
Oscar Nierstrasz

3. Parsing

Thanks to Jens Palsberg and Tony Hosking
for their kind permission to reuse and adapt
the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap

> Context-free grammars
> Derivations and precedence
> Top-down parsing
> Left-recursion
> Look-ahead
> Table-driven parsing

�2

See, Modern compiler implementation in
Java (Second edition), chapter 3.

Roadmap

> Context-free grammars
> Derivations and precedence
> Top-down parsing
> Left-recursion
> Look-ahead
> Table-driven parsing

�3

The role of the parser

> performs context-free syntax analysis
> guides context-sensitive analysis
> constructs an intermediate representation
> produces meaningful error messages
> attempts error correction

�4

The role of the parser is to recognize structure in the stream of
tokens produced by the scanner. To do this, the parser produces a
parse — a derivation of the parse tree showing how the rules of
the grammar can be used to produce the given input stream.
The output of the parser is some form of intermediate
representation for the back end. This could be a parse tree, or it
could be some other kind of intermediate language.
One important practical consideration is that the parse should not
quit at the first error, but rather recover from errors to give as
much useful feedback as possible concerning the entire input.

Languages and Operations (from lecture 2)

Operation Definition

Union L ∪ M = { s ⏐ s ∈ L or s ∈ M }

Concatenation LM = { st ⏐ s ∈ L and t ∈ M }

Kleene closure L* = ∪I=0,∞ Li

Positive closure L+ = ∪I=1,∞ Li

A language is a set of strings

�5

Formally, a language is a set of strings (or “sentences”). We can
perform various operations over languages, such as union,
concatenation etc.
In the slide, L and M are languages, while s and t are strings.
Operations over languages produce new languages by iterating
over strings they contain.
The Kleene closure produces all possible concatenations of
strings in a language L.
Examples:

L = { a, b }, M = { c, d }
LM = { ac, ad, bc, bd }
L* = { ^, a, b, aa, ab, ba, bb, aaa, aab, aba, ... }

Production Grammars (from lecture 2)

> Powerful formalism for
language description
—Start symbol (S0)
—Production rules (A → abA)
—Non-terminals (A, B)
—Terminals (a,b)

> Rewriting

�6

Context sensitive

Recursively
enumerable

Regular

Context free

A common way to specify languages is with the help of
production grammars. These consist of a set of rewrite rules that
allow you generate all possible strings in a language.
A grammar starts with a start symbol S0, and consists of a
number of rules of the form

A → abA

consisting of non-terminals, like S0 and A, that can be expanded
using further production rules, and terminals, like a and b, that
cannot.
By repeated expending terminals using different rules, one can
generate all possible strings in the language specified by the
grammar.

Detail: The Chomsky Hierarchy (from lecture 2)

> Type 0: α → β
—Unrestricted grammars generate recursively enumerable

languages. Minimal requirement for recognizer: Turing machine.
> Type 1: αAβ → αγβ

—Context-sensitive grammars generate context-sensitive languages,
recognizable by linear bounded automata

> Type 2: A → γ
—Context-free grammars generate context-free languages,

recognizable by non-deterministic push-down automata
> Type 3: A → a and A → aB

—Regular grammars generate regular languages, recognizable by
finite state automata

NB: A is a non-terminal; α, β, γ are strings of terminals and non-terminals
�7

Since compilers need to recognize languages rather than generate
them, we need a way to turn a grammar into a recogniser.
The Chomsky Hierarchy (named after Noam Chomsky)
formalizes how different constraints over the production rules
produce very different classes of languages. Unrestricted
grammars (i.e., where the left and right-hand sides of the rules
may contain a mix of terminals and non-terminals) are the hardest
to parse, and require a Turing machine to recognize them.
Programming languages are mostly context-free (only non-
terminals on the left-hand side), with occasionally some context-
sensitive features. Typically the tokens of a programming
language (i.e., identifiers, strings, comments etc.) are Type 3 and
can be recognized by a FSA.

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Syntax analysis

> Context-free syntax is specified with a context-free grammar.

> Formally a CFG G = (Vt,Vn,S,P), where:
—Vt is the set of terminal symbols in the grammar  

(i.e.,the set of tokens returned by the scanner)
—Vn, the non-terminals, are variables that denote sets of (sub)strings

occurring in the language. These impose a structure on the grammar.
—S is the goal symbol, a distinguished non-terminal in Vn denoting the

entire set of strings in L(G).
—P is a finite set of productions specifying how terminals and non-

terminals can be combined to form strings in the language.  
Each production must have a single non-terminal on its left hand side.

