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What is a language?
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The method of human communication, either spoken or
written, consisting of the use of words in a structured and
conventional way.



What is a programming language?
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The means of communication with machines often written in
ASCII characters.



We need a “valid” language

Validity breaks down into syntax and semantics. The former is
the arrangement of words, while the latter is the meaning of
words.

For example:
1. The dog the man walks.

2. The dog walks the man.

3. The man walks the dog.

4



Lexical analysis
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The process of mapping sequences of characters to tokens in a 
particular language.

x = x + y <ID, x> <EQ> <ID, x> <Plus> <ID, y>

Scanner Parsersource tokens

errors



Typical token types
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Nontokens are:
• comment,
• blanks, tabs, and newlines,
• etc.

NB. Each reserved world like
if, void, return, etc. has a
dedicated token.



Regular expressions

We use the regular expressions to specify the grammar of a 
language.
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StringsSymbols Language

We can decide whether a string is in the language or not.



Notations

If M and N are the languages, then:
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Bind tighter

Useful extensions:
[abc] means (a|b|c)
[d-g] means [defg]



Some examples
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How about the followings?

ab|c

(a|b)*

aa*bb*

a*(abb*)*(a|)



Principle of longest match

Usually, the scanner should pick the longest possible string as
the next token.
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Scannerreturn flag != if8;

<ID, flag>

<RETURN>

<NEQ>

<ID, if8>

<SCOLON>



Finite state automata

• A finite automaton has a finite set of states; edges lead from
one state to another, and each edge is labeled with a symbol.
One state is the start state, and certain of the states are
distinguished as final states.

• Finite automata are recognizers; they simply say "yes" or 
"no" about each possible input string.

• They come in two flavors:
– Nondeterministic finite automata (NFA)
– Deterministic finite automata (DFA)
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start finala tc



Example

The regular expressions [a-z][a-z0-9]* specifies an identifier.
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NFA

It is an automaton that has a choice of edges – labeled with the 
same symbol – to follow out of a state. Or it may have special 
edges labeled with epsilon that can be followed without eating 
any symbol from the input.
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(a|b)*abb



DFA

In this automaton no two edges leaving from the same state are 
labeled with the same symbol.
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Converting an NFA to a DFA
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states a b
s0

s1

s2

s3

s0, s1

0
0
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Example

• Find the corresponding DFA of the following automaton.

• Draw a DFA that accepts the aa*bb* expression.
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A

B

C
a

ab

a,b

ε



Compute e-closure

Lets define e-closure (T) as the states reachable from every state 
in set T on e-transitions.
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push all sates of T onto stack;

initialize e-closure(T) to T;

while(stack is not empty){

pop t from the stack;

for(each state u with an edge from t to u labeled e)

if(u is not in e-closure(T)){

add u to e-closure(T);

push u onto stack;

}

}



The subset construction

Lets define move(T, a) as set of NFA states to which there is a 
transition on input symbol “a” from some state s in T.
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while(there is an unmarked state T in Dstates){

mark T;

for(each input symbol a){

U = e-closure(move(T,a));

if (U is not in Dstates)

add U as an unmarked state to Dstates;

Dtran[T,a] = U;

}

}



Example

Apply the subset construction to the following NFA.
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(a|b)*abb



Example (answer)
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Lexical analyzer

Each automaton accepts a certain token and the combination of 
several automata can serve as a lexical analyzer (also know as 
lexer or scanner).
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Lexer in practice
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The lexer must keep track of the longest match seen so far, and 
the input position of that match.



Example
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• | the input position at 
each call to the lexer.

• ⊥ the current position.
• T the last final state.
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