
Oscar Nierstrasz

2. Concurrency and Java

Selected material © Magee and Kramer

Thread

Runnable

Not Runnable

start() exits

yield()

notify() /
notifyAll()

wait()

> Threads in Java
—Threads (vs. Processes)
—Thread creation
—Thread lifecycle

> Synchronization in Java
—wait() and notify()

> Modelling Concurrency
—Finite State Processes
—Labelled Transition Systems

Roadmap

2

Threads (vs. Processes)

> Processes
—have their own memory
—communicate via IPC

> Threads (lightweight processes)
—exist within a process
—share memory and open files

3

Recall: processes are heavyweight and have their own memory;
threads are lightweight and share the memory of the process they
are contain in.
Within classical compiled languages (like C), threads are
typically supported with the help of dedicated libraries. In
languages that are compiled to bytecode (like Smalltalk or Java),
threads are supported by the virtual machine.

Java’s concurrency model is based on monitors. An object
optionally behaves like a monitor, if the synchronized
keyword is used to synchronize its methods. Threads are created
according to the fork and join model

public class Competitor extends java.lang.Thread {

 public Competitor(String name) {
 super(name); // Call Thread constructor
 }

 @Override
 public void run() { // What the thread actually does
 for (int km = 0; km < 5; km++) {
 System.out.println(km + " " + getName());
 try {
 sleep(100);
 } catch (InterruptedException e) {
 }
 }
 System.out.println("DONE: " + getName());
 }
}

extends java.lang.Thread

4

To define a thread extend Thread

and override run()

ThreadDemo

A thread is simply an object that has a run method. This method
can be inherited from the Thread class and overridden, or (next
slide) the object can simply implement the Runnable interface.
In this example Competitor extends Thread and overrides
the run method to print a message every 100 milliseconds.

Source code of all Java examples are available from the git repo:
git clone git://scg.unibe.ch/lectures-cp-examples

5

... or implement Runnable

Since Java does not support multiple inheritance, it is impossible to
inherit from both Thread and another class.

Instead, simply define:

and instantiate:

public interface java.lang.Runnable
{
 public abstract void run();
}

class MTUsefulStuff extends UsefulStuff
 implements Runnable ...

new Thread(new MTUsefulStuff())

6

Instantiating Threads

A Java thread can either inherit from java.lang.Thread, or contain a
Runnable object:

public class java.lang.Thread
 extends java.lang.Object
 implements java.lang.Runnable
{
 public Thread();
 public Thread(String name);
 public Thread(Runnable target);
 public Thread(Runnable target, String name);
...
}

public class Clock extends Canvas implements Runnable {
 private Thread clockThread = null;

 public Clock() {
 super();
 if (clockThread == null) {
 clockThread = new Thread(this, "Clock");
 clockThread.start();
 }
 }

 public void paintComponent(Graphics g) {
 ...
 String time = dateFormat.format(new Date());
 g2d.drawString(...);
 }
...

7

Example: A thread-based visual clock component

Clock

implements Runnable

In this example, Clock needs to extend Canvas, so it cannot also
extend Thread. The solution is to implement the Runnable
interface.
In order to create and start a new thread in Java, one must instantiate a
Thread or a subclass of Thread and then invoke the start
method.
The start method will execute the run method in a new thread.
Note that directly invoking the run method will not start a new
thread, but will just execute run synchronously within the current
thread.
In order to execute a run method of an object that implements
Runnable, one simply passes that object as a parameter to a newly
instantiated Thread, as in this example. To start a clock thread, a
new Thread is instantiated with this (the Runnable clock object)
as a parameter. Then the start method is called as usual.

8

The run() repaints the canvas in a loop while the
the thread is not null

...
 public void run() {
 // stops when clockThread is set to null
 while(Thread.currentThread() == clockThread) {
 repaint();
 try {clockThread.sleep(1000); }
 catch (InterruptedException e){ }
 }
 }

 public void stopThread() {
 clockThread = null;
 }

NB: The stopThread method is invoked when the stop button
is pressed.

9

After construction...

Thread

Runnable

Not Runnable

start()
run()
exits

yield()

time elapsed
notify() / notifyAll()
i/o completed

sleep()
wait()
i/o block

This UML statechart illustrates the lifecycle of a Java thread.
Once a Thread instance has been created, nothing happens until
the start method is called. At that point the thread becomes
“runnable”. This means that the thread scheduler may schedule it
to run for a period of time. If the thread explicitly yields, then
another thread may be scheduled, but the thread remains
runnable.
If, on the other hand, the thread is forced to wait for something,
i.e., a timer event (sleep), a monitor synchronization condition
(wait), or an i/o event (reading or writing), then the thread
becomes not runnable, until the awaited event occurs.
Finally, if the run method terminates, the thread will exit.

To start a thread... call start()

10

class Race5K {
 public static void main (String[] args)
{
 // Instantiate and start threads
 new Competitor("Tortoise").start();
 new Competitor("Hare").start();
 }
 …
}

A Thread’s run method is never called directly but is executed
when the Thread is start()-ed:

The Racing Day!

