
Oscar Nierstrasz

11. Program Transformation

Roadmap

> Program Transformation
> Refactoring
> Aspect-Oriented Programming

2

Links

> Program Transformation:
— http://swerl.tudelft.nl/bin/view/Pt
— http://www.program-transformation.org/

> Stratego:
— http://strategoxt.org/

> TXL:
— http://www.txl.ca/

> Refactoring:
— http://www.ibm.com/developerworks/library/os-ecref/
— http://recoder.sourceforge.net/wiki/
— http://www.refactory.com/RefactoringBrowser/

> AOP:
— http://www.eclipse.org/aspectj/

3

Roadmap

> Program Transformation
—Introduction
—Stratego/XT
—TXL

> Refactoring
> Aspect-Oriented Programming

4

Thanks to Eelco Visser and Martin Bravenboer for their kind permission to
reuse and adapt selected material from their Program Transformation course.
http://swerl.tudelft.nl/bin/view/Pt

What is “program transformation”?

> Program Transformation is the process of transforming
one program to another.

> Near synonyms:
—Metaprogramming
—Generative programming
—Program synthesis
—Program refinement
—Program calculation

5

Applications of program transformation

> Translation
– Migration
– Synthesis

– Refinement
– Compilation

– Reverse Engineering
– Decompilation
– Architecture Extraction
– Visualization

– Program Analysis
– Control flow
– Data flow

6

Refinement — transform high-level spec down to an implementation that fulfils requirements
Renovation — reengineering

Translation — compilation

http://www.cs.uu.nl/docs/vakken/pt/slides/PT05-ProgramTransformation.pdf
7

Translation — migration from procedural to OO

http://www.cs.uu.nl/docs/vakken/pt/slides/PT05-ProgramTransformation.pdf
8

Rephrasing — desugaring regular expressions

http://www.cs.uu.nl/docs/vakken/pt/slides/PT05-ProgramTransformation.pdf
9

Rephrasing — partial evaluation

http://www.cs.uu.nl/docs/vakken/pt/slides/PT05-ProgramTransformation.pdf
10

Transformation pipeline

http://losser.st-lab.cs.uu.nl/~mbravenb/PT05-Infrastructure.pdf 11

This general scheme applies to Stratego, TXL and various other systems. Transformation systems and languages may support or automate different parts of
this pipeline.
If the source language is fixed, then a fixed parser and pretty-printer may be used.
If the source and target languages are arbitrary, then there should be support to specify grammars and automatically generate parsers and pretty-printers.

Roadmap

> Program Transformation
—Introduction
—Stratego/XT
—TXL

> Refactoring
> Aspect-Oriented Programming

12

Stratego/XT

> Stratego
—A language for specifying program transformations

– term rewriting rules
– programmable rewriting strategies
– pattern-matching against syntax of object language
– context-sensitive transformations

> XT
—A collection of transformation tools

– parser and pretty printer generators
– grammar engineering tools

http://strategoxt.org/ 13

Stratego/XT

http://losser.st-lab.cs.uu.nl/~mbravenb/PT05-Infrastructure.pdf 14

Parser and basic pretty-printer 100% generated.
Language specific support for transformations generated.

Parsing
module Exp
exports
 context-free start-symbols Exp
 sorts Id IntConst Exp

 lexical syntax
 [\ \t\n] -> LAYOUT
 [a-zA-Z]+ -> Id
 [0-9]+ -> IntConst

 context-free syntax
 Id -> Exp {cons("Var")}
 IntConst -> Exp {cons("Int")}

 "(" Exp ")" -> Exp {bracket}

 Exp "*" Exp -> Exp {left, cons("Mul")}
 Exp "/" Exp -> Exp {left, cons("Div")}
 Exp "%" Exp -> Exp {left, cons("Mod")}

 Exp "+" Exp -> Exp {left, cons("Plus")}
 Exp "-" Exp -> Exp {left, cons("Minus")}

 context-free priorities
 {left:
 Exp "*" Exp -> Exp
 Exp "/" Exp -> Exp
 Exp "%" Exp -> Exp
 }
 > {left:
 Exp "+" Exp -> Exp
 Exp "-" Exp -> Exp
 }

Stratego parses any
context-free language
using Scannerless
Generalized LR Parsing

