
7. Optimization!

Prof. O. Nierstrasz!

Lecture notes by Marcus Denker!

© Marcus Denker!

Optimization!

Roadmap  

>  Introduction!
>  Optimizations in the Back-end!
>  The Optimizer!
>  SSA Optimizations!
>  Advanced Optimizations!

2	

© Marcus Denker!

Optimization!

Literature!

>  Muchnick: Advanced
Compiler Design and
Implementation!
—  >600 pages on

optimizations!

>  Appel: Modern Compiler
Implementation in Java!
—  The basics!

3	

© Marcus Denker!

Optimization!

Roadmap  

>  Introduction!
>  Optimizations in the Back-end!
>  The Optimizer!
>  SSA Optimizations!
>  Advanced Optimizations!

4	

© Marcus Denker!

Optimization!

Optimization: The Idea!

>  Transform the program to improve efficiency!

>  Performance: faster execution!
>  Size: smaller executable, smaller memory footprint!

Tradeoffs: 1) Performance vs. Size!

 2) Compilation speed and memory!

5	

© Marcus Denker!

Optimization!

No Magic Bullet!!

>  There is no perfect optimizer!
>  Example: optimize for simplicity!

Opt(P): Smallest Program!

Q: Program with no output, does not stop!

Opt(Q)?!

6	

© Marcus Denker!

Optimization!

No Magic Bullet!!

>  There is no perfect optimizer!
>  Example: optimize for simplicity!

Opt(P): Smallest Program!

Q: Program with no output, does not stop!

Opt(Q)?!

L1 goto L1!

7	

© Marcus Denker!

Optimization!

No Magic Bullet!!

>  There is no perfect optimizer!
>  Example: optimize for simplicity!

Opt(P): Smallest Program!

Q: Program with no output, does not stop!

Opt(Q)?!

L1 goto L1! Halting problem!!

8	

© Marcus Denker!

Optimization!

Another way to look at it...!

>  Rice (1953): For every compiler there is a modified
compiler that generates shorter code.!

>  Proof: Assume there is a compiler U that generates the
shortest optimized program Opt(P) for all P. !
—  Assume P to be a program that does not stop and has no output!
—  Opt(P) will be L1 goto L1!
—  Halting problem. Thus: U does not exist.!

>  There will be always a better optimizer! !
—  Job guarantee for compiler architects :-)!

9	

© Marcus Denker!

Optimization!

Optimization on many levels!

>  Optimizations both in the optimizer and back-end!

10	

© Marcus Denker!

Optimization!

Roadmap  

>  Introduction!
>  Optimizations in the Back-end!
>  The Optimizer!
>  SSA Optimizations!
>  Advanced Optimizations!

11	

© Marcus Denker!

Optimization!

Optimizations in the Backend!

>  Register Allocation!
>  Instruction Selection!
>  Peep-hole Optimization!

12	

© Marcus Denker!

Optimization!

Register Allocation!

>  Processor has only finite amount of registers!
—  Can be very small (x86)!

>  Temporary variables!
—  non-overlapping temporaries can share one register!

>  Passing arguments via registers!

>  Optimizing register allocation very important for good
performance!
—  Especially on x86!

13	

© Marcus Denker!

Optimization!

Instruction Selection!

>  For every expression, there are many ways to realize
them for a processor!

>  Example: Multiplication*2 can be done by bit-shift!

Instruction selection is a form of optimization!

14	

© Marcus Denker!

Optimization!

Peephole Optimization!

>  Simple local optimization!
>  Look at code “through a hole”!

—  replace sequences by known shorter ones!
—  table pre-computed!

store R,a; !
load a,R!

store R,a; !

imul 2,R;! ashl 2,R;!

Important when using simple instruction selection!!

15	

© Marcus Denker!

Optimization!

Optimization on many levels!

Most optimization is done in a special phase!

16	

© Marcus Denker!

Optimization!

Roadmap  

>  Introduction!
>  Optimizations in the Back-end!
>  The Optimizer!
>  SSA Optimizations!
>  Advanced Optimizations!

17	

© Marcus Denker!

Optimization!

Examples for Optimizations!

