Lexical
Analysis

b

Mohammad Ghafari
[:JNIVERSITI'-'\T Sp”ng 2019

BERN

What is a language?

The method of human communication, either spoken or
written, consisting of the use of words in a structured and
conventional way.

What is a programming language?

The means of communication with machines often written in
ASCII characters.

We need a “valid” language

Validity breaks down into syntax and semantics. The former is
the arrangement of words, while the latter is the meaning of

words.

For example:
1. The dog the man walks.

2. The dog walks the man.

3. The man walks the dog.

Lexical analysis

The process of mapping sequences of characters to tokens in a
particular language.

source
2~ ", Scanner

N

errors

tokens
»| Parser

X =x t y |=——|<ID, x> <EQ> <ID, x> <Plus> <ID, y>

Typical token types

Type

ID
NUM
REAL
IF
COMMA
NOTEQ
LPAREN
RPAREN

Examples

foo nl4 last

73 0 00 515 082
66.1 .5 10. 1leé67
if

(
)

5.5e-10

Nontokens are:
* comment,
* blanks, tabs, and newlines,

* etc.

NB. Each reserved world like

if, void, return, etc. has a
dedicated token.

Regular expressions

We use the regular expressions to specify the grammar of a
language.

Symbols Strings Language
y g w4

We can decide whether a string is in the language or not.

Notations

If M and N are the languages, then:

a An ordinary character stands for itself.
€ The empty string.
Another way to write the empty string.
M| N Alternation, choosing from M or N.
M- N Concatenation, an M followed by an N. B
MN Another way to write concatenation.
M* Repetition (zero or more times). v
M+ Repetition, one or more times.
M? Optional, zero or one occurrence of M.

[a —zA — Z] Character set alternation.
A period stands for any single character except newline.
LEWS Quotation, a string in quotes stands for itself literally.

Useful extensions:
[abc] means (a|b|c)
[d=g] means [defg]

Some examples

if

[a-z] [a-20-9]*

[0-9]+
([0-91+"."[0-9]%) | ([0-9]*"."[0-9]+)
(n__n [a—z] *u\nu) | (n n | "\I’l" | Il\tll)+

IF

ID

NUM

REAL

no token, just white space

How about the followings?
ab|c

(alb)”

aa bb”

a“ (abb”) " (al)

Principle of longest match

Usually, the scanner should pick the longest possible string as
the next token.

<RETURN>

<ID, flag>

return flag != if8; ——»| Scanner | —» <NEQ>

<ID, 1£f8>

<SCOLON>

Finite state automata

A finite automaton has a finite set of states; edges lead from
one state to another, and each edge is labeled with a symbol.

One state is the start state, and certain of the states are
distinguished as final states.

* Finite automata are recognizers; they simply say "yes" or
"no" about each possible input string.

(o} -
* They come in two flavors:

— Nondeterministic finite automata (NFA)

— Deterministic finite automata (DFA)

Example

The regular expressions [a-z][a-z0-9] specifies an identifier.

e

0-9

13

NFA

It is an automaton that has a choice of edges — labeled with the
same symbol - to follow out of a state. Or it may have special
edges labeled with epsilon that can be followed without eating

any symbol from the input.

tart
(a|b) *abb - ’@ —(1) :

DFA

In this automaton no two edges leaving from the same state are
labeled with the same symbol.

Converting an NFA to a DFA

states| a b states| a b
So Sp, S1 Sp So {SOa 51} So
s; | O S2) {0, St} {so, st {ses2}
S, 0 S3 {50> 52} {50,514} {0, 53}
S3 0 0 {0, S3} {50> 51} S

16

Example

* Find the corresponding DFA of the following automaton.

a,b

<

* Draw a DFA that accepts the aa*bb* expression.

Compute e-closure

Lets define e-closure (T) as the states reachable from every state
in set T on e-transitions.

push all sates of T onto stack;
initialize e-closure(T) to T;
while (stack is not empty) {

pop t from the stack;

for (each state u with an edge from t to u labeled e)
if(u 1s not in e-closure(T)) {
add u to e-closure(T);

push u onto stack;

The subset construction

Lets define move(T, a) as set of NFA states to which there is a
transition on input symbol “a” from some state s in T.

while (there i1s an unmarked state T in Dstates) {
mark T;
for (each input symbol a) {
U = e-closure (move (T, a))
if (U is not in Dstates)
add U as an unmarked state to Dstates;

Dtran[T,a] = U;

Example

Apply the subset construction to the following NFA.

Example (answer)

™~ 0
< <
N o T
—_ N

"~ " ”»

Oll

ol
< @O

INPUT SYMBOL

OVCQOLUKDO

M M MR

STATE

< 0O QRN

21

Lexical analyzer

Each automaton accepts a certain token and the combination of

several automata can serve as a lexical analyzer (also know as

lexer or scanner).

a-e, g-z, 0-9

/’\ error REAL
0-9, a-z 0-9 0-9
‘—’. ‘Q O
a-2z
a-

i- 0-9 0-9
e DO
gtlg ok, \ R
' other

blank, . ‘
etc. error white space
error

white space a-z

22

Lexer In practice

S~
*”,”,”,
Pt et et T et Nt N e T et T st T et
MO Y HdHO OSSO
- O N H gt O O O O
S ot o & O O O O
OO < s O O O O
H O d Mm g g O O O O
QO s O O O O
I O OO OO0 O O o o
N O~ < < s W W I~ ®
Ot 0O W I
O ot ¢ W W I
x O OO OO O O O O
/,”,””’
O 0O 0O OO 0O O O O
Mt Mt M M N N Nt Nd N
——t
]
s T e T N N N N N
— x X X ¥ ¥ ¥ *x x X
— O - N ™M <t L W I~
n
O O OO O OO OO O
OP P P PP PP PP
T ®© ® ® @M @M @©C @© @© ©
QO P P P P PP P PP
N 0N n n n n n n un
IS
O % ¥ * ¥ *x *x *x *x %
L I N N U

et cetera

The lexer must keep track of the longest match seen so far, and

the input position of that match.

23

Example

Last Current Current Accept
Final State Input Action
0 1 Jif --not-a-com
2 2 liff --not-a-com
3 3 lif[--not-a-com
3 0 lifl |--not-a-com return IF
0 1 if[--not-a-com
12 12 if| [--not-a-com
12 0 if| --not-a-com found white space; resume
0 | if |--not-a-com
9 9 if |-|-not-a-com
9 10 if |--pot-a-com
9 10 if |--not-a-com
9 10 if |--not-a-com
9 10 if |[--not-a-com
9 0 if |--not-m-com error, illegal token ‘-’; resume
0 1 if -|-not-a-com
9 9 if -|-Jhot-a-com
9 0 if -|-hpot-a-com error, illegal token ‘-’; resume

| the input position at
each call to the lexer.
1 the current position.
T the last final state.

24

Acknowledgement

* Compilers: Principles, Techniques, and Tools by Alfred
V.Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman.

* Modern Compiler Implementation in Java by Andrew W.
Appel and Jens Palsberg.