> The set V = Vt ∪ Vn is called the vocabulary of G
�8

Recalling the Chomsky hierarchy, most modern programming
languages have a (mostly) context-free syntax. This makes them
relatively easy to parse efficiently.

Notation and terminology

> a, b, c, … ∈ Vt (terminals)
> A, B, C, … ∈ Vn (non-terminals)
> U, V, W, … ∈ V (both)
> α, β, γ, … ∈ V* (sequences of terminals and non-terminals)
> u, v, w, … ∈ Vt * (sequences of terminals only)

If A → γ then αAβ ⇒ αγβ is a single-step derivation using A → γ
⇒* and ⇒+ denote derivations of ≥0 and ≥1 steps
If S ⇒* β then β is said to be a sentential form of G
L(G) = { w ∈ Vt * ⏐ S ⇒+ w }, w in L(G) is called a sentence of G

NB: L(G) = { β ∈ V* ⏐ S ⇒* β } ∩ Vt *

�9

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).

Example:

In a BNF for a grammar, we represent
1. non-terminals with <angle brackets> or CAPITAL LETTERS
2. terminals with typewriter font or underline
3. productions as in the example

1. <goal> ::= <expr>
2. <expr> ::= <expr> <op> <expr>
3. | num
4. | id
5. <op> ::= +
6. | —
7. | *
8. | /

�10

This BNF describes simple expressions over numbers and
identifiers. The terminals are num, id, +, -, * and /. Non-terminals
are <goal> etc. The goal symbol here is <goal>. The BNF
grammar rules can easily be re-written as formal productions:

<goal> → <expr>
<expr> → <expr><op><expr>
<expr> → num
<expr> → id
etc.

A sentence is any valid arithmetic expression, such as 3+4

Scanning vs. parsing

Factoring out lexical analysis simplifies the compiler

term ::= [a-zA-Z] ([a-zA-Z] | [0-9])*
| 0 | [1-9][0-9]*

op ::= + | — | * | /
expr ::= (term op)* term

Where do we draw the line?

Regular expressions:
—Normally used to classify identifiers, numbers, keywords …
—Simpler and more concise for tokens than a grammar
—More efficient scanners can be built from REs

CFGs are used to impose structure
—Brackets: (), begin … end, if … then … else
—Expressions, declarations …

�11

As we have seen, context-free grammars are strictly more
powerful than regular grammars. It is therefore always possible to
express a grammar for both the lexical and syntactic aspects of a
language with a single (scannerless) grammar.
The advantages are (1) only a single formalism (and tool) is
needed, and (2) different tokens can be used for different
sublanguages, such as embedded domain-specific languages (e.g.,
a query language).
The disadvantages are (1) the grammar will be much more
complex (syntactic analysis is complicated enough: the grammar
for C has around 200 productions), and (2) parsing becomes less
efficient.

Hierarchy of grammar classes

�12

LL(k):
—Left-to-right, Leftmost

derivation, k tokens
lookahead, top-down

LR(k):
—Left-to-right, Rightmost

derivation, k tokens
lookahead, bottom-up

SLR:
—Simple LR (uses “follow

sets”)
LALR:
—LookAhead LR (uses

“lookahead sets”)

http://en.wikipedia.org/wiki/LL_parser …

There exist many different sub-categories of context-free
grammars. For practical purposes it is important that a grammar
be unambiguous, i.e., that it always produces a unique parse for a
given valid input.
Although parsers read their input Left to Right (the first “L” in
most of these categories), they may work either top-down —
producing a leftmost derivation — or bottom-up — producing a
rightmost derivation. (More on this later.)
They may also require some number of tokens of “lookahead” to
decide which production rule to apply at any point without
backtracking.
LL(1) and LR(1) are “sweet spots” that allow interesting
languages to be specified, but can also be parsed efficiently.

