
Oscar Nierstrasz

8. Code Generation

Thanks to Jens Palsberg and Tony Hosking for their kind permission to
reuse and adapt the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap

2

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

See, Modern compiler implementation in
Java (Second edition), chapters 6 & 9.

Roadmap

3

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Typical run-time storage organization

4

• Allows both stack and heap
maximal freedom.

• Code and static data may be
separate or intermingled.

Heap grows “up”, stack grows “down”.

NB: Code memory pages may be protected.

Procedures as abstractions

5

function foo()
{
 int a, b;
 ...
 bar(a);
 ...
}

function bar(int a)
{
 int x;
 ...
 bar(x);
 ...
}

bar() must preserve foo()’s state while executing.
what if bar() is recursive?

solution: create unique memory location for each procedure activation! solution: stack.

Activation records

6

incoming
arguments

outgoing
arguments1 2

3

4
5

6 7

Each procedure activation has an activation record or stack frame
stack pointer points to end of stack
frame pointer points to a frame on the stack

Caller Save - vs. Callee Save registers

Registers

7

> Typical machine has many of them
> Caller-save vs. Callee-save

—Convention depending on architecture
—Used for nifty optimizations

– When value is not needed after call the caller puts the value in a caller-
save register

– When value is needed in multiple called functions the callers saves it only
once

> Parameter passing put first k arguments in registers
(k=4..6)
—avoids needless memory traffic because of

– leaf procedures (many)
– interprocedural register allocation

—same with the return address

[Appel. p120]

Procedures as control abstractions

8

• On entry, establish p’s
environment

• During a call, preserve
p’s environment

• On exit, tear down p’s
environment

Prologue, and epilogue: http://en.wikipedia.org/wiki/Function_prologue

Procedure linkage contract

Caller Callee

Call

pre-call
1. allocate basic frame
2. evaluate & store parameters
3. store return address
4. jump to child

prologue
1. save registers, state
2. store FP (dynamic link)
3. set new FP
4. store static link to outer scope
5. extend basic frame for local

data
6. initialize locals
7. fall through to code

Return

post-call
1. copy return value
2. de-allocate basic frame
3. restore parameters (if copy

out)

epilogue
1. store return value
2. restore state
3. cut back to basic frame
4. restore parent’s FP
5. jump to return address 9

At compile time, generate code to do this
At run time, code manipulates frame and data areas
Basic frame does not have space for local data
The static link is for nested functions – the static link points to the frame of the enclosing function (if any) [p 124]

Variable scoping

10

Who sees local variables? Where can they be allocated?

Downward exposure
•called procedures see

caller variables
•dynamic scoping
•lexical scoping

Upward exposure
•procedures can return
references to variables
•functions that return
functions

With downward exposure can the compiler allocate local
variables in frames on the run-time stack.

Higher-order functions

11

fun f(x)
 let fun g(y) = x+y
 return g
end

val a = f(1)
val b = f(-1)

val x = a(5)
val y = b(6)

Nested functions
+

Functions returned as
values

=
Higher-order

functions

Pascal has nested functions but no functions returned as values.
C has functions as values but not nested.
ML, Scheme, Smalltalk, Java - have higher-order functions.

Access to non-local data

> How does code find non-local data at run-time?
> globals are visible everywhere
> lexical nesting

> view variables as (level, offset) pairs
—reflects scoping
—helps look up name to find most recent declaration

— If level = current level then variable is local,
— else must generate code to look up stack

—Must maintain
—access links to previous stack frame
—table of access links (display)

12http://en.wikipedia.org/wiki/Call_stack

Again, this is needed for nested scopes

http://en.wikipedia.org/wiki/Call_stack

The Procedure Abstraction

> The procedure abstraction supports separate compilation
—build large programs
—keep compile times reasonable
— independent procedures

> The linkage convention (calling convention):
—a social contract — procedures inherit a valid run-time environment

and restore one for their parents
—platform dependent — code generated at compile time

13

Roadmap

14

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Calls: Saving and restoring registers

15

callee saves caller saves

caller’s
registers

Call includes bitmap of caller’s
registers to be saved/restored.
Best: saves fewer registers, compact
call sequences

Caller saves and restores own
registers. Unstructured returns (e.g.,
exceptions) cause some problems
to locate and execute restore code.

callee’s
registers

Backpatch code to save registers
used in callee on entry, restore on
exit. Non-local gotos/exceptions
must unwind dynamic chain to
restore callee-saved registers.

