
Compiler Construction!

1. Introduction!

Prof. O. Nierstrasz!
Spring Semester 2011!



Compiler Construction!

© Oscar Nierstrasz!

Compiler Construction!

Lecturer!

Prof. Oscar Nierstrasz!
Oscar.Nierstrasz@iam.unibe.ch!
Schützenmattstr. 14/103!
Tel. 031 631.4618!

Assistant! Toon Verwaest, Raffael Krebs!
Lectures! E8 003, Fridays @ 10h15-12h00!
Exercises! E8 003, Fridays @ 12h00-13h00!

WWW! scg.unibe.ch/teaching/cc!

2	




© Oscar Nierstrasz!

Compiler Construction!

Roadmap!

>  Overview!
>  Front end!
>  Back end!
>  Multi-pass compilers!
>  Example: compiler and interpreter for a toy language!

3	


See Modern compiler implementation 
in Java (Second edition), chapter 1.!



© Oscar Nierstrasz!

Compiler Construction!

Roadmap!

>  Overview!
>  Front end!
>  Back end!
>  Multi-pass compilers!
>  Example: compiler and interpreter for a toy language !

4	




© Oscar Nierstrasz!

Compiler Construction!

Textbook!

>  Andrew W. Appel, Modern compiler implementation 
in Java (Second edition), Cambridge University Press, 
New York, NY, USA, 2002, with Jens Palsberg.!

Thanks to Jens Palsberg and Tony Hosking 
for their kind permission to reuse and adapt 
the CS132 and CS502 lecture notes.!
http://www.cs.ucla.edu/~palsberg/!
http://www.cs.purdue.edu/homes/hosking/!

5	




Other recommended sources!

>  Compilers: Principles, Techniques, and 
Tools, Aho, Sethi and Ullman!
—  http://dragonbook.stanford.edu/!

>  Parsing Techniques, Grune and Jacobs!
—  http://www.cs.vu.nl/~dick/PT2Ed.html!

>  Advanced Compiler Design and 
Implementation, Muchnik!

© Oscar Nierstrasz!

Compiler Construction!

6	




Schedule!

© Oscar Nierstrasz!

Compiler Construction!

7	


1! 25-Feb-11! Introduction!
2! 04-Mar-11! Lexical Analysis!
3! 11-Mar-11! Parsing!
4! 18-Mar-11! Parsing in Practice!
5! 25-Mar-11! Semantic Analysis!
6! 01-Apr-11! Intermediate Representation!
7! 08-Apr-11! SSA and Optimization!
8! 15-Apr-11! Code Generation!

22-Apr-11! Good Friday!
29-Apr-11! Spring break!

9! 06-May-11! Bytecode and Virtual Machines!
10! 13-May-11! PEGs, Packrats and Parser Combinators!
11! 20-May-11! Pinocchio (Toon Verwaest)!
12! 27-May-11! Program Transformation!

03-Jun-11! Final Exam!



Compilers, Interpreters …!

© O. Nierstrasz!

PS — Introduction!

1.8	




© Oscar Nierstrasz!

Compiler Construction!

What is a compiler?!

a program that translates an executable 
program in one language into an 
executable program in another language !

9	




© Oscar Nierstrasz!

Compiler Construction!

What is an interpreter?!

a program that reads an 
executable program and produces 
the results of running that program !

10	




© Oscar Nierstrasz!

Compiler Construction!

Why do we care?!

artificial 
intelligence!

greedy algorithms!
learning algorithms !

algorithms!
graph algorithms!
union-find!
dynamic programming !

theory!
DFAs for scanning!
parser generators!
lattice theory for analysis !

systems!
allocation and naming!
locality!
synchronization !

architecture!
pipeline management!
hierarchy management!
instruction set use !

Compiler construction 
is a microcosm of 
computer science !

Inside a compiler, all these things come together !
11	




© Oscar Nierstrasz!

Compiler Construction!

Isnʼt it a solved problem?!