Roadmap

> Context-free grammars
> Derivations and precedence
> Top-down parsing
> Left-recursion
> Look-ahead
> Table-driven parsing

�13

Derivations

<goal> ⇒ <expr>
⇒ <expr> <op> <expr>
⇒ <expr> <op> <expr> <op> <expr>
⇒ <id,x> <op> <expr> <op> <expr>
⇒ <id,x> + <expr> <op> <expr>
⇒ <id,x> + <num,2> <op> <expr>
⇒ <id,x> + <num,2> * <expr>
⇒ <id,x> + <num,2> * <id,y>

We can view the productions of a CFG as rewriting rules.

We have derived the sentence: x + 2 * y
We denote this derivation (or parse) as: <goal> ⇒* id + num * id

The process of discovering a derivation is called parsing. �14

Derivation

> At each step, we choose a non-terminal to replace.
—This choice can lead to different derivations.

> Two strategies are especially interesting:
1. Leftmost derivation: replace the leftmost non-terminal at each step
2. Rightmost derivation: replace the rightmost non-terminal at each

step

The previous example was a leftmost derivation.

�15

As we shall see, a leftmost derivation corresponds to top-down
parsing, and is especially well-suited to recursive descent parsers.
A rightmost derivation, on the other hand, is produced bottom-up,
and is better-suited to table-driven parsing.

Rightmost derivation

For the string: x + 2 * y

Again we have: <goal> ⇒* id + num * id

<goal> ⇒ <expr>
⇒ <expr> <op> <expr>
⇒ <expr> <op> <id,y>
⇒ <expr> * <id,y>
⇒ <expr> <op> <expr> * <id,y>
⇒ <expr> <op> <num,2> * <id,y>
⇒ <expr> + <num,2> * <id,y>
⇒ <id,x> + <num,2> * <id,y>

�16

Here we see that the rightmost non-terminal (in bold) is expanded
in the following line.
As we shall see, the trick is know which rule to use to expand the
non-terminal. This requires some analysis of the grammar to
generate lookup tables, and some lookahead of input symbols.

Precedence

Treewalk evaluation computes: (x+2)*y

Should be: x+(2*y)

�17

Precedence

> Our grammar has a problem: it has no notion of precedence, or
implied order of evaluation.

> To add precedence takes additional machinery:

1. <goal> ::= <expr>
2. <expr> ::= <expr> + <term>
3. | <expr> - <term>
4. | <term>
5. <term> ::= <term> * <factor>
6. | <term> / <factor>
7. | <factor>
8. <factor> ::= num
9. | id

> This grammar enforces a precedence on the derivation:
—terms must be derived from expressions
—forces the “correct” tree �18

Forcing the desired precedence

Now, for the string: x + 2 * y

<goal> ⇒ <expr>
⇒ <expr> + <term>
⇒ <expr> + <term> * <factor>
⇒ <expr> + <term> * <id,y>
⇒ <expr> + <factor> * <id,y>
⇒ <expr> + <num,2> * <id,y>
⇒ <term> + <num,2> * <id,y>
⇒ <factor> + <num,2> * <id,y>
⇒ <id,x> + <num,2> * <id,y>

Again we have: <goal> ⇒* id + num * id,
but this time with the desired tree.

�19

This time it is impossible to go wrong. Not only do we force the
right precedence, but there is only a unique parse possible.
However it is still not clear how we choose to expand the
rightmost non-terminal without backtracking.

Ambiguity

If a grammar has more than one derivation for a single
sentential form, then it is ambiguous

>Consider: if E1 then if E2 then S1 else S2
—This has two derivations
—The ambiguity is purely grammatical
—It is called a context-free ambiguity

<stmt> ::= if <expr> then <stmt>
| if <expr> then <stmt> else <stmt>
| …

�20

“context-free ambiguity” = ambiguity in a context-free grammar.
Note that the rules share a large common prefix, which means
that you have to proceed quite far before you could detect a
mistake or an ambiguity in parsing.

Resolving ambiguity

Ambiguity may be eliminated by rearranging the grammar:

<stmt> ::= <matched>
| <unmatched>

<matched> ::= if <expr> then <matched> else <matched>
| …

<unmatched> ::= if <expr> then <stmt>
| if <expr> then <matched> else <unmatched>

This generates the same language as the ambiguous
grammar, but applies the common sense rule:

—match each else with the closest unmatched then

�21

Ambiguity

> Ambiguity is often due to confusion in the context-free
specification. Confusion can arise from overloading, e.g.:

> In many Algol-like languages, f could be a function or a
subscripted variable.