Rules translate
terms to terms

File: Exp.sdf

15

See the Makefile for the steps needed to run this.
GLR parsing essentially does a parallel, breadth-first LR parse to handle ambiguity.
http://en.wikipedia.org/wiki/GLR_parser

Testing

testsuite Exp
topsort Exp

test eg1 parse
"1 + 2 * (3 + 4) * 3 - 1"

->
Minus(
 Plus(
 Int("1")
 , Mul(
 Mul(Int("2"), Plus(Int("3"), Int("4")))
 , Int("3")
)
)
, Int("1")
)

File: Exp.testsuite

16

Running tests

pack-sdf -i Exp.sdf -o Exp.def
 including ./Exp.sdf

sdf2table -i Exp.def -o Exp.tbl -m Exp
SdfChecker:error: Main module not defined
--- Main

parse-unit -i Exp.testsuite -p Exp.tbl

executing testsuite Exp with 1 tests

* OK : test 1 (eg1 parse)

results testsuite Exp
successes : 1
failures : 0

Pack the definitions

Generate the parse table

Run the tests

17

Interpretation example

module ExpEval

imports libstratego-lib
imports Exp

rules
convert : Int(x) -> <string-to-int>(x)
eval : Plus(m,n) -> <add>(m,n)
eval : Minus(m,n) -> <subt>(m,n)
eval : Mul(m,n) -> <mul>(m,n)
eval : Div(m,n) -> <div>(m,n)
eval : Mod(m,n) -> <mod>(m,n)

strategies
main = io-wrap(innermost(convert <+ eval))

File: ExpEval.str

Stratego separates the specification of rules (transformations)
from strategies (traversals). In principle, both are reusable.

1 + 2 * (3 + 4) * 3 - 1

File: ultimate-question.txt

18

Strategies

A strategy determines how a set of rewrite rules will be
used to traverse and transform a term.

• innermost
• top down
• bottom up
• repeat
• …

19

Running the transformation
sdf2rtg -i Exp.def -o Exp.rtg -m Exp
SdfChecker:error: Main module not defined
--- Main

rtg2sig -i Exp.rtg -o Exp.str

strc -i ExpEval.str -la stratego-lib
[strc | info] Compiling 'ExpEval.str'
[strc | info] Front-end succeeded : [user/system] = [0.56s/0.05s]
[strc | info] Optimization succeeded -O 2 : [user/system] = [0.00s/0.00s]
[strc | info] Back-end succeeded : [user/system] = [0.16s/0.01s]
 gcc -I /usr/local/strategoxt/include -I /usr/local/strategoxt/include -I /usr/local/strategoxt/
include -Wall -Wno-unused-label -Wno-unused-variable -Wno-unused-function -Wno-unused-parameter -
DSIZEOF_VOID_P=4 -DSIZEOF_LONG=4 -DSIZEOF_INT=4 -c ExpEval.c -fno-common -DPIC -o .libs/ExpEval.o
 gcc -I /usr/local/strategoxt/include -I /usr/local/strategoxt/include -I /usr/local/strategoxt/
include -Wall -Wno-unused-label -Wno-unused-variable -Wno-unused-function -Wno-unused-parameter -
DSIZEOF_VOID_P=4 -DSIZEOF_LONG=4 -DSIZEOF_INT=4 -c ExpEval.c -o ExpEval.o >/dev/null 2>&1
gcc .libs/ExpEval.o -o ExpEval -bind_at_load -L/usr/local/strategoxt/lib /usr/local/strategoxt/lib/
libstratego-lib.dylib /usr/local/strategoxt/lib/libstratego-lib-native.dylib /usr/local/strategoxt/
lib/libstratego-runtime.dylib -lm /usr/local/strategoxt/lib/libATerm.dylib
[strc | info] C compilation succeeded : [user/system] = [0.31s/0.36s]
[strc | info] Compilation succeeded : [user/system] = [1.03s/0.42s]

sglri -p Exp.tbl -i ultimate-question.txt | ./ExpEval
42

Generate regular tree grammar

Generate signature

Compile to C

Parse and transform

20

Roadmap

> Program Transformation
—Introduction
—Stratego/XT
—TXL

> Refactoring
> Aspect-Oriented Programming

21

The TXL paradigm: parse, transform, unparse

http://www.txl.ca/docs/TXLintro.pdf
22

TXL programs

Base grammar

Grammar
overrides

Transformation
rules

defines tokens and non-terminals

extend and modify types from grammar

rooted set of rules and functions

23

Expression example

% Part I. Syntax specification
define program
 [expression]
end define

define expression
 [expression] + [term]
 | [expression] - [term]
 | [term]
end define

