
Oscar Nierstrasz

11. Program Transformation

Roadmap

> Program Transformation
> Refactoring
> Aspect-Oriented Programming

�2

Links

> Program Transformation:
— http://swerl.tudelft.nl/bin/view/Pt
— http://www.program-transformation.org/

> Spoofax/Stratego:
— http://www.metaborg.org/

> TXL:
— http://www.txl.ca/

> Refactoring:
— http://www.ibm.com/developerworks/library/os-ecref/
— http://recoder.sourceforge.net/wiki/
— http://www.refactory.com/RefactoringBrowser/

> AOP:
— http://www.eclipse.org/aspectj/

�3

Roadmap

> Program Transformation
—Introduction
—Stratego/XT
—TXL

> Refactoring
> Aspect-Oriented Programming

�4

Thanks to Eelco Visser and Martin Bravenboer for their kind permission to
reuse and adapt selected material from their Program Transformation course.
http://swerl.tudelft.nl/bin/view/Pt

What is “program transformation”?

> Program Transformation is the process of transforming
one program to another.

> Near synonyms:
—Metaprogramming
—Generative programming
—Program synthesis
—Program refinement
—Program calculation

�5

Metaprogramming refers more generally to programs that
manipulate other programs.
Generative programming refers to the generation of programs, for
example, by composing templates in C++.
Program synthesis concerns the generation of programs from
high-level specifications.
Program refinement refers to the stepwise transformation of high-
level programs to lower-level executable ones.
Program calculation is the derivation of programs by
manipulating formulas.

Applications of program transformation

> Translation
– Migration
– Synthesis

– Refinement
– Compilation

– Reverse Engineering
– Decompilation
– Architecture Extraction
– Visualization

– Program Analysis
– Control flow
– Data flow

�6

• Migration: transforming code from an old language to a new
one.

• Synthesis: generating executable programs from higher-level
specifications.

• Reverse Engineering: extracting higher-level representations
from low-level code.

• Program Analysis: extracting information from code in order to
reason about its properties.

Program Synthesis: Compilation

function fact(n : int) : int =
if n < 1 then 1

else (n * fact(n - 1))

Tiger

)

MIPS

fact:subu $sp, $sp, 20
sw $fp, 8($sp)
addiu $fp, $sp, 20
sw $s2, -8($fp)
sw $ra, -4($fp)
sw $a0, 0($fp)
move $s2, $a1
li $t0, 1
bge $s2, $t0, c_0
li $v0, 1
b d_0

c_0: lw $a0, ($fp)
li $t0, 1
subu $a1, $s2, $t0
jal fact_a_0
mul $v0, $s2, $v0

d_0: lw $s2, -8($fp)
lw $ra, -4($fp)
lw $fp, 8($sp)
addiu $sp, $sp, 20
jr $ra

Translation — compilation

http://www.cs.uu.nl/docs/vakken/pt/slides/PT05-ProgramTransformation.pdf �7

Tiger is an experiment in using program transformation to
compile a high-level programming language (Tiger) to assembly
code.

See: http://strategoxt.org/Tiger/WebHome

Example: Migration from Procedural to OO

type tree = {key: int, children: treelist}

type treelist = {hd: tree, tl: treelist}

function treeSize(t : tree) : int =

if t = nil then 0 else 1 + listSize(t.children)

function listSize(ts : treelist) =

if ts = nil then 0 else listSize(t.tl)

Tiger +
class Tree {

Int key;
TreeList children;
public Int size() {

return 1 + children.size
}

}
class TreeList { ... }

Java

Translation — migration from procedural to OO

http://www.cs.uu.nl/docs/vakken/pt/slides/PT05-ProgramTransformation.pdf �8

Rephrasing — desugaring regular expressions

http://www.cs.uu.nl/docs/vakken/pt/slides/PT05-ProgramTransformation.pdf
�9

Example: Desugaring Regular Expressions

Exp := Id

| Id "(" {Exp ","}* ")"

| Exp "+" Exp

| ...

