “right” order of optimizations
> One optimization generates new opportunities for a 

preceding one.
> Optimization is an iterative process

Compile Time   vs.   Code Quality
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© Marcus Denker

Optimization

What you should know!

✎ Why do we optimize programs?
✎ Is there an optimal optimizer?
✎ Where in a compiler does optimization happen?
✎ Can you explain constant propagation?
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© Marcus Denker

Optimization

Can you answer these questions?

✎What makes SSA suitable for optimization?
✎When is a definition of a variable live in SSA Form?
✎Why don’t we just optimize on the AST?
✎Why do we need to optimize IR on different levels?
✎ In which order do we run the different optimizations?
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