>  Machines are constantly changing !
—  Changes in architecture ⇒ changes in compilers !
—  new features pose new problems !
—  changing costs lead to different concerns !
—  old solutions need re-engineering !

>  Innovations in compilers should prompt changes in 
architecture !
—  New languages and features !

12	




© Oscar Nierstrasz!

Compiler Construction!

What qualities are important in a compiler?!

>  Correct code !
>  Output runs fast !
>  Compiler runs fast !
>  Compile time proportional to program size !
>  Support for separate compilation !
>  Good diagnostics for syntax errors !
>  Works well with the debugger !
>  Good diagnostics for flow anomalies !
>  Cross language calls !
>  Consistent, predictable optimization !

13	




© Oscar Nierstrasz!

Compiler Construction!

A bit of history!

>  1952: First compiler (linker/loader) written by Grace 
Hopper for A-0 programming language!

>  1957: First complete compiler for FORTRAN by John 
Backus and team!

>  1960: COBOL compilers for multiple architectures!

>  1962: First self-hosting compiler for LISP!

14	




© Oscar Nierstrasz!

Compiler Construction!

A compiler was originally a program that 
“compiled” subroutines [a link-loader]. 
When in 1954 the combination “algebraic 
compiler” came into use, or rather into 
misuse, the meaning of the term had already 
shifted into the present one. 	


— Bauer and Eickel [1975] !

15	




© Oscar Nierstrasz!

Compiler Construction!

Abstract view!

•  recognize legal (and illegal) programs !
• generate correct code !
• manage storage of all variables and code !
• agree on format for object (or assembly) code !

Big step up from assembler — higher level notations!

16	




© Oscar Nierstrasz!

Compiler Construction!

Traditional two pass compiler!

•  intermediate representation (IR) !
•  front end maps legal code into IR !
• back end maps IR onto target machine !
•  simplify retargeting !
• allows multiple front ends !
• multiple passes ⇒ better code !

17	




© Oscar Nierstrasz!

Compiler Construction!

A fallacy!!

Front-end, IR and back-end must encode 
knowledge needed for all n×m combinations!!

18	




© Oscar Nierstrasz!

Compiler Construction!

Roadmap!

>  Overview!
>  Front end!
>  Back end!
>  Multi-pass compilers!
>  Example: compiler and interpreter for a toy language !

19	




© Oscar Nierstrasz!

Compiler Construction!

Front end!

•  recognize legal code !
•  report errors !
• produce IR !
• preliminary storage map !
•  shape code for the back end !

Much of front end construction can be automated !
20	




© Oscar Nierstrasz!

Compiler Construction!

Scanner!

• map characters to tokens!
•  character string value for a token is a lexeme!
• eliminate white space!

x = x + y! <id,x> = <id,x> + <id,y>!

21	




© Oscar Nierstrasz!

Compiler Construction!

Parser!

•  recognize context-free syntax !
• guide context-sensitive analysis !
•  construct IR(s) !
• produce meaningful error messages !
• attempt error correction !

Parser generators mechanize much of the work !
22	




© Oscar Nierstrasz!

Compiler Construction!

Context-free grammars!

1.  <goal> !:= !<expr>!
2.  <expr> !:= !<expr> <op> <term>!
3.   ! ! !| !<term>!
4.  <term> !:= !number!
5.   ! ! !| !id!
6.  <op>!:= !+!
7.   ! ! !| !-!

Context-free syntax 
is specified with a 
grammar, usually in 
Backus-Naur form 
(BNF)!

A grammar G = (S,N,T,P)!
• S is the start-symbol!
• N is a set of non-terminal symbols!
• T is a set of terminal symbols!
• P is a set of productions — P: N → (N ∪T)* !

23	




© Oscar Nierstrasz!

Compiler Construction!

Deriving valid sentences!

Production! Result!
<goal>!