define term
 [term] * [primary]
 | [term] / [primary]
 | [primary]
end define

define primary
 [number]
 | ([expression])
end define

% Part 2. Transformation rules
rule main
 replace [expression]
 E [expression]
 construct NewE [expression]
 E [resolveAddition]
 [resolveSubtraction]
 [resolveMultiplication]
 [resolveDivision]
 [resolveBracketedExpressions]
 where not
 NewE [= E]
 by
 NewE
end rule

rule resolveAddition
 replace [expression]
 N1 [number] + N2 [number]
 by
 N1 [+ N2]
end rule
...

rule resolveBracketedExpressions
 replace [primary]
 (N [number])
 by
 N
end rule

File: Question.Txl

24

NB: TXL reverses the usual BNF convention and puts non-terminals in square brackets while interpreting
everything else (except special chars) as terminals.
The default lexical scanner can be modified, but is usually fine for first experiments.

Running the example

txl Ultimate.Question
TXL v10.5d (1.7.08) (c)1988-2008 Queen's University at Kingston
Compiling Question.Txl ...
Parsing Ultimate.Question ...
Transforming ...
42

1 + 2 * (3 + 4) * 3 - 1

File: Ultimate.Question

25

Example: TIL — a tiny imperative language

http://www.program-transformation.org/Sts/TILChairmarks

// Find all factors of a given input number
var n;
write "Input n please";
read n;
write "The factors of n are";
var f;
f := 2;
while n != 1 do
 while (n / f) * f = n do
 write f;
 n := n / f;
 end
 f := f + 1;
end

File: factors.til

26

TIL Grammar

% Keywords of TIL
keys
 var if then else while
 do for read write
end keys

% Compound tokens
compounds
 := !=
end compounds

% Commenting convention
comments
 //
end comments

define program
 [statement*]
end define

define statement
 [declaration]
 | [assignment_statement]
 | [if_statement]
 | [while_statement]
 | [for_statement]
 | [read_statement]
 | [write_statement]
end define

% Untyped variables
define declaration
 'var [id] ; [NL]
end define

define assignment_statement
 [id] := [expression] ; [NL]
end define

define if_statement
 'if [expression] 'then [IN][NL]
 [statement*] [EX]
 [opt else_statement]
 'end [NL]
end define
...

All TXL parsers are also pretty-
printers if the grammar includes
formatting cues

File: TIL.Grm

27

Pretty-printing TIL

include "TIL.Grm"
function main
 match [program]
 _ [program]
end function

File: TILparser.Txl

var n;
write "Input n please";
read n;
write "The factors of n are";
var f;
f := 2;
while n != 1 do
 while (n / f) * f = n do
 write f;
 n := n / f;
 end
 f := f + 1;
end

txl factors.til TILparser.Txl

28

Generating statistics
include "TIL.Grm"

function main
 replace [program]
 Program [program]

 % Count each kind of statement we're interested in
 % by extracting all of each kind from the program

 construct Statements [statement*]
 _ [^ Program]
 construct StatementCount [number]
 _ [length Statements] [putp "Total: %"]

 construct Declarations [declaration*]
 _ [^ Program]
 construct DeclarationsCount [number]
 _ [length Declarations] [putp "Declarations: %”]
...
 by
 % nothing
end function

File: TILstats.Txl

Total: 11
Declarations: 2
Assignments: 3
Ifs: 0
Whiles: 2
Fors: 0
Reads: 1
Writes: 3

29

Tracing
include "TIL.Grm"
...
redefine statement
 ...
 | [traced_statement]
end redefine

define traced_statement
 [statement] [attr 'TRACED]
end define

rule main
replace [repeat statement]
 S [statement]
 Rest [repeat statement]
...
 by
 'write QuotedS; 'TRACED
 S 'TRACED
 Rest
end rule

...

File: TILtrace.Txl

write "Trace: var n;";
var n;
write "Trace: write \"Input n please\";";
write "Input n please";
write "Trace: read n;";
read n;
...