>  Constant Folding / Propagation!
>  Copy Propagation!
>  Algebraic Simplifications!
>  Strength Reduction!
>  Dead Code Elimination!

—  Structure Simplifications!
>  Loop Optimizations!
>  Partial Redundancy Elimination!
>  Code Inlining!

18	

© Marcus Denker!

Optimization!

Constant Folding!

>  Evaluate constant expressions at compile time!
>  Only possible when side-effect freeness guaranteed!

c:= 1 + 3! c:= 4!

true not! false!

Caveat: Floats — implementation could be different
between machines! !

19	

© Marcus Denker!

Optimization!

Constant Propagation!

>  Variables that have constant value, e.g. c := 3!
—  Later uses of c can be replaced by the constant!
—  If no change of c between!!

b := 3!
c := 1 + b!
d := b + c!

b := 3!
c := 1 + 3!
d := 3 + c!

Analysis needed, as b can be assigned more than once!!

20	

© Marcus Denker!

Optimization!

Copy Propagation!

>  for a statement x := y!
>  replace later uses of x with y, if x and y have not been

changed.!

x := y!
c := 1 + x!
d := x + c!

x := y!
c := 1 + y!
d := y + c!

Analysis needed, as y and x can be assigned more than
once!!

21	

© Marcus Denker!

Optimization!

Algebraic Simplifications!

>  Use algebraic properties to simplify expressions!

-(-i)! i!

b or: true! true!

Important to simplify code for later optimizations!

22	

© Marcus Denker!

Optimization!

Strength Reduction!

>  Replace expensive operations with simpler ones!
>  Example: Multiplications replaced by additions!

y := x * 2! y := x + x!

Peephole optimizations are often strength reductions!

23	

© Marcus Denker!

Optimization!

Dead Code!

>  Remove unnecessary code!
—  e.g. variables assigned but never read!

b := 3!
c := 1 + 3!
d := 3 + c!

c := 1 + 3!
d := 3 + c!

>  Remove code never reached!

if (false)
{a := 5}!

if (false)
{}!

24	

© Marcus Denker!

Optimization!

Simplify Structure!

>  Similar to dead code: Simplify CFG Structure!

>  Optimizations will degenerate CFG!

>  Needs to be cleaned to simplify further optimization!!

25	

© Marcus Denker!

Optimization!

Delete Empty Basic Blocks!

26	

© Marcus Denker!

Optimization!

Fuse Basic Blocks!

27	

© Marcus Denker!

Optimization!

Common Subexpression Elimination (CSE)!

Common Subexpression:!
•  There is another occurrence of the expression whose

evaluation always precedes this one!
•  operands remain unchanged!

Local (inside one basic block): When building IR!

Global (complete flow-graph)!

28	

© Marcus Denker!

Optimization!

Example CSE!

b := a + 2!
c := 4 * b!
 b < c?!

b := 1!

d := a + 2!

t1 := a + 2!
b := t1!
c := 4 * b!
 b < c?!

b := 1!

d := t1!

29	

© Marcus Denker!

Optimization!

Loop Optimizations!

>  Optimizing code in loops is important!
—  often executed, large payoff!

>  All optimizations help when applied to loop-bodies!

>  Some optimizations are loop specific!

30	

© Marcus Denker!

Optimization!

Loop Invariant Code Motion!

>  Move expressions that are constant over all iterations
out of the loop!

31	

© Marcus Denker!

Optimization!

Induction Variable Optimizations!

>  Values of variables form an arithmetic progression!

integer a(100)!
do i = 1, 100!
 a(i) = 202 - 2 * i!
endo!

integer a(100)!
t1 := 202!
do i = 1, 100!
 t1 := t1 - 2!
 a(i) = t1!
endo!

value assigned to a !
decreases by 2! uses Strength Reduction!

32	

© Marcus Denker!

Optimization!

Partial Redundancy Elimination (PRE)!

>  Combines multiple optimizations:!
—  global common-subexpression elimination!
—  loop-invariant code motion!

>  Partial Redundancy: computation done more than once
on some path in the flow-graph!

>  PRE: insert and delete code to minimize redundancy.!

33	

© Marcus Denker!

Optimization!

Code Inlining!

>  All optimizations up to now were local to one procedure!