EBNF

)

Exp := Id

| Id "(" Exps ")"

| Exp "+" Exp

| ...

Exps :=

| Expp

Expp := Exp

| Expp "," Exp

BNF

“Syntactic sugar” refers to syntax that is convenient for the
programmer, but is not strictly needed as the host language
already supports a more verbose way of doing the same thing.
Autoboxing in Java is an example of syntactic sugar, since:
Integer n = 1;

is automatically rewritten to:
Integer n = new Integer(1);

The example in the previous slide shows how Extended BNF
(EBNF) with a Kleene closure operator (*) can be desugared by
program transformation to an equivalent BNF without the
extension.

Rephrasing — partial evaluation

http://www.cs.uu.nl/docs/vakken/pt/slides/PT05-ProgramTransformation.pdf
�10

Example: Partial Evaluation

function power(x : int, n : int) : int =

if n = 0 then 1

else if even(n) then square(power(x, n/2))

else (x * power(x, n - 1))

Tiger

+ n = 5
Tiger

function power5(x : int) : int =

x * square(square(x))

Partial evaluation is a technique to rewrite programs if some of
their parameters are known in advance. In this example, the
second parameter n to the function power() is known, so we
can generate an equivalent function that only takes the first
argument, by partially evaluation the code of the original
function.
If n=5, then the original body can be rewritten by partially
evaluating it to:
x*power(x,4)

Another step allows us to partially evaluate power(x,4)
yielding:
x*square(power(x,2))

A final partial evaluation step yields:
x*square(square(x))

Transformation pipeline

http://losser.st-lab.cs.uu.nl/~mbravenb/PT05-Infrastructure.pdf �11

This general scheme applies to Stratego, TXL and various other
systems. Transformation systems and languages may support or
automate different parts of this pipeline.
If the source language is fixed, then a fixed parser and pretty-
printer may be used.
If the source and target languages are arbitrary, then there should
be support to specify grammars and automatically generate
parsers and pretty-printers.

Roadmap

> Program Transformation
—Introduction
—Stratego/XT
—TXL

> Refactoring
> Aspect-Oriented Programming

�12

Stratego/XT (AKA Spoofax Language Workbench)

> Stratego
—A language for specifying program transformations

– term rewriting rules
– programmable rewriting strategies
– pattern-matching against syntax of object language
– context-sensitive transformations

> XT
—A collection of transformation tools

– parser and pretty printer generators
– grammar engineering tools

http://strategoxt.org/ �13

Stratego/XT

http://losser.st-lab.cs.uu.nl/~mbravenb/PT05-Infrastructure.pdf �14

The parser and a basic pretty-printer 100% generated.
Language-specific support for transformations are generated.

Parsing
module Exp
exports
 context-free start-symbols Exp
 sorts Id IntConst Exp

 lexical syntax
 [\ \t\n] -> LAYOUT
 [a-zA-Z]+ -> Id
 [0-9]+ -> IntConst

 context-free syntax
 Id -> Exp {cons("Var")}
 IntConst -> Exp {cons("Int")}

 "(" Exp ")" -> Exp {bracket}

 Exp "*" Exp -> Exp {left, cons("Mul")}
 Exp "/" Exp -> Exp {left, cons("Div")}
 Exp "%" Exp -> Exp {left, cons("Mod")}

 Exp "+" Exp -> Exp {left, cons("Plus")}
 Exp "-" Exp -> Exp {left, cons("Minus")}

 context-free priorities
 {left:
 Exp "*" Exp -> Exp
 Exp "/" Exp -> Exp
 Exp "%" Exp -> Exp
 }
 > {left:
 Exp "+" Exp -> Exp
 Exp "-" Exp -> Exp
 }

Stratego parses any
context-free language
using Scannerless
Generalized LR Parsing

Rules translate
terms to terms

File: Exp.sdf

�15

This example shows a simple expression language, with lexical
rules for tokens, a simple (ambiguous) grammar for the syntax,
and priority rules for the operators to aid in disambiguation. The
grammar rules also contain actions to produce syntax tree terms.
Generalized LR (GLR) parsing essentially does a parallel,
breadth-first LR parse to handle ambiguity.

https://en.wikipedia.org/wiki/GLR_parser

See the Makefile for the steps needed to run the example.
git://scg.unibe.ch/lectures-cc-examples
subfolder: cc-Stratego

Caveat: the workbench is rather complex and not so easy to
install and use.