30

TXL vs Stratego

Stratego TXL
Scannerless GLR parsing Agile parsing (top-down + bottom-up)

Reusable, generic traversal strategies Fixed traversals

Separates rewrite rules from traversal
strategies Traversals part of rewrite rules

31

Commercial systems

“The DMS Software Reengineering Toolkit is a set of tools for automating
customized source program analysis, modification or translation or generation of
software systems, containing arbitrary mixtures of languages.”

http://www.semdesigns.com/Products/DMS/DMSToolkit.html

32

See also http://www.semdesigns.com/Products/DMS/DMSComparison.html for a comparison to other approaches

Roadmap

> Program Transformation
> Refactoring

—Refactoring Engine and Code Critics
—Eclipse refactoring plugins

> Aspect-Oriented Programming

33

What is Refactoring?

> The process of changing a software system in such a
way that it does not alter the external behaviour of the
code, yet improves its internal structure.

— Fowler, et al., Refactoring, 1999.

34

Rename Method — manual steps

> Do it yourself approach:
—Check that no method with the new name already exists in any

subclass or superclass.
—Browse all the implementers (method definitions)
—Browse all the senders (method invocations)
—Edit and rename all implementers
—Edit and rename all senders
—Remove all implementers
—Test

> Automated refactoring is better !

35

Rename Method

> Rename Method (method, new name)
> Preconditions

—No method with the new name already exists in any subclass or
superclass.

—No methods with same signature as method outside the inheritance
hierarchy of method

> PostConditions
—method has new name
—relevant methods in the inheritance hierarchy have new name
— invocations of changed method are updated to new name

> Other Considerations
—Typed/Dynamically Typed Languages => Scope of the renaming

36

The Refactoring Browser

37

Typical Refactorings

Class Refactorings Method Refactorings Attribute Refactorings
add (sub)class to hierarchy add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

push method down push variable down

push method up pull variable up

add parameter to method create accessors

move method to component abstract variable

extract code in new method

Don Roberts, “Practical Analysis for Refactoring,”
Ph.D. thesis, University of Illinois, 1999.

Bill Opdyke, “Refactoring Object-Oriented Frameworks,”
Ph.D. thesis, University of Illinois, 1992.

38

Code Critic — search for common errors

39

Refactoring Engine — matching trees

Syntax Type
` recurse
@ list
. statement
literal

``@object halt recursively match send of halt

`@.Statements match list of statements

Class `@message: `@args match all sends to Class

NB: All metavariables
start with `

40

The first ` is for all meta-variables.

Rewrite rules

41

Roadmap

> Program Transformation
> Refactoring

—Refactoring Engine and Code Critics
—Eclipse refactoring plugins

> Aspect-Oriented Programming

42

A workbench action delegate

package astexampleplugin.actions;
...
import org.eclipse.ui.IWorkbenchWindowActionDelegate;

public class ChangeAction implements IWorkbenchWindowActionDelegate {
 ...
 public void run(IAction action) {
 for (ICompilationUnit cu : this.classes) {
 try {
 ...
 parser.setSource(cu);
 ...
 CompilationUnit ast = (CompilationUnit)parser.createAST(null);
 ...
 StackVisitor visitor = new StackVisitor(ast.getAST());
 ast.accept(visitor);
 ...

 } catch ...
 }
 }
 ...
}

When the workbench
action proxy is triggered by
the user, it delegates to an
instance of this class.

http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.jdt.doc.isv/guide/jdt_api_manip.htm
43

A field renaming visitor

package astexampleplugin.ast;
...
import org.eclipse.jdt.core.dom.ASTVisitor;

public class StackVisitor extends ASTVisitor {

 private static final String PREFIX = "_";
 ...
 public boolean visit(FieldDeclaration field){
 ...
 }

 public boolean visit(FieldAccess fieldAccess){
 String oldName = fieldAccess.getName().toString();
 String newName = this.fields.get(oldName);
 if(newName == null){
 newName = PREFIX + oldName;
 this.fields.put(oldName , newName);
 }
 fieldAccess.setName(this.ast.newSimpleName(newName));
 return true;
 }
}

The visitor simply implements
the visit method for field
declarations and accesses,
and prepends an underscore.

44

Renaming fields

45

Roadmap

> Program Transformation
> Refactoring
> Aspect-Oriented Programming

46

Problem: cross-cutting concerns

“Identifying Cross-Cutting Concerns in Embedded C Code”,
Bruntink, van Deursen, Tourwé

Certain features (like
logging, persistence and
security), cannot usually
be encapsulated as
classes. They cross-cut
code of the system.