Bitmap in callee’s stack frame is
used by caller to save/restore.
Unwind dynamic chain as at left.

all
registers

Easy. Non-local gotos/exceptions
must restore all registers from
“outermost callee”

Easy. (Use utility routine to keep
calls compact.) Non-local gotos/
exceptions need only restore
original registers.

top-left corner is the usual approach

Call/return (callee saves)

1. caller pushes space for return value
2. caller pushes SP (stack pointer)
3. caller pushes space for: return address, static

chain, saved registers
4. caller evaluates and pushes actuals onto stack
5. caller sets return address, callee’s static chain,

performs call
6. callee saves registers in register-save area
7. callee copies by-value arrays/records using

addresses passed as actuals
8. callee allocates dynamic arrays as needed
9. on return, callee restores saved registers
10.callee jumps to return address

16

MIPS registers

Name Number Use Callee must preserve?
$zero $0 constant 0 N/A
$at $1 assembler temporary no

$v0–$v1 $2–$3 Values for function returns and
expression evaluation no

$a0–$a3 $4–$7 function arguments no
$t0–$t7 $8–$15 temporaries no
$s0–$s7 $16–$23 saved temporaries yes
$t8–$t9 $24–$25 temporaries no
$k0–$k1 $26–$27 reserved for OS kernel no

$gp $28 global pointer yes
$sp $29 stack pointer yes
$fp $30 frame pointer yes
$ra $31 return address N/A

17
http://en.wikipedia.org/wiki/MIPS_architecture

MIPS = Microprocessor without Interlocked Pipeline Stages

MIPS procedure call convention

> Philosophy:
—Use full, general calling sequence only when necessary
—Omit portions of it where possible  

(e.g., avoid using FP register whenever possible)

> Classify routines:
—non-leaf routines call other routines
— leaf routines don’t

– identify those that require stack storage for locals
– and those that don’t

18

MIPS procedure call convention

> Pre-call:
1. Pass arguments: use registers a0 . . . a3; remaining

arguments are pushed on the stack along with save space
for a0 . . . a3

2. Save caller-saved registers if necessary
3. Execute a jal instruction:

– jumps to target address (callee’s first instruction), saves return
address in register ra

19

jal = jump and link

MIPS procedure call convention

> Prologue:
1. Leaf procedures that use the stack and non-leaf procedures:

a) Allocate all stack space needed by routine:
– local variables
– saved registers
– arguments to routines called by this routine

subu $sp, framesize
b) Save registers (ra etc.), e.g.:

sw $31, framesize+frameoffset($sp)
sw $17, framesize+frameoffset-4($sp)
sw $16, framesize+frameoffset-8($sp)
where framesize and frameoffset (usually negative) are

compile- time constants
2. Emit code for routine

20

subu = subtract unsigned
sw = store word

MIPS procedure call convention

> Epilogue:
1. Copy return values into result registers (if not already there)
2. Restore saved registers

lw $31, framesize+frameoffset-N($sp)

3. Get return address
lw $31, framesize+frameoffset($sp)

4. Clean up stack
addu $sp,framesize

5. Return
j $31

21

lw = load word
addu = add unsigned
j = jump

Roadmap

22

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Instruction selection

> Simple approach:
—Macro-expand each IR tuple/subtree to machine instructions
—Expanding independently leads to poor code quality
—Mapping may be many-to-one
—“Maximal munch” works well with RISC

> Interpretive approach:
—Model target machine state as IR is expanded

23

wikipedia: the "maximal munch" principle is the rule that as much of the input as possible should be processed when creating some construct.
In this case, try to macro expand the largest IR munch that you can match