Testing

testsuite Exp
topsort Exp

test eg1 parse
"1 + 2 * (3 + 4) * 3 - 1"

->
Minus(
 Plus(
 Int("1")
 , Mul(
 Mul(Int("2"), Plus(Int("3"), Int("4")))
 , Int("3")
)
)
, Int("1")
)

File: Exp.testsuite

�16

This file specifies a test that the given input string, when parsed,
will result in the term that follows.

Running tests

pack-sdf -i Exp.sdf -o Exp.def
 including ./Exp.sdf

sdf2table -i Exp.def -o Exp.tbl -m Exp
SdfChecker:error: Main module not defined
--- Main

parse-unit -i Exp.testsuite -p Exp.tbl

executing testsuite Exp with 1 tests

* OK : test 1 (eg1 parse)

results testsuite Exp
successes : 1
failures : 0

“Pack” the definitions

Generate the parse table

Run the tests

�17

We need to perform several steps to run the tests.
First the SDF modules (including any imported ones) are
“packed” into a single definition. Next, the definitions are
analyzed and a parse table is generated. Finally, the tests are run.

Interpretation example

module ExpEval

imports libstratego-lib
imports Exp

rules
convert : Int(x) -> <string-to-int>(x)
eval : Plus(m,n) -> <add>(m,n)
eval : Minus(m,n) -> <subt>(m,n)
eval : Mul(m,n) -> <mul>(m,n)
eval : Div(m,n) -> <div>(m,n)
eval : Mod(m,n) -> <mod>(m,n)

strategies
main = io-wrap(innermost(convert <+ eval))

File: ExpEval.str

Stratego separates the specification of rules (transformations)
from strategies (traversals). In principle, both are reusable.

1 + 2 * (3 + 4) * 3 - 1

File: ultimate-question.txt

�18

In this example we specify a separate set of rules to transform
syntactic terms of the parse tree to evaluated expressions. In this
case the transformation rules use built-in arithmetic functions.
In general, term rewriting can be performed using a variety of
strategies (top-down, bottom-up, etc.). Stratego separates the
definition of the rules from the strategies (unlike Prolog, in which
rules are strictly applied in the order they appear).
For this example, arithmetic functions can only be applied to fully
evaluated expressions (i.e., numbers), hence the strategy to use
must work from the leaves inwards (“innermost”).
Furthermore, we must convert integers before applying
operations, so we specify (convert <+ eval).

Strategies

A strategy determines how a set of rewrite rules will be
used to traverse and transform a term.

• innermost
• top down
• bottom up
• repeat
• …

�19

Running the transformation
sdf2rtg -i Exp.def -o Exp.rtg -m Exp
SdfChecker:error: Main module not defined
--- Main