> Disambiguating this statement requires context:
—need values of declarations
—not context-free
—really an issue of type

Rather than complicate parsing, we will handle this separately.

a = f(17)

�22

Roadmap

> Context-free grammars
> Derivations and precedence
> Top-down parsing
> Left-recursion
> Look-ahead
> Table-driven parsing

�23

Parsing: the big picture

Our goal is a flexible parser generator system

�24

Top-down versus bottom-up

> Top-down parser (LL):
—starts at the root of derivation tree and fills in
—picks a production and tries to match the input
—may require backtracking
—some grammars are backtrack-free (predictive)

> Bottom-up parser (LR):
—starts at the leaves and fills in
—starts in a state valid for legal first tokens
—as input is consumed, changes state to encode possibilities

(recognize valid prefixes)
—uses a stack to store both state and sentential forms

�25

LL parsers are top-down. LR parsers are bottom-up.
Bottom-up parsers are normally built by parser generators.
Top-down parsers can be either hand-written or generated.
We are interested in automating the construction of both top-
down and bottom-up parsers directly from the grammar
specifications.
Since a parser does not just parse, but must also produce a
suitable IR, we must decorate the grammar with additional
actions that the generated parser will take.

Top-down parsing

A top-down parser starts with the root of the parse tree,
labeled with the start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the
fringe of the parse tree matches the input string

1. At a node labeled A, select a production A → α and construct the
appropriate child for each symbol of α

2. When a terminal is added to the fringe that doesn’t match the input
string, backtrack

3. Find the next node to be expanded (must have a label in Vn)

The key is selecting the right production in step 1
⇒ should be guided by input string

�26

Simple expression grammar

1. <goal> ::= <expr>
2. <expr> ::= <expr> + <term>
3. | <expr> - <term>
4. | <term>
5. <term> ::= <term> * <factor>
6. | <term> / <factor>
7. | <factor>
8. <factor> ::= num
9. | id

Consider the input string x — 2 * y

Recall our grammar for simple expressions:

�27

Top-down derivation

�28

1. <goal> ::= <expr>
2. <expr> ::= <expr> + <term>
3. | <expr> - <term>
4. | <term>
5. <term> ::= <term> * <factor>
6. | <term> / <factor>
7. | <factor>
8. <factor> ::= num
9. | id

The horizontal lines denote the backtracking points. Whenever a
token cannot be read, or input is left, then we must backtrack to
an alternative rule.

• start with <goal>, input before x
• <goal> → <expr>
• <expr> → <expr> + <term> [NB: choice of productions]
• ...
• consume id = x; fail at + = -
• backtrack and redo: <expr> → <expr> - <term>

NB: This example does not show how we pick which rule to
expand! (be patient)

Roadmap

> Context-free grammars
> Derivations and precedence
> Top-down parsing
> Left-recursion
> Look-ahead
> Table-driven parsing

�29

Non-termination

Another possible parse for x — 2 * y

If the parser makes the wrong choices, expansion doesn’t terminate!

�30

Left-recursion

Top-down parsers cannot handle left-recursion in a grammar

Formally, a grammar is left-recursive if

Our simple expression
grammar is left-recursive!

∃A ∈ Vn such that A ⇒+ Aα for some string α

�31

1. <goal> ::= <expr>
2. <expr> ::= <expr> + <term>
3. | <expr> - <term>
4. | <term>
5. <term> ::= <term> * <factor>
6. | <term> / <factor>
7. | <factor>
8. <factor> ::= num

9. | id

Eliminating left-recursion

To remove left-recursion, we can transform the grammar

<foo> ::= <foo> α
| β

<foo> ::= β <bar>
<bar> ::= α <bar>

| ε

NB: α and β do not start with <foo>!

�32

How would you write <foo>
as a regular expression?

It can be easier to see how this works by reasoning about what
<foo> actually represents. How would you write it as a regular
expression?