Register and temporary allocation

> Limited # hard registers
—assume pseudo-register for each temporary
—register allocator chooses temporaries to spill
—allocator generates mapping
—allocator inserts code to spill/restore pseudo-registers to/

from storage as needed

24

NB: analogy with page faults

IR tree patterns

> A tree pattern characterizes a fragment of the IR
corresponding to a machine instruction
—Instruction selection means tiling the IR tree with a minimal

set of tree patterns

25

MIPS tree patterns (example)

26…

At right are tree patterns to match; at left is the code to be emitted.
rest of example elided

Optimal tiling

> “Maximal munch”
—Start at root of tree
—Tile root with largest tile that fits
—Repeat for each subtree

> NB: (locally) optimal ≠ (global) optimum
—optimum: least cost instructions sequence (shortest, fewest cycles)
—optimal: no two adjacent tiles combine to a lower cost tile
—CISC instructions have complex tiles ⇒ optimal ≠ optimum
—RISC instructions have small tiles ⇒ optimal ≈ optimum

27

Optimum tiling

28

> Dynamic programming
—Assign cost to each tree node — sum of instruction costs of best

tiling for that node (including best tilings for children)

http://en.wikipedia.org/wiki/Dynamic_programming

Roadmap

29

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Register allocation

30

> Want to have value in register when used
— limited resources
—changes instruction choices
—can move loads and stores
—optimal allocation is difficult (NP-complete)

Liveness analysis

> Problem:
—IR has unbounded # temporaries
—Machines has bounded # registers

> Approach:
—Temporaries with disjoint live ranges can map to same register
—If not enough registers, then spill some temporaries (i.e., keep in

memory)
> The compiler must perform liveness analysis for each

temporary
—It is live if it holds a value that may still be needed

31

Control flow analysis

32

> Liveness information is a form of data flow
analysis over the control flow graph (CFG):
—Nodes may be individual program statements or basic

blocks
—Edges represent potential flow of control

Liveness (review)

33

A variable v is live on edge e if there is a path from e
to a use of v not passing through a definition of v

a and b are never live at the same time, so
two registers suffice to hold a, b and c

a and b are not live at the same time, so two registers suffice: one for a and b and the other for c
See chapter 10 of Appel (2

nd
 edition) for this example and details of algorithms

NB: liveness analysis might also reveal errors — e.g., if c is a local, then it has not been initialized

Roadmap

34

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Straightline Compiler Files

35

Straightline Compiler Runtime

36

The visitor
package compiler;
...
public class CompilerVisitor extends DepthFirstVisitor {
Generator gen;

public CompilerVisitor(String className) {
gen = new Generator(className);

}

public void visit(Assignment n) {
n.f0.accept(this);
n.f1.accept(this);
n.f2.accept(this);
String id = n.f0.f0.tokenImage;
gen.assignValue(id);

}

public void visit(PrintStm n) {
n.f0.accept(this);
gen.prepareToPrint();
n.f1.accept(this);
n.f2.accept(this);
n.f3.accept(this);
gen.stopPrinting();

}
...

}

This time the visitor is
responsible for
generating bytecode.

37

Bytecode generation with BCEL
package compiler;
...
import org.apache.bcel.generic.*;
import org.apache.bcel.Constants;

public class Generator {
private Hashtable<String,Integer> symbolTable;
private InstructionFactory factory;
private ConstantPoolGen cp;
private ClassGen cg;
private InstructionList il;
private MethodGen method;
private final String className;

public Generator (String className) {
this.className = className;
symbolTable = new Hashtable<String,Integer>();
cg = new ClassGen(className, "java.lang.Object", className + ".java",

Constants.ACC_PUBLIC | Constants.ACC_SUPER, new String[] {});

cp = cg.getConstantPool();
factory = new InstructionFactory(cg, cp);

il = new InstructionList();
method = new MethodGen(Constants.ACC_PUBLIC | Constants.ACC_STATIC,

 Type.VOID, new Type[] { new ArrayType(Type.STRING, 1) },
 new String[] { "arg0" }, "main", className, il, cp);
}

...

We introduce a separate
class to introduce a
higher-level interface for
generating bytecode

38

Creates a
class with a
static main!

