
Lexical
Analysis

Mohammad Ghafari
Spring 2019

What is a language?

2

The method of human communication, either spoken or
written, consisting of the use of words in a structured and
conventional way.

What is a programming language?

3

The means of communication with machines often written in
ASCII characters.

We need a “valid” language

Validity breaks down into syntax and semantics. The former is
the arrangement of words, while the latter is the meaning of
words.

For example:
1. The dog the man walks.

2. The dog walks the man.

3. The man walks the dog.

4

Lexical analysis

5

The process of mapping sequences of characters to tokens in a
particular language.

x = x + y <ID, x> <EQ> <ID, x> <Plus> <ID, y>

Scanner Parsersource tokens

errors

Typical token types

6

Nontokens are:
• comment,
• blanks, tabs, and newlines,
• etc.

NB. Each reserved world like
if, void, return, etc. has a
dedicated token.

Regular expressions

We use the regular expressions to specify the grammar of a
language.

7

StringsSymbols Language

We can decide whether a string is in the language or not.

Notations

If M and N are the languages, then:

8

Bind tighter

Useful extensions:
[abc] means (a|b|c)
[d-g] means [defg]

Some examples

9

How about the followings?

ab|c

(a|b)*

aa*bb*

a*(abb*)*(a|)

Principle of longest match

Usually, the scanner should pick the longest possible string as
the next token.

10

Scannerreturn flag != if8;

<ID, flag>

<RETURN>

<NEQ>

<ID, if8>

<SCOLON>

Finite state automata

• A finite automaton has a finite set of states; edges lead from
one state to another, and each edge is labeled with a symbol.
One state is the start state, and certain of the states are
distinguished as final states.

• Finite automata are recognizers; they simply say "yes" or
"no" about each possible input string.

• They come in two flavors:
– Nondeterministic finite automata (NFA)
– Deterministic finite automata (DFA)

12

start finala tc

Example

The regular expressions [a-z][a-z0-9]* specifies an identifier.

13

NFA

It is an automaton that has a choice of edges – labeled with the
same symbol – to follow out of a state. Or it may have special
edges labeled with epsilon that can be followed without eating
any symbol from the input.

14

(a|b)*abb

DFA

In this automaton no two edges leaving from the same state are
labeled with the same symbol.

15

Converting an NFA to a DFA

16

states a b
s0

s1

s2

s3

s0, s1

0
0
0

s0

s2

s3

0

states a b
s0

{s0, s1}
{s0, s2}
{s0, s3}

{s0, s1}
{s0, s1}
{s0, s1}
{s0, s1}

s0

{s0, s2}
{s0, s3}
s0

Example

• Find the corresponding DFA of the following automaton.

• Draw a DFA that accepts the aa*bb* expression.

17

A

B

C
a

ab

a,b

ε

Compute e-closure

Lets define e-closure (T) as the states reachable from every state
in set T on e-transitions.

18

push all sates of T onto stack;

initialize e-closure(T) to T;

while(stack is not empty){

pop t from the stack;

for(each state u with an edge from t to u labeled e)

if(u is not in e-closure(T)){

add u to e-closure(T);

push u onto stack;

}

}

The subset construction

Lets define move(T, a) as set of NFA states to which there is a
transition on input symbol “a” from some state s in T.

19

while(there is an unmarked state T in Dstates){

mark T;

for(each input symbol a){

U = e-closure(move(T,a));

if (U is not in Dstates)

add U as an unmarked state to Dstates;

Dtran[T,a] = U;

}

}

Example

Apply the subset construction to the following NFA.

20

(a|b)*abb

Example (answer)

21

Lexical analyzer

Each automaton accepts a certain token and the combination of
several automata can serve as a lexical analyzer (also know as
lexer or scanner).

22

Lexer in practice

23

The lexer must keep track of the longest match seen so far, and
the input position of that match.

Example

24

• | the input position at
each call to the lexer.

• ⊥ the current position.
• T the last final state.

Acknowledgement

• Compilers: Principles, Techniques, and Tools by Alfred
V.Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman.

• Modern Compiler Implementation in Java by Andrew W.
Appel and Jens Palsberg.

26