rtg2sig -i Exp.rtg -o Exp.str

strc -i ExpEval.str -la stratego-lib
[strc | info] Compiling 'ExpEval.str'
[strc | info] Front-end succeeded : [user/system] = [0.56s/0.05s]
[strc | info] Optimization succeeded -O 2 : [user/system] = [0.00s/0.00s]
[strc | info] Back-end succeeded : [user/system] = [0.16s/0.01s]
 gcc -I /usr/local/strategoxt/include -I /usr/local/strategoxt/include -I /usr/local/
strategoxt/include -Wall -Wno-unused-label -Wno-unused-variable -Wno-unused-function -
Wno-unused-parameter -DSIZEOF_VOID_P=4 -DSIZEOF_LONG=4 -DSIZEOF_INT=4 -c ExpEval.c -
fno-common -DPIC -o .libs/ExpEval.o
 gcc -I /usr/local/strategoxt/include -I /usr/local/strategoxt/include -I /usr/local/
strategoxt/include -Wall -Wno-unused-label -Wno-unused-variable -Wno-unused-function -
Wno-unused-parameter -DSIZEOF_VOID_P=4 -DSIZEOF_LONG=4 -DSIZEOF_INT=4 -c ExpEval.c -o
ExpEval.o >/dev/null 2>&1
gcc .libs/ExpEval.o -o ExpEval -bind_at_load -L/usr/local/strategoxt/lib /usr/local/
strategoxt/lib/libstratego-lib.dylib /usr/local/strategoxt/lib/libstratego-lib-
native.dylib /usr/local/strategoxt/lib/libstratego-runtime.dylib -lm /usr/local/
strategoxt/lib/libATerm.dylib
[strc | info] C compilation succeeded : [user/system] = [0.31s/0.36s]
[strc | info] Compilation succeeded : [user/system] = [1.03s/0.42s]

sglri -p Exp.tbl -i ultimate-question.txt | ./ExpEval
42

Generate regular tree grammar

Generate signature

Compile to C

Parse and transform
�20

Roadmap

> Program Transformation
—Introduction
—Stratego/XT
—TXL

> Refactoring
> Aspect-Oriented Programming

�21

The TXL paradigm: parse, transform, unparse

http://www.txl.ca/docs/TXLintro.pdf
�22

TXL was original designed as a desugaring tool for syntactic
extensions to the teaching language Turing (originally, TXL =
“Turing eXtender Language”). Now it is more a general-purpose
source to source transformation language.

See also:
https://en.wikipedia.org/wiki/Turing_(programming_language)
https://www.txl.ca

TXL programs

Base grammar

Grammar
overrides

Transformation
rules

defines tokens and non-terminals

extend and modify types from grammar

rooted set of rules and functions

�23

TXL assumes that there is a host programming language as the
target, whose syntax is specified by a base grammar, and a set of
“grammar overrides” specifying extensions to the base grammar.
TXL then applies a set of transformation rules that will “desugar”
the extensions, yielding a valid program adhering to just the base
grammar.

Expression example

% Part I. Syntax specification
define program
 [expression]
end define

define expression
 [expression] + [term]
 | [expression] - [term]
 | [term]
end define

define term
 [term] * [primary]
 | [term] / [primary]
 | [primary]
end define

define primary
 [number]
 | ([expression])
end define

% Part 2. Transformation rules
rule main
 replace [expression]
 E [expression]
 construct NewE [expression]
 E [resolveAddition]
 [resolveSubtraction]
 [resolveMultiplication]
 [resolveDivision]
 [resolveBracketedExpressions]
 where not
 NewE [= E]
 by
 NewE
end rule

rule resolveAddition
 replace [expression]
 N1 [number] + N2 [number]
 by
 N1 [+ N2]
end rule
...

rule resolveBracketedExpressions
 replace [primary]
 (N [number])
 by
 N
end rule

File: Question.Txl

�24

This example specifies a grammar for an expression language
(the same one we saw before), and rules to transform expressions
by evaluating them.
TXL reverses the usual BNF convention and puts non-terminals
in square brackets while interpreting everything else (except
special chars) as terminals.
The default lexical scanner can be modified, but is usually fine
for first experiments.
See:

git://scg.unibe.ch/lectures-cc-examples
subfolder: cc-TXL

Running the example

txl Ultimate.Question
TXL v10.5d (1.7.08) (c)1988-2008 Queen's University at Kingston
Compiling Question.Txl ...
Parsing Ultimate.Question ...
Transforming ...
42

1 + 2 * (3 + 4) * 3 - 1

File: Ultimate.Question

�25

Example: TIL — a tiny imperative language

http://www.program-transformation.org/Sts/TILChairmarks

// Find all factors of a given input number
var n;
write "Input n please";
read n;
write "The factors of n are";
var f;
f := 2;
while n != 1 do
 while (n / f) * f = n do
 write f;
 n := n / f;
 end
 f := f + 1;
end File: factors.til

�26

This toy language is used for various transformation examples.