>  Problem: procedures or functions are very short !
—  Especially in good OO code!!

>  Solution: Copy code of small procedures into the caller!
—  OO: Polymorphic calls. Which method is called?!

34	

© Marcus Denker!

Optimization!

Example: Inlining!

a := power2(b)! power2(x) {!
 return x*x!
}!

a := b * b!

35	

© Marcus Denker!

Optimization!

Roadmap  

>  Introduction!
>  Optimizations in the Back-end!
>  The Optimizer!
>  SSA Optimizations!
>  Advanced Optimizations!

36	

© Marcus Denker!

Optimization!

Recall: SSA!

>  SSA: Static Single Assignment Form!

>  Definition: Every variable is only assigned once!

37	

© Marcus Denker!

Optimization!

Properties!

>  Definitions of variables (assignments) have a list of all
uses!

>  Variable uses (reads) point to the one definition!

>  CFG of Basic Blocks!

38	

© Marcus Denker!

Optimization!

Examples: Optimization on SSA!

>  We take three simple ones:!

—  Constant Propagation!

—  Copy Propagation!

—  Simple Dead Code Elimination!

39	

© Marcus Denker!

Optimization!

Recall: Constant Propagation!

>  Variables that have constant value, e.g. c := 3!
—  Later uses of c can be replaced by the constant!
—  If no change of c between!!

b := 3!
c := 1 + b!
d := b + c!

b := 3!
c := 1 + 3!
d := 3 + c!

Analysis needed, as b can be assigned more than once!!

40	

© Marcus Denker!

Optimization!

Constant Propagation and SSA!

>  Variables are assigned once!
>  We know that we can replace all uses by the constant!!

b1 := 3!
c1 := 1 + b1!
d1 := b1 + c1!

b1 := 3!
c1 := 1 + 3!
d1 := 3 + c!

41	

© Marcus Denker!

Optimization!

Recall: Copy Propagation!

>  for a statement x := y!
>  replace later uses of x with y, if x and y have not been

changed.!

x := y!
c := 1 + x!
d := x + c!

x := y!
c := 1 + y!
d := y + c!

Analysis needed, as y and x can be assigned more than
once!!

42	

© Marcus Denker!

Optimization!

Copy Propagation and SSA!

>  for a statement x1 := y1!
>  replace later uses of x1 with y1!

x1 := y1!
c1 := 1 + x1!
d1 := x1 + c1!

x1 := y1!
c1 := 1 + y1!
d1 := y1 + c1!

43	

© Marcus Denker!

Optimization!

Dead Code Elimination and SSA!

>  Variable is live if the list of uses is not empty.!

>  Dead definitions can be deleted!
—  (If there is no side-effect)!

44	

© Marcus Denker!

Optimization!

Roadmap  

>  Introduction!
>  Optimizations in the Back-end!
>  The Optimizer!
>  SSA Optimizations!
>  Advanced Optimizations!

45	

© Marcus Denker!

Optimization!

Advanced Optimizations!

>  Optimizing for using multiple processors!
—  Auto parallelization!
—  Very active area of research (again)!

>  Inter-procedural optimizations!
—  Global view, not just one procedure!

>  Profile-guided optimization!
>  Vectorization!
>  Dynamic optimization!

—  Used in virtual machines (both hardware and language VM)!

46	

© Marcus Denker!

Optimization!

Iterative Process!

>  There is no general “right” order of optimizations!
>  One optimization generates new opportunities for a

preceding one.!
>  Optimization is an iterative process!

Compile Time vs. Code Quality!

47	

© Marcus Denker!

Optimization!

What you should know!!

✎  Why do we optimize programs?!
✎  Is there an optimal optimizer?!
✎  Where in a compiler does optimization happen?!
✎  Can you explain constant propagation?!

48	

© Marcus Denker!

Optimization!

Can you answer these questions?!

✎  What makes SSA suitable for optimization?!
✎  When is a definition of a variable live in SSA Form?!
✎  Why donʼt we just optimize on the AST?!
✎  Why do we need to optimize IR on different levels?!
✎  In which order do we run the different optimizations?!

49	

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

License!

http://creativecommons.org/licenses/by-sa/3.0/	

50	

