
Concurrency: 
State Models & Design Patterns

Q&A Extended

Week 13



Exercise 12 - Task 2 - Remaining Questions

3 questions Safety / Liveness / Fairness

2 questions LTS/FSP

4 questions Petri Nets

6 questions Conceptual

1 question Organizational Affairs

Totally 16 Questions in 5 Categories



Exercise 12 - Task 2

Safety / Liveness / Fairness



Exercise 12 - Task 2 - Q039

Q:

Generally, how do we find out if something is fair without using the
definitions?

A:

Fairness is a liveness property and thus hard to verify. So you really have
to test every possible case in a model. This takes quite much time and is
for larger objects under test not really feasible. In real life, often
assumptions are made and simplifications performed to reduce the time
requirements.



Exercise 12 - Task 2 - Q040

Q:

Liveness-Guarded Methods: When should you provide a policy for
upgrading readers to writers? (I think a policy is implemented to give
priority to writers so that the writers do not starve. The writers mostly
starve when readers acquire locks unnecessarily.)

A:

You shouldn't upgrade them, because you would break the intention
of the design (and thus increase excessively the complexity). You
should tackle the problem of fairness at the lower levels instead. A
possible starvation criteria could be the average thread waiting time,
based on which the reader / writer ratio (or fairness implementation)
could be adjusted dynamically during runtime.



Exercise 12 - Task 2 - Q041
Q:

Liveness and Guarded Methods, slide 50: Why do the first and second
points ensure safety and the third point liveness?

A:

Ignore Interrupts: Preserves safety, not liveness, because empty catch
clause = no error handling = unfinished operations that may lead to
incomplete states (required info will never be acquired / fixed) = deadlock

Terminate: Preserves safety (no inconsistent state), but not liveness (stop)

Exit: Liveness preserved, because workflow is not entangled, but safety
could be an issue, as others need to fix the encountered problem.



Exercise 12 - Task 2

LTS/FSP



Exercise 12 - Task 2 - Q042

Q:

I have some doubts about fsp modelling. I’m not sure if I can be able to
model so complex processes. Should we expect complex fsp modelling
questions in the exam? How much information do we need to know for
fsp modelling? I mean, should we able to model “priority” with fsp?

A:

You don't need to know all about fancy LTS / FSP features. However,
you should be able to understand and adapt the LTS models in the
slides and especially the exercises. That doesn't mean that you must
be able to build the whole implementation from scratch, but you
should be able to implement the key parts. That's often not more
than 3 - 4 lines of code.



Exercise 12 - Task 2 - Q043

Q:

Series 03, Ex 4: Why in S1 you do not add something link (like?)
pop[u: u != v] -> error -> S1 and the analogous for S2?

A:

Two reasons:
1) In pop[...] of S1 you don't have access to u and v. The term enclosed by the square brackets is the current
stack content. The values get forwarded to S2 (stack has two items) or S1 (stack has one item) or S0 (empty
stack). From another point of view: It has to be the same value, because otherwise the action cannot execute
at all. You would have to add another action from S0 calling with wrong arguments, but then we just get to 2)
:)

2) Such (manual) checks would introduce VERY MUCH additional overhead (additional states, ...).



Exercise 12 - Task 2

Petri Nets



Exercise 12 - Task 2 - Q044

Q:

CP-11, slide 76: What is "zero-testing" in general? (And what are zero-
testing nets?)

A:
Zero-testing is highly dependent on the context (x==0, place is empty in Petri net, ...) and can mean
completely different things.

Zero-testing in the context of Petri-nets introduces a new type of places (zero-input places), which let
transitions only become active when they don't contain any tokens. Consequently, zero-testing nets are nets
that contain at least one zero-input place (see example in slides).

The important thing here is that ordinary Petri nets have no ability to perform arbitrary operations on
numbers of tokens to be expressed. You will find more (quite complex) info about Turing-complete
extensions at

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6463459



Exercise 12 - Task 2 - Q045

Q:

What is a feature in the context of a Petri net?

A:

- Place

- Transition

- Input Function

- Output Function

- Marking



Exercise 12 - Task 2 - Q046

Q:

CP-11, slide 79: FSA - Petri net - Turing-completeness (in the context of
Petri nets)?

A:

See answer for Q044.



Exercise 12 - Task 2 - Q047

Q:

Where in the Chomsky hierarchy are Petri nets?

A:
Between Type-2 (Context-free) and Type-3 (Regular). It was shown that all regular languages are
Petri net languages and the family of Petri net languages are strictly included in the family of
context-sensitive languages but some Petri net languages are not context-free and some context-
free languages are not Petri net languages. It was also shown that the complement of a free Petri
net language is context-free.

more info in at

https://www.intechopen.com/books/petri-nets-manufacturing-and-computer-science/grammars-controlled-by-petri-nets



Exercise 12 - Task 2

Conceptual



Exercise 12 - Task 2 - Q048

Q:

What are the difficulties of creating a bounded thread pool?

A:

1) The choice of the appropriate bound parameters. Too little or too
many concurrent threads delay the execution.

2) You have to assign/split the work in a way it fits for a specific
amount of threads.



Exercise 12 - Task 2 - Q049

Q:

Briefly explain one distributed lock algorithm of your choosing (for
example: RedLock) and its limitations.

A:

Redlock is a client side distributed locking algorithm designed to be used with
Redis, but the algorithm orchestrates, client side, a set of nodes that implement a
data store with certain capabilities, in order to create a multi-master fault
tolerant, and hopefully safe, distributed lock with auto release capabilities.

Limitations:

It just prevents a (more or less) synchronized interface, but you can still introduce
deadlocks (logic errors) in your own code.



Exercise 12 - Task 2 - Q050

Q:

In the dining philosophers scenario, are there models that deal with the
occurrence of processes, that have crashed and therefore unable to
release a resource?

A:

Dealing with such processes would involve timeouts or liveness
checks (polling, ...). You can find various models and adapt them to
your personal needs from the large-scale distributed systems field.



Exercise 12 - Task 2 - Q051

Q:

Could you tell about best practices in concurrent programming?

A:

- Simplify your model as much as possible (less is more)

- Keep your synchronized blocks as short and rare as possible

- For larger projects: use already available synch solutions (embedded
in data bases, ...)



Exercise 12 - Task 2 - Q052

Q:

What are actual trends in concurrent programming?

A:

- GPU computation (fast for matrix operations)

- Heterogeneous CPUs (ARM big.little, co-processors)

These require new/other development tools.



Exercise 12 - Task 2 - Q053

Q:

Why (and how) would you use inner classes to implement asynchrony?

A:

- Obfuscation?

- Bad practice in my opinion

You can instantiate the inner class and create a thread out of it.



Exercise 12 - Task 2

Organizational Affairs



Exercise 12 - Task 2 - Q054

Q:

I won’t attend the lecture on Dec 13th, because of a seminar meeting.
Can you share your answers as pdf? Also, Can you share the final exam
of the previous lecture?

A:

1) Yes, already done.

2) Done as well. :)



Good Luck!