Example

<expr> ::= <term> <expr´>
<expr´> ::= + <term> <expr´>
 | - <term> <expr´>

| ε
<term> ::= <factor> <term´>
<term´> ::= * <factor> <term´>
 | / <factor> <term´>

 | ε

<expr> ::= <expr> + <term>
 | <expr> - <term>

| <term>
<term> ::= <term> * <factor>
 | <term> / <factor>

| <factor>

�33

<foo> ::= β <bar>
<bar> ::= α <bar>

| ε

<foo> ::= <foo> α
| β

Example

Our long-suffering expression grammar :

1. <goal> ::= <expr>
2. <expr> ::= <term> <expr´>
3. <expr´> ::= + <term> <expr´>
4. | - <term> <expr´>
5. | ε
6. <term> ::= <factor> <term´>
7. <term´> ::= * <factor> <term´>
8. | / <factor> <term´>
9. | ε
10. <factor> ::= num
11. | id

�34

With this grammar, a
top-down parser will

• terminate
• backtrack on some

inputs

Example

It is:
• right-recursive
• free of ε productions

This cleaner grammar defines the same language:
1. <goal> ::= <expr>
2. <expr> ::= <term> + <expr>
3. | <term> - <expr>
4. | <term>
5. <term> ::= <factor> * <term>
6. | <factor> / <term>
7. | <factor>
8. <factor> ::= num
9. | id

Unfortunately, it generates
different associativity.
Same syntax, different meaning!

�35

How would you parse “9 – 5 + 3” with the two grammars?

Roadmap

> Context-free grammars
> Derivations and precedence
> Top-down parsing
> Left-recursion
> Look-ahead
> Table-driven parsing

�36

How much look-ahead is needed?

Do we need arbitrary look-ahead to parse CFGs?
— in general, yes
—use the Earley or Cocke-Younger, Kasami algorithms

– Aho, Hopcroft, and Ullman, Problem 2.34 Parsing, Translation
and Compiling, Chapter 4

Fortunately
— large subclasses of CFGs can be parsed with limited lookahead
—most programming language constructs can be expressed in a

grammar that falls in these subclasses
Among the interesting subclasses are:

—LL(1): Left to right scan, Left-most derivation, 1-token look-ahead;
and

—LR(1): Left to right scan, Right-most derivation, 1-token look-ahead
�37

We saw that top-down parsers may need to
backtrack when they select the wrong production

Predictive parsing

Basic idea:
— For any two productions A → α | β, we would like a distinct way of choosing the

correct production to expand.
For some RHS α ∈ G, define FIRST(α) as the set of tokens that appear

first in some string derived from α
I.e., for some w ∈ Vt*, w ∈ FIRST(α) iff α ⇒*wγ

Key property:
Whenever two productions A → α and A → β both appear in the

grammar, we would like:
FIRST(α) ∩ FIRST(β) = ∅

This would allow the parser to make a correct choice with a look-ahead
of only one symbol!

The example grammar has this property!
�38

Example — computing the FIRST set

�39

FIRST(S) = FIRST (E)
= FIRST (TE´)
= FIRST(T) since ε ∉ FIRST(T)

FIRST(T) = FIRST (FT´)
= FIRST(F) since ε ∉ FIRST(F)

FIRST(E´) = { +, - , ε }
FIRST(T´) = { *, / , ε }
FIRST(F) = { num, id }

S → E
E → TE´
E´ → +E | —E | ε
T → FT´
T´ → * T | / T | ε
F → num | id

To compute the FIRST sets, we simply start from the goal and
recursively compute the FIRST sets of all the non-terminals by
expanding the rules.

If A → B|C then FIRST(A) = FIRST(B) ∪ FIRST(C).
If A → BC then FIRST(A) = FIRST(BC).
If ε ∉ FIRST(B) then FIRST(A) = FIRST(B), else FIRST(A) = FIRST(C).

In the example we see that FIRST(S) = FIRST(TE´). Since we
(later) show that ε ∉ FIRST(T), we can conclude that FIRST(S) =
FIRST(T) = FIRST (F) = { num, id }

Left factoring

Sometimes, we can transform a grammar to have this
property:
—For each non-terminal A find the longest prefix α common to two or

more of its alternatives.
— if α ≠ ε then replace all of the A productions 

A → αβ1 | αβ2 | … | αβn  
with  

A → α A´
A´ → β1 | β2 | … | βn  

where A´ is fresh
—Repeat until no two alternatives for a single non-terminal have a

common prefix.

�40

What if a grammar does not have this property?

Example

Consider our right-recursive version of the expression grammar :
1. <goal> ::= <expr>
2. <expr> ::= <term> + <expr>
3. | <term> - <expr>
4. | <term>
5. <term> ::= <factor> * <term>
6. | <factor> / <term>
7. | <factor>
8. <factor> ::= num
9. | id

To choose between productions 2, 3, & 4, the parser must see past the
num or id and look at the +, —, * or /.