1! <expr>!
2! <expr> <op> <term>!
5! <expr> <op> y!
7! <expr> - y!
2! <expr> <op> <term> - y!
4! <expr> <op> 2 - y!
6! <expr> + 2 - y!
3! <term> + 2 - y!
5! x + 2 - y!

Given a grammar, valid 
sentences can be 
derived by repeated 
substitution.!

To recognize a valid 
sentence in some 
CFG, we reverse this 
process and build up a 
parse.!

24	




© Oscar Nierstrasz!

Compiler Construction!

Parse trees!

A parse can be represented by a tree 
called a parse tree (or syntax tree).!

Obviously, this contains a lot 
of unnecessary information!

25	




© Oscar Nierstrasz!

Compiler Construction!

Abstract syntax trees!

So, compilers often use an abstract syntax tree (AST).!

ASTs are often 
used as an IR.!

26	




© Oscar Nierstrasz!

Compiler Construction!

Roadmap!

>  Overview!
>  Front end!
>  Back end!
>  Multi-pass compilers!
>  Example: compiler and interpreter for a toy language !

27	




© Oscar Nierstrasz!

Compiler Construction!

Back end!

•  translate IR into target machine code !
•  choose instructions for each IR operation !
• decide what to keep in registers at each point !
• ensure conformance with system interfaces !

Automation has been less successful here !

28	




© Oscar Nierstrasz!

Compiler Construction!

Instruction selection!

• produce compact, fast code !
• use available addressing modes !
• pattern matching problem !

—  ad hoc techniques !
—  tree pattern matching !
—  string pattern matching !
—  dynamic programming !

29	




© Oscar Nierstrasz!

Compiler Construction!

Register allocation!

• have value in a register when used !
•  limited resources !
•  changes instruction choices !
•  can move loads and stores !
• optimal allocation is difficult !

Modern allocators often use an analogy to graph coloring !
30	




© Oscar Nierstrasz!

Compiler Construction!

Roadmap!

>  Overview!
>  Front end!
>  Back end!
>  Multi-pass compilers!
>  Example: compiler and interpreter for a toy language!

31	




© Oscar Nierstrasz!

Compiler Construction!

Traditional three-pass compiler!

• analyzes and changes IR !
• goal is to reduce runtime (optimization) !
• must preserve results!

32	




© Oscar Nierstrasz!

Compiler Construction!

Optimizer (middle end)!

Modern optimizers are usually built as a set of passes !

•  constant expression propagation and folding!
•  code motion!
•  reduction of operator strength !
•  common sub-expression elimination !
•  redundant store elimination !
•  dead code elimination !

33	




© Oscar Nierstrasz!

Compiler Construction!

The MiniJava compiler!

34	




© Oscar Nierstrasz!

Compiler Construction!

Compiler phases!
Lex! Break source file into individual words, or tokens !
Parse! Analyse the phrase structure of program !
Parsing Actions! Build a piece of abstract syntax tree for each phrase !

Semantic Analysis! Determine what each phrase means, relate uses of variables to their definitions, 
check types of expressions, request translation of each phrase !

Frame Layout! Place variables, function parameters, etc., into activation records (stack frames) 
in a machine-dependent way !

Translate! Produce intermediate representation trees (IR trees), a notation that is not tied 
to any particular source language or target machine !

Canonicalize! Hoist side effects out of expressions, and clean up conditional branches, for 
convenience of later phases!

Instruction Selection! Group IR-tree nodes into clumps that correspond to actions of target-machine 
instructions !

Control Flow Analysis! Analyse sequence of instructions into control flow graph showing all possible 
flows of control program might follow when it runs!

Data Flow Analysis!
Gather information about flow of data through variables of program; e.g., 
liveness analysis calculates places where each variable holds a still-needed 
(live) value !

Register Allocation! Choose registers for variables and temporary values; variables not 
simultaneously live can share same register !

Code Emission! Replace temporary names in each machine instruction with registers !
35	




© Oscar Nierstrasz!

Compiler Construction!

Roadmap!