See: http://www.program-transformation.org/Sts/TILChairmarks

TIL Grammar

% Keywords of TIL
keys
 var if then else while
 do for read write
end keys

% Compound tokens
compounds
 := !=
end compounds

% Commenting convention
comments
 //
end comments

define program
 [statement*]
end define

define statement
 [declaration]
 | [assignment_statement]
 | [if_statement]
 | [while_statement]
 | [for_statement]
 | [read_statement]
 | [write_statement]
end define

% Untyped variables
define declaration
 'var [id] ; [NL]
end define

define assignment_statement
 [id] := [expression] ; [NL]
end define

define if_statement
 'if [expression] 'then [IN][NL]
 [statement*] [EX]
 [opt else_statement]
 'end [NL]
end define
...

All TXL parsers are also pretty-
printers if the grammar includes
formatting cues

File: TIL.Grm

�27

The [NL], [IN] and [EX] annotations tell the pretty-printer where
to insert newlines, and where to indent and dedent code.

Pretty-printing TIL

include "TIL.Grm"
function main
 match [program]
 _ [program]
end function

File: TILparser.Txl

var n;
write "Input n please";
read n;
write "The factors of n are";
var f;
f := 2;
while n != 1 do
 while (n / f) * f = n do
 write f;
 n := n / f;
 end
 f := f + 1;
end

txl factors.til TILparser.Txl

�28

Generating statistics
include "TIL.Grm"

function main
 replace [program]
 Program [program]

 % Count each kind of statement we're interested in
 % by extracting all of each kind from the program

 construct Statements [statement*]
 _ [^ Program]
 construct StatementCount [number]
 _ [length Statements] [putp "Total: %"]

 construct Declarations [declaration*]
 _ [^ Program]
 construct DeclarationsCount [number]
 _ [length Declarations] [putp "Declarations: %”]
...
 by
 % nothing
end function

File: TILstats.Txl

Total: 11
Declarations: 2
Assignments: 3
Ifs: 0
Whiles: 2
Fors: 0
Reads: 1
Writes: 3

�29

Tracing
include "TIL.Grm"
...
redefine statement
 ...
 | [traced_statement]
end redefine

define traced_statement
 [statement] [attr 'TRACED]
end define

rule main
replace [repeat statement]
 S [statement]
 Rest [repeat statement]
...
 by
 'write QuotedS; 'TRACED
 S 'TRACED
 Rest
end rule

...

File: TILtrace.Txl

write "Trace: var n;";
var n;
write "Trace: write \"Input n please\";";
write "Input n please";
write "Trace: read n;";
read n;
...

�30

This transformation replaces every statement by a “quoted”
version of the statement (i.e., that prints the text of the statement
preceded by “Trace: ”), followed by the original statement.
Executing the program will then produce a printout of every
statement just before it is executed.

TXL vs Stratego

Stratego TXL
Scannerless GLR parsing Agile parsing (top-down + bottom-up)

Reusable, generic traversal strategies Fixed traversals

Separates rewrite rules from traversal
strategies Traversals part of rewrite rules

�31

Commercial systems

“The DMS Software Reengineering Toolkit is a set of tools for automating
customized source program analysis, modification or translation or generation of
software systems, containing arbitrary mixtures of languages.”

http://www.semdesigns.com/Products/DMS/DMSToolkit.html

�32

Roadmap

> Program Transformation
> Refactoring

—Refactoring Engine and Code Critics
—Eclipse refactoring plugins

> Aspect-Oriented Programming

�33

What is Refactoring?

> The process of changing a software system in such a
way that it does not alter the external behaviour of the
code, yet improves its internal structure.

— Fowler, et al., Refactoring, 1999.