FIRST(2) ∩ FIRST(3) ∩ FIRST(4) ≠ ∅

This grammar fails the test.
�41

I.e., they all have the same FIRST set, namely { num, id }
NB: This grammar is right-associative.

Example

Two non-terminals must be left-factored:

<expr> ::= <term> + <expr>
 | <term> - <expr>

| <term>
<term> ::= <factor> * <term>
 | <factor> / <term>

| <factor>

<expr> ::= <term> <expr´>
<expr´> ::= + <expr>

| - <expr>
| ε

<term> ::= <factor> <term´>
<term´> ::= * <term>
 | / <term>

| ε

�42

Example

Substituting back into the grammar yields
1. <goal> ::= <expr>
2. <expr> ::= <term> <expr´>
3. <expr´> ::= + <expr>
4. | - <expr>
5. | ε
6. <term> ::= <factor> <term´>
7. <term´> ::= * <term>
8. | / <term>
9. | ε
10. <factor> ::= num
11. | id

Now, selection requires only a single token look-ahead.

NB: This grammar is still right-associative. �43

NB: This is a different grammar than the one we obtained by
factoring out left recursion in the previous chapter.

Example derivation

The next symbol determines each choice correctly. �44

1. <goal> ::= <expr>
2. <expr> ::= <term> <expr´>
3. <expr´> ::= + <expr>
4. | - <expr>
5. | ε
6. <term> ::= <factor> <term´>
7. <term´> ::= * <term>
8. | / <term>
9. | ε
10. <factor> ::= num
11. | id

Back to left-recursion elimination

> Given a left-factored CFG, to eliminate left-recursion:
— if ∃ A → Aα then replace all of the A productions  

A → Aα | β | … | γ 
with  

A → NA´  
N → β | … | γ 
A´ → αA´ | ε 

where N and A´ are fresh
—Repeat until there are no left-recursive productions.

�45

Generality

> Question:
—By left factoring and eliminating left-recursion, can we transform an

arbitrary context-free grammar to a form where it can be predictively
parsed with a single token look-ahead?

> Answer:
—Given a context-free grammar that doesn’t meet our conditions, it is

undecidable whether an equivalent grammar exists that does meet our
conditions.

> Many context-free languages do not have such a grammar:

{an0bn | n ≥ 1 } ∪ {an1b2n | n ≥ 1 }

> Must look past an arbitrary number of a’s to discover the 0 or the
1 and so determine the derivation.

�46

S := R0 | R1
R0 := a R0 b | 0
R1 := a R1 bb | 1

Recursive descent parsing

Now, we can produce a simple recursive descent
parser from the (right- associative) grammar.

�47

Building the tree

> One of the key jobs of the parser is to build an
intermediate representation of the source code.

> To build an abstract syntax tree, we can simply insert
code at the appropriate points:
—factor() can stack nodes id, num
—term_prime() can stack nodes *, /
—term() can pop 3, build and push subtree
—expr_prime() can stack nodes +, -
—expr() can pop 3, build and push subtree
—goal() can pop and return tree

�48

Roadmap

> Context-free grammars
> Derivations and precedence
> Top-down parsing
> Left-recursion
> Look-ahead
> Table-driven parsing

�49

Non-recursive predictive parsing

> Observation:
—Our recursive descent parser encodes state information in its run-

time stack, or call stack.

> Using recursive procedure calls to implement a stack
abstraction may not be particularly efficient.

> This suggests other implementation methods:
—explicit stack, hand-coded parser
—stack-based, table-driven parser

�50

Non-recursive predictive parsing

Now, a predictive parser looks like:

Rather than writing code, we build tables.

Building tables can be automated!
�51

Table-driven parsers

A parser generator system often looks like:

This is true for both top-down (LL) and bottom-up (LR) parsers
�52

Non-recursive predictive parsing

Input: a string w and a
parsing table M for G

�53

tos = “top of stack”
The top of the stack holds the current symbol (terminal or non-
terminal) you are trying match.
The bottom of the stack is the target. The lookahead tells you
which rule to use to expand a NT, and then the top of stack is
replaced by pushing all the symbols of the RHS of the rule.
The algorithm repeatedly compares the input token to the top of
the stack. If the top is a token, then we pop and proceed, else we
have an error. If the top is a non-terminal, then we use the parsing
table to decide how to expand the NT, and we update the stack
accordingly.