>  Overview!
>  Front end!
>  Back end!
>  Multi-pass compilers!
>  Example: compiler and interpreter for a toy language!

36	




© Oscar Nierstrasz!

Compiler Construction!

A straight-line programming language 
(no loops or conditionals): !

Stm! →! Stm ; Stm! CompoundStm	

Stm! →! id := Exp! AssignStm 	

Stm! →! print ( ExpList )! PrintStm	

Exp! →! id! IdExp 	

Exp! →! num! NumExp 	

Exp! →! Exp Binop Exp! OpExp 	

Exp! →! ( Stm , Exp )! EseqExp	

ExpList! →! Exp , ExpList! PairExpList 	

ExpList! →! Exp! LastExpList 	

Binop! →! +! Plus	

Binop! →! -! Minus	

Binop! →! ×! Times	

Binop! →! /! Div	


a := 5 + 3; b := (print(a,a—1),10×a); print(b)!

prints!
8 7!
80!

37	




© Oscar Nierstrasz!

Compiler Construction!

Tree representation!

a := 5 + 3; b := (print(a,a—1),10×a); print(b)!

38	




Straightline Interpreter and Compiler Files!

© Oscar Nierstrasz!

Compiler Construction!

39	




© Oscar Nierstrasz!

Compiler Construction!

Java classes for trees!

abstract class Stm {}!
class CompoundStm extends Stm {!
   Stm stm1, stm2;!
   CompoundStm(Stm s1, Stm s2)!

!{stm1=s1; stm2=s2;}!
}!
class AssignStm extends Stm {!
   String id; Exp exp;!
   AssignStm(String i, Exp e)!

! !{id=i; exp=e;}!
}!
class PrintStm extends Stm {!
   ExpList exps;!
   PrintStm(ExpList e) {exps=e;}!
}!
abstract class Exp {}!
class IdExp extends Exp {!
   String id;!
   IdExp(String i) {id=i;}!
}!

class NumExp extends Exp {!
   int num;!
   NumExp(int n) {num=n;}!
}!
class OpExp extends Exp {!
   Exp left, right; int oper;!
   final static int Plus=1,Minus=2,Times=3,Div=4;!
   OpExp(Exp l, int o, Exp r)!

! !{left=l; oper=o; right=r;}!
}!
class EseqExp extends Exp {!
   Stm stm; Exp exp;!
   EseqExp(Stm s, Exp e) {stm=s; exp=e;}!
}!
abstract class ExpList {}!
class PairExpList extends ExpList {!
   Exp head; ExpList tail;!
   public PairExpList(Exp h, ExpList t)!

! !{head=h; tail=t;}!
}!
class LastExpList extends ExpList {!
   Exp head; !
   public LastExpList(Exp h) {head=h;}!
}!

40	




Straightline Interpreter and Compiler Runtime!

© Oscar Nierstrasz!

Compiler Construction!

41	




© Oscar Nierstrasz!

Compiler Construction!

What you should know!!

✎  What is the difference between a compiler and an 
interpreter?!

✎  What are important qualities of compilers?!
✎  Why are compilers commonly split into multiple passes?!
✎  What are the typical responsibilities of the different parts 

of a modern compiler?!
✎  How are context-free grammars specified?!
✎  What is “abstract” about an abstract syntax tree?!
✎  What is intermediate representation and what is it for?!
✎  Why is optimization a separate activity?!

42	




© Oscar Nierstrasz!

Compiler Construction!

Can you answer these questions?!

✎  Is Java compiled or interpreted? What about Smalltalk? 
Ruby? PHP? Are you sure?!

✎  What are the key differences between modern compilers 
and compilers written in the 1970s?!

✎  Why is it hard for compilers to generate good error 
messages?!

✎  What is “context-free” about a context-free grammar?!

43	




© Oscar Nierstrasz! 44	


Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or 
licensor (but not in any way that suggests that they endorse you or your use of the 
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the 
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The 
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

License!

http://creativecommons.org/licenses/by-sa/3.0/	