47

Aspect-Oriented Programming

AOP improves modularity by supporting the
separation of cross-cutting concerns.

An aspect packages
cross-cutting concerns

A pointcut specifies a set
of join points in the target
system to be affected

Weaving is the process
of applying the aspect to
the target system

48

Canonical example — logging

package tjp;

public class Demo {
static Demo d;
public static void main(String[] args){
new Demo().go();
}
void go(){
d = new Demo();
d.foo(1,d);
System.out.println(d.bar(new Integer(3)));
}
void foo(int i, Object o){
System.out.println("Demo.foo(" + i + ", " + o + ")\n");
}
String bar (Integer j){
System.out.println("Demo.bar(" + j + ")\n");
return "Demo.bar(" + j + ")";
}
}

http://www.eclipse.org/aspectj/downloads.php

Demo.foo(1, tjp.Demo@939b78e)
Demo.bar(3)
Demo.bar(3)

49

A logging aspect

aspect GetInfo {

pointcut goCut(): cflow(this(Demo) && execution(void go()));

pointcut demoExecs(): within(Demo) && execution(* *(..));

Object around(): demoExecs() && !execution(* go()) && goCut() {
...
}

...
}

50

Intercept execution within control flow of Demo.go()

Identify all methods within Demo

Wrap all methods except Demo.go()

A logging aspect

aspect GetInfo {
...
Object around(): demoExecs() && !execution(* go()) && goCut() {
println("Intercepted message: " +
thisJoinPointStaticPart.getSignature().getName());

println("in class: " +
thisJoinPointStaticPart.getSignature().getDeclaringType().getName());

printParameters(thisJoinPoint);
println("Running original method: \n");
Object result = proceed();
println(" result: " + result);
return result;
}
...
}

Intercepted message: foo
in class: tjp.Demo
Arguments:
 0. i : int = 1
 1. o : java.lang.Object = tjp.Demo@c0b76fa
Running original method:

Demo.foo(1, tjp.Demo@c0b76fa)
 result: null
Intercepted message: bar
in class: tjp.Demo
Arguments:
 0. j : java.lang.Integer = 3
Running original method:

Demo.bar(3)
 result: Demo.bar(3)
Demo.bar(3)

51

Making classes visitable with aspects

public class SumVisitor implements Visitor {
int sum = 0;
public void visit(Nil l) { }

public void visit(Cons l) {
sum = sum + l.head;
l.tail.accept(this);
}

public static void main(String[] args) {
List l = new Cons(5, new Cons(4,

new Cons(3, new Nil())));
SumVisitor sv = new SumVisitor();
l.accept(sv);
System.out.println("Sum = " + sv.sum);
}
}
public interface Visitor {
void visit(Nil l);
void visit(Cons l);
}

public interface List {}
public class Nil implements List {}
public class Cons implements List {
int head;
List tail;
Cons(int head, List tail) {
this.head = head;
this.tail = tail;
}
}

We want to write this

But we are stuck with this …

52

AspectJ

53

With aspects, who needs visitors?

The missing method
is just an aspect

public class SumList {
public static void main(String[] args) {
List l = new Cons(5, new Cons(4, new Cons(3, new Nil())));
System.out.println("Sum = " + l.sum());
}
}

This would be even cleaner

public aspect Summable {
public int List.sum() {
return 0;
}
public int Nil.sum() {
return 0;
}
public int Cons.sum() {
return head + tail.sum();
}
}

54

Dunno why List.sum() needs a body – it should just be an interface signature.

What you should know!

✎ What are typical program transformations?
✎ What is the typical architecture of a PT system?
✎ What is the role of term rewriting in PT systems?
✎ How does TXL differ from Stratego/XT?
✎ How does the Refactoring Engine use metavariables to

encode rewrite rules?
✎ Why can’t aspects be encapsulated as classes?
✎ What is the difference between a pointcut and a join

point?

55

Can you answer these questions?

✎How does program transformation differ from
metaprogramming?

✎ In what way is optimization a form of PT?
✎What special care should be taken when pretty-printing a

transformed program?
✎How would you encode typical refactorings like “push

method up” using a PT system like TXL?
✎How could you use a PT system to implement AOP?

56

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