Non-recursive predictive parsing

What we need now is a parsing table M.

Our expression grammar : Its parse table:

�54

1. <goal> ::= <expr>
2. <expr> ::= <term> <expr´>
3. <expr´> ::= + <expr>
4. | - <expr>
5. | ε
6. <term> ::= <factor> <term´>
7. <term´> ::= * <term>
8. | / <term>
9. | ε
10. <factor> ::= num
11. | id

Read the parse table as follows:
If the currently expected NT is <goal>, then the next token must
be either an id or a num (everything else is an error). In either
case we expand rule 1. <expr> is similar.
With <expr'> we expect +, - or $ (end of input), and expand,
respectively, rule 3, 4 or 5.

LL(1) grammars

Previous definition:
—A grammar G is LL(1) iff for all non-terminals A, each distinct pair of

productions A → β and A → γ satisfy the condition FIRST(β) ∩
FIRST(γ) = ∅

> But what if A ⇒* ε?

Revised definition:
—A grammar G is LL(1) iff for each set of productions  

A → α1 | α2 | … | αn
1. FIRST(α1), FIRST(α2), …, FIRST(αn) are pairwise disjoint
2. If αi ⇒* ε then FIRST(αj) ∩ FOLLOW(A) = ∅, ∀ 1≤j≤n, i≠j

NB: If G is ε-free, condition 1 is sufficient

�55
FOLLOW(A) must be disjoint from FIRST(aj), else we do not
know whether to go to aj or to take ai and skip to what follows.

FIRST

For a string of grammar symbols α, define FIRST(α) as:
— the set of terminal symbols that begin strings derived from α:  

{ a ∈ Vt | α ⇒* aβ }
— If α ⇒* ε then ε ∈ FIRST(α)

FIRST(α) contains the set of tokens valid in the initial position in α.
To build FIRST(X):
1. If X ∈ Vt, then FIRST(X) is { X }
2. If X → ε then add ε to FIRST(X)
3. If X → Y1 Y2 … Yk

a) Put FIRST(Y1) — {ε} in FIRST(X)
b) ∀i: 1 < i ≤ k, if ε ∈ FIRST(Y1) ∩ … ∩ FIRST(Yi-1) 

(i.e., Y1 Y2 … Yi-1 ⇒* ε) 
then put FIRST(Yi) — {ε} in FIRST(X)

c) If ε ∈ FIRST(Y1) ∩ … ∩ FIRST(Yk) 
then put ε in FIRST(X)

Repeat until no more additions can be made. �56

This is a straightforward recursive algorithm: to compute
FIRST(X), expand each individual rule till you reach an initial
terminal. Take care to only add ε if the entire rule can reduce to ε.

FOLLOW

> For a non-terminal A, define FOLLOW(A) as:
—the set of terminals that can appear immediately to the right of A in

some sentential form
— I.e., a non-terminal’s FOLLOW set specifies the tokens that can legally

appear after it.
—A terminal symbol has no FOLLOW set.

> To build FOLLOW(A):
1. Put $ in FOLLOW(<goal>)
2. If A → αBβ:

a) Put FIRST(β) – {ε} in FOLLOW(B)
b) If β = ε (i.e., A → αB) or ε ∈ FIRST(β) (i.e., β ⇒* ε) then put

FOLLOW(A) in FOLLOW(B)
Repeat until no more additions can be made

�57

Example — computing the FOLLOW set

�58

(start) Add $ to FOLLOW(S).
S → E Add FOLLOW(S) to FOLLOW(E).
E → TE´ Add FIRST(E´) - {ε} to FOLLOW(T).

Add FOLLOW(E) to FOLLOW(E´).
ε ∈ FIRST(E´), so add FOLLOW(E) to FOLLOW(T).

E´ → +E | —E | ε Add FOLLOW(E´) to FOLLOW(E). [noop]
T → FT´ Add FIRST(T´) - {ε} to FOLLOW(F).

Add FOLLOW(T) to FOLLOW(T´).
ε ∈ FIRST(T´), so add FOLLOW(T) to FOLLOW(F).