�34

Rename Method — manual steps

> Do it yourself approach:
—Check that no method with the new name already exists in any

subclass or superclass.
—Browse all the implementers (method definitions)
—Browse all the senders (method invocations)
—Edit and rename all implementers
—Edit and rename all senders
—Remove all implementers
—Test

> Automated refactoring is better !

�35

Rename Method

> Rename Method (method, new name)
> Preconditions

—No method with the new name already exists in any subclass or
superclass.

—No methods with same signature as method outside the inheritance
hierarchy of method

> PostConditions
—method has new name
—relevant methods in the inheritance hierarchy have new name
— invocations of changed method are updated to new name

> Other Considerations
—Statically/Dynamically Typed Languages ⇒ Scope of the renaming

�36

The Refactoring Browser

�37

Typical Refactorings

Class Refactorings Method Refactorings Attribute Refactorings
add (sub)class to hierarchy add method to class add variable to class

rename class rename method rename variable
remove class remove method remove variable

push method down push variable down

push method up pull variable up
add parameter to method create accessors
move method to component abstract variable
extract code in new method

Don Roberts, “Practical Analysis for Refactoring,”
Ph.D. thesis, University of Illinois, 1999.

Bill Opdyke, “Refactoring Object-Oriented Frameworks,”
Ph.D. thesis, University of Illinois, 1992.

�38

QualityAssistant — search for common errors

�39

QualityAssistant is a tool integrated into the Pharo IDE. It uses
syntactic rules to detect violations of quality rules, and can also
propose fixes with the help of transformation rules.

Refactoring Engine — matching trees

Syntax Type
` recurse
@ list
. statement
literal

``@object halt recursively match send of halt

`@.Statements match list of statements

Class `@message: `@args match all sends to Class

NB: All metavariables
start with `

�40

Rewrite rules

�41

Rewrite rules help a developer to easily specify a pattern that has
to be matched and another pattern that should be used for
replacement.

Complicated matching rules

�X

Pattern-matching rules are powerful, but may be hard to maintain
when they get more complex.

MatchTool

�X

MatchTool provides an advanced way to work with the matching
syntax. A developer can edit pattern code in the top left corner
and it will be highlighted accordingly. The bottom left pane
contains test code against which the pattern code from the top
pane will be matched. The list in the middle contains all the
matches (in this case 2). The right list contains a map specifying
what each metavariable matched.
The example contains one of the match expressions from the
“Complicated matching rules” slide.

Rewrite Tool

�X

While the MatchTool provides an interface to experiment with
matching, the Rewrite Tool allows one to experiment while
defining transformations.
From top left in a counter clockwise direction:
1) the target code of the transformation
2) matching code
3) replacement code
4) replacement result

Transformation is about AST

�X

Old syntax:

Smalltalk ui icons smallPlayIcon

New syntax:

#smallPlayIcon asIcon

At some point developers decided to simplify the API to retrieve
icons. It should be easy to transform code with matching syntax.

Transformation is about AST

�X

Old syntax:

Smalltalk ui icons `icon

New syntax:

`icon asIcon

Transformation is about AST

�X

Old syntax:

Smalltalk ui icons `icon

New syntax:

`icon asIcon#

In theory you just have to take a “word” that comes after
Smalltalk ui icons and append it with asIcon. Also you have
to prepend it with # which is not a common use case for the
rewrite syntax.

Transformation is about AST

�X

Old syntax:

Smalltalk ui icons `icon

New syntax:

`icon asIcon#

message

variable (literal)

The problem is more complicated, because `icon in the first
expression is a meta message sent while in the second one it is a
meta variable. This means that the transformation cannot happen
automatically.

Transformation is about AST

�X

Because matching engine works on AST we can obtain the
matched result, take matched message selector, create a symbol
literal out of it, and use it as a receiver of an asIcon massage.