Invoking print methods
private void genPrintTopNum() {
il.append(factory.createInvoke("java.io.PrintStream", "print",

Type.VOID, new Type[] { Type.INT }, Constants.INVOKEVIRTUAL));
}
private void genPrintString(String s) {
pushSystemOut();
il.append(new PUSH(cp, s));
il.append(factory.createInvoke("java.io.PrintStream", "print",

Type.VOID, new Type[] { Type.STRING }, Constants.INVOKEVIRTUAL));
}
private void pushSystemOut() {
il.append(factory.createFieldAccess(

"java.lang.System", "out",
new ObjectType("java.io.PrintStream"), Constants.GETSTATIC));

}
public void prepareToPrint() {
pushSystemOut();

}
public void printValue() {
genPrintTopNum();
genPrintString(" ");

}
public void stopPrinting() {
genPrintTopNum();
genPrintString("\n");

}

To print, we must push
System.out on the stack,
push the arguments, then
invoke print.

39

Binary operators

public void add() {
il.append(new IADD());

}

public void subtract() {
il.append(new ISUB());

}

public void multiply() {
il.append(new IMUL());

}

public void divide() {
il.append(new IDIV());

}

public void pushInt(int val) {
il.append(new PUSH(cp, val));

}

Operators simply consume
the top stack items and push
the result back on the stack.

40

Variables

public void assignValue(String id) {
il.append(factory.createStore(Type.INT, getLocation(id)));

}

public void pushId(String id) {
il.append(factory.createLoad(Type.INT, getLocation(id)));

}

private int getLocation(String id) {
if(!symbolTable.containsKey(id)) {
symbolTable.put(id, 1+symbolTable.size());

}
return symbolTable.get(id);

}
Variables must be
translated to locations.
BCEL keeps track of the
needed space.

41

Code generation

public void generate(File folder) throws IOException {
il.append(InstructionFactory.createReturn(Type.VOID));
method.setMaxStack();
method.setMaxLocals();
cg.addMethod(method.getMethod());
il.dispose();
OutputStream out =
new FileOutputStream(new File(folder, className + ".class"));

cg.getJavaClass().dump(out);
}

Finally we generate the
return statement, add the
method, and dump the
bytecode.

42

Generated class files
public class Eg3 {
 public static void main(java.lang.String[] arg0);
 0 getstatic java.lang.System.out : java.io.PrintStream [12]
 3 iconst_1
 4 istore_1
 5 iload_1
 6 iload_1
 7 iload_1
 8 imul
 9 iadd
 10 iload_1
 11 iadd
 12 istore_1
 13 iload_1
 14 invokevirtual java.io.PrintStream.print(int) : void [18]
 17 getstatic java.lang.System.out : java.io.PrintStream [12]
 20 ldc <String " "> [20]
 22 invokevirtual java.io.PrintStream.print(java.lang.String) : void [23]
 25 getstatic java.lang.System.out : java.io.PrintStream [12]
 28 iload_1
 29 iconst_1
 30 iadd
 31 invokevirtual java.io.PrintStream.print(int) : void [18]
 34 getstatic java.lang.System.out : java.io.PrintStream [12]
 37 ldc <String "\n"> [25]
 39 invokevirtual java.io.PrintStream.print(java.lang.String) : void [23]
 42 return
}

Generated from:

43

"print((a := 1; a := a+a*a+a, a),a+1)"

Decompiling the generated class files

44

http://jd.benow.ca

45

What you should know!

✎ How is the run-time stack typically organized?
✎ What is the “procedure linkage contract”?
✎ What is the difference between the FP and the SP?
✎ What are storage classes for variables?
✎ What is “maximal munch”?
✎ Why is liveness analysis useful to allocate registers?
✎ How does BCEL simplify code generation?

46

Can you answer these questions?

✎Why does the run-time stack grow down and not up?
✎ In Java, which variables are stored on the stack?
✎Does Java support downward or upward exposure of

local variables?
✎Why is optimal tiling not necessarily the optimum?
✎What semantic analysis have we forgotten to perform in

our straightline to bytecode compiler?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