T´ → * T | / T | ε Add FOLLOW(T´) to FOLLOW(T). [noop]
F → num | id [noop]

S → E
E → TE´
E´ → +E | —E | ε
T → FT´
T´ → * T | / T | ε
F → num | id

LL(1) parse table construction

Input: Grammar G
Output: Parsing table M
Method:
1. ∀ production A → α:

a) ∀a ∈ FIRST(α), add A → α to M[A,a]
b) If ε ∈ FIRST(α):

I. ∀b ∈ FOLLOW(A), add A → α to M[A,b]
II. If $ ∈ FOLLOW(A), add A → α to M[A,$]

2. Set each undefined entry of M to error

If ∃M[A,a] with multiple entries then G is not LL(1).
NB: recall that a, b ∈ Vt, so a, b ≠ ε �59

Example

Our long-suffering expression grammar:
S → E
E → TE´
E´ → +E | —E | ε
T → FT´
T´ → * T | / T | ε
F → num | id

�60

S → E
FIRST(E) = { id,num } so add to M[S,id] and M[S,num]

E → TE´ — easy
T → FT´ — easy
E´ → +E | —E | ε

Add to M[E´,+] and M[E´,-]. ε ∈ FIRST(ε), so add to M[E´,$]

T´ → * T | / T | ε
Add to M[T´,+] and M[T´,-], but also to each b in FOLLOW(T´).

F → num | id — easy

Properties of LL(1) grammars

1. No left-recursive grammar is LL(1)
2. No ambiguous grammar is LL(1)
3. Some languages have no LL(1) grammar
4. An ε–free grammar where each alternative expansion for A

begins with a distinct terminal is a simple LL(1) grammar.

Example:
S → aS | a

is not LL(1) because FIRST(aS) = FIRST(a) = { a }
 S → aS´

S´ → aS | ε
accepts the same language and is LL(1)

�61

A grammar that is not LL(1)

<stmt> ::= if <expr> then <stmt>
 | if <expr> then <stmt> else <stmt>

| …

<stmt> ::= if <expr> then <stmt> <stmt´> | …
<stmt´> ::= else <stmt> | ε

Left-factored:

Now, FIRST(<stmt´>) = { ε, else }
Also, FOLLOW(<stmt´>) = { else, $}
But, FIRST(<stmt´>) ∩ FOLLOW(<stmt´>) = { else } ≠ ∅
On seeing else, conflict between choosing

<stmt´> ::= else <stmt> and <stmt´> ::= ε
 ⇒ grammar is not LL(1)!

�62

Note that since <stmt> precedes <stmt´>, by recursion <stmt´>
precedes <stmt´>, so FIRST(<stmt´>) is in FOLLOWS(<stmt´>).
NB: The fix, as before, is to put priority on <stmt´> ::= else
<stmt> to associate else with closest previous then.

Error recovery

Key notion:
> For each non-terminal, construct a set of terminals on which

the parser can synchronize
> When an error occurs looking for A, scan until an element of

SYNC(A) is found

Building SYNC(A):
1. a ∈ FOLLOW(A) ⇒ a ∈ SYNC(A)
2. place keywords that start statements in SYNC(A)
3. add symbols in FIRST(A) to SYNC(A)

If we can’t match a terminal on top of stack:
1. pop the terminal
2. print a message saying the terminal was inserted
3. continue the parse

I.e., SYNC(a) = Vt – {a}
�63

NB: popping the terminal means we matched it – since it wasn’t
really there, in effect we have inserted it

What you should know!

✎ What are the key responsibilities of a parser?
✎ How are context-free grammars specified?
✎ What are leftmost and rightmost derivations?
✎ When is a grammar ambiguous? How do you remove

ambiguity?
✎ How do top-down and bottom-up parsing differ?
✎ Why are left-recursive grammar rules problematic?
✎ How do you left-factor a grammar?
✎ How can you ensure that your grammar only requires a

look-ahead of 1 symbol?

�64

Can you answer these questions?

✎Why is it important for programming languages to have a
context-free syntax?

✎Which is better, leftmost or rightmost derivations?
✎Which is better, top-down or bottom-up parsing?
✎Why is look-ahead of just 1 symbol desirable?
✎Which is better, recursive descent or table-driven top-

down parsing?
✎Why is LL parsing top-down, but LR parsing is bottom up?

�65

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