Roadmap

> Program Transformation
> Refactoring

—Refactoring Engine and Code Critics
—Eclipse refactoring plugins

> Aspect-Oriented Programming

�42

A workbench action delegate

package astexampleplugin.actions;
...
import org.eclipse.ui.IWorkbenchWindowActionDelegate;

public class ChangeAction implements IWorkbenchWindowActionDelegate {
 ...
 public void run(IAction action) {
 for (ICompilationUnit cu : this.classes) {
 try {
 ...
 parser.setSource(cu);
 ...
 CompilationUnit ast = (CompilationUnit)parser.createAST(null);
 ...
 StackVisitor visitor = new StackVisitor(ast.getAST());
 ast.accept(visitor);
 ...

 } catch ...
 }
 }
 ...
}

When the workbench
action proxy is triggered by
the user, it delegates to an
instance of this class.

http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.jdt.doc.isv/guide/jdt_api_manip.htm
�43

A field renaming visitor

package astexampleplugin.ast;
...
import org.eclipse.jdt.core.dom.ASTVisitor;

public class StackVisitor extends ASTVisitor {

 private static final String PREFIX = "_";
 ...
 public boolean visit(FieldDeclaration field){
 ...
 }

 public boolean visit(FieldAccess fieldAccess){
 String oldName = fieldAccess.getName().toString();
 String newName = this.fields.get(oldName);
 if(newName == null){
 newName = PREFIX + oldName;
 this.fields.put(oldName , newName);
 }
 fieldAccess.setName(this.ast.newSimpleName(newName));
 return true;
 }
}

The visitor simply implements
the visit method for field
declarations and accesses,
and prepends an underscore.

�44

Renaming fields

�45

Roadmap

> Program Transformation
> Refactoring
> Aspect-Oriented Programming

�46

Problem: cross-cutting concerns

“Identifying Cross-Cutting Concerns in Embedded C Code”,
Bruntink, van Deursen, Tourwé

Certain features (like
logging, persistence and
security), cannot usually
be encapsulated as
classes. They cross-cut
code of the system.

�47

Aspect-Oriented Programming

AOP improves modularity by supporting the
separation of cross-cutting concerns.

An aspect packages
cross-cutting concerns

A pointcut specifies a set
of join points in the target
system to be affected

Weaving is the process
of applying the aspect to
the target system

�48

Canonical example — logging

package tjp;

public class Demo {
static Demo d;
public static void main(String[] args){
new Demo().go();
}
void go(){
d = new Demo();
d.foo(1,d);
System.out.println(d.bar(new Integer(3)));
}
void foo(int i, Object o){
System.out.println("Demo.foo(" + i + ", " + o + ")\n");
}
String bar (Integer j){
System.out.println("Demo.bar(" + j + ")\n");
return "Demo.bar(" + j + ")";
}
}

http://www.eclipse.org/aspectj/downloads.php

Demo.foo(1, tjp.Demo@939b78e)
Demo.bar(3)
Demo.bar(3) �49

A logging aspect

aspect GetInfo {

pointcut goCut(): cflow(this(Demo) && execution(void go()));

pointcut demoExecs(): within(Demo) && execution(* *(..));

Object around(): demoExecs() && !execution(* go()) && goCut() {
...
}

...
}

�50

Intercept execution within control flow of Demo.go()

Identify all methods within Demo

Wrap all methods except Demo.go()

These pointcuts define join points in the target program where to
add code.
Each pointcut is associated with a predicate that specifies either
static or dynamic conditions. A cflow predicate is dynamic. The
goCut() pointcut intercepts the control flow of Demo.go().
The demoExecs() pointcut intercepts all methods within the
Demo class. Notice the use of the pattern “* *(..)”, which
specifies any method with any return value and any number of
arguments.
Finally, the around advice specifies the code to wrap the
matching join points. In this case the pointcut specifies that we
want to match all methods within Demo except Demo.go().

A logging aspect
aspect GetInfo {
...
Object around(): demoExecs() && !execution(* go()) && goCut() {
println("Intercepted message: " +
thisJoinPointStaticPart.getSignature().getName());

println("in class: " +
thisJoinPointStaticPart.getSignature().getDeclaringType().getName());

printParameters(thisJoinPoint);
println("Running original method: \n");
Object result = proceed();
println(" result: " + result);
return result;
}
...
}

Intercepted message: foo
in class: tjp.Demo
Arguments:
 0. i : int = 1
 1. o : java.lang.Object = tjp.Demo@c0b76fa
Running original method:

Demo.foo(1, tjp.Demo@c0b76fa)
 result: null
Intercepted message: bar
in class: tjp.Demo
Arguments:
 0. j : java.lang.Integer = 3
Running original method:

Demo.bar(3)
 result: Demo.bar(3)
Demo.bar(3) �51

Here are the details of the around advice. Note the analogy with
the use of super in single-inheritance OO languages. We are
effectively “overriding” each matched method with the given
code. The invocation of proceed() indicates where the original
method is to be invoked (i.e., wrapped), in exactly the same way
we use a super invocation to wrap an overridden method in a
subclass.
Note how Demo.foo() and Demo.bar() are logged but not
Demo.go().
(No apologies for the stupid toy example.)

Making classes visitable with aspects

public class SumVisitor implements Visitor {
int sum = 0;
public void visit(Nil l) { }

public void visit(Cons l) {
sum = sum + l.head;
l.tail.accept(this);
}

public static void main(String[] args) {
List l = new Cons(5, new Cons(4,

new Cons(3, new Nil())));
SumVisitor sv = new SumVisitor();
l.accept(sv);
System.out.println("Sum = " + sv.sum);
}
}
public interface Visitor {
void visit(Nil l);
void visit(Cons l);
}

public interface List {}
public class Nil implements List {}
public class Cons implements List {
int head;
List tail;
Cons(int head, List tail) {
this.head = head;
this.tail = tail;
}
}

We want to write this

But we are stuck with this …

�52

In this example we would like to be able to “visit” an existing
composite structure, but we cannot since the structure is not
“visitable”. We also do not own the code, so we cannot simply
modify it to make it visitable.

AspectJ

�53

This problem is easily solved by defined an aspect Visitable
that defines the missing accept methods.
Here we are using aspects not to defined any “before”, “after”, or
“around” advice, but simply to add new methods.
This is also known as a “class extension”, or as a form of
“monkey patching”.
See:

https://en.wikipedia.org/wiki/Extension_method
https://en.wikipedia.org/wiki/Monkey_patch

With aspects, who needs visitors?

The missing method
is just an aspect

public class SumList {
public static void main(String[] args) {
List l = new Cons(5, new Cons(4, new Cons(3, new Nil())));
System.out.println("Sum = " + l.sum());
}
}

This would be even cleaner

public aspect Summable {
public int List.sum() {
return 0;
}
public int Nil.sum() {
return 0;
}
public int Cons.sum() {
return head + tail.sum();
}
}

�54

Don't forget that the Visitor pattern arose from a need to be able
to add new algorithms to work with data structures after the fact.
But AOP also offers a way to adapt classes after the fact, so
perhaps we don't need visitors at all.
In fact, what we can do instead is to simply add methods directly
to our List structure that do what our visitor is doing, i.e.,
compute sums directly.

What you should know!

✎ What are typical program transformations?
✎ What is the typical architecture of a PT system?
✎ What is the role of term rewriting in PT systems?
✎ How does TXL differ from Stratego/XT?
✎ How does the Refactoring Engine use metavariables to

encode rewrite rules?
✎ Why can’t aspects be encapsulated as classes?
✎ What is the difference between a pointcut and a join

point?

�55

Can you answer these questions?

✎How does program transformation differ from
metaprogramming?

✎ In what way is optimization a form of PT?
✎What special care should be taken when pretty-printing a

transformed program?
✎How would you encode typical refactorings like “push

method up” using a PT system like TXL?
✎How could you use a PT system to implement AOP?

�56

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