11

Different runs can have
different results.

No given ordering of threads
is guaranteed by the JVM.

0 Tortoise
0 Hare
1 Hare
1 Tortoise
2 Tortoise
2 Hare
3 Hare
3 Tortoise
4 Tortoise
4 Hare
DONE: Hare
DONE: Tortoise

0 Hare
0 Tortoise
1 Hare
1 Tortoise
2 Hare
2 Tortoise
3 Hare
3 Tortoise
4 Tortoise
4 Hare
DONE: Tortoise
DONE: Hare

Could the output be garbled?
Why? Why not?

0 Ha0 Tortoreise
...

We see that the outputs of the two threads can be arbitrarily
interleaved, but only on a line-by-line basis. Why don't we see
individual characters interleaved?

> Threads in Java
—Threads (vs. Processes)
—Thread creation
—Thread lifecycle

> Synchronization in Java
—wait() and notify()

> Modelling Concurrency
—Finite State Processes
—Labelled Transition Systems

Roadmap

12

13

Synchronization

Without synchronization, an arbitrary number of threads may
run at any time within the methods of an object.

—Class invariant may not hold when a method starts!
—So can’t guarantee any post-condition!

A solution: consider critical sections that lock access to the
object while it is running.

In sequential software, the class invariant, which expresses the
valid states of instances of the class, is assumed to hold when the
object is first created, and before and after every public method.
During a public method (or any internal private or protected
method) the invariant may be temporarily invalid, while the
object’s state is being updated. This poses a problem for
concurrent programs. Without synchronization, a thread may
enter a public method when another thread is active elsewhere,
and the class invariant may not hold, i.e., the object may be in an
inconsistent state. As a consequence, the second method is likely
to produce incorrect results.

See also: https://en.wikipedia.org/wiki/Class_invariant

Critical Section...

> ... a piece of code that
accesses a shared
resource (e.g. memory
location) that must not
be concurrently
accessed by multiple
threads.

> This works as long as
methods cooperate in
locking and unlocking
access!

14

/* This is the critical section object
(statically allocated). */
static pthread_mutex_t cs_mutex =
PTHREAD_MUTEX_INITIALIZER;

void f()
{
 /* Enter the critical section
 -- other threads are locked out */
 pthread_mutex_lock(&cs_mutex);

 /* Do some thread-safe processing! */

 /*Leave the critical section
 -- other threads can now
 pthread_mutex_lock() */
 pthread_mutex_unlock(&cs_mutex);
}

Critical section in C/C++ on Unix/Linux

A critical section is a piece of code that accesses (reads or writes)
shared resources. Inconsistencies may arise if two threads try to
access the same resources during overlapping critical sections.
A common solution is to guarantee mutual exclusion with the
help of locks or semaphores. Of course all critical sections must
be protected. If even a single critical section is not protected, two
threads entering the same critical section can interfere.

Synchronized blocks

15

public Object aMethod() {
 // unsynchronized code
 ...
 synchronized(resource)
 { // lock resource
 ...
 } // unlock resource
 ...
}

Either: synchronize an individual block within a
method with respect to a shared resource:

Critical sections can be protected in Java by declaring the relevant
code as a synchronized block. Such a block takes as a
parameter the object that is accessed as a shared resource. The
resource is locked when the block is entered, and unlocked when
the block ends.
Note that only a single resource can be passed as an argument to
the synchronized block, even if multiple resources are accessed.
If there are multiple critical sections, it is important that the same
resource be locked to ensure consistency.
Aside: actually, an arbitrary object be used as the lock, not
necessarily one of the resources accessed.

Synchronized methods

16

public class PrintStream extends FilterOutputStream {
 ...
 public synchronized void println(String s);
 public synchronized void println(char c);
 ...
}

Or: declare an entire method to be synchronized with other
synchronized methods of this object:

Note: synchronized methods are a particular
case of synchronizing on this object

It is also possible to declare an entire method as
synchronized. This is just syntactic sugar for declaring the
entire body of the method as a synchronized block, with
this object as the shared resource to be locked.
Note that by declaring all public methods as being synchronized,
you effectively turn the object into a monitor.

wait() and notify()

17

public class Account {
 protected long assets = 0;
 public synchronized void withdraw(int amount) {
 while (amount > assets) {
 try {
 wait();
 } catch(InterruptedException e) { }
 }
 assets -= amount;
 }
 public synchronized void deposit(int amount) {
 assets += amount;
 notifyAll();
 }
} Account

Synchronization must sometimes be interrupted:

NB: you must either catch or throw InterruptedException

This Account class is a monitor, with methods withdraw and
deposit being critical sections accessing the assets variable as a
shared resource.
Since both methods are synchronized, it is guaranteed that, no matter how
many threads are attempting to execute either method, at most one thread
will be running within the monitor at any point in time.
This example follows a classical structure. The withdraw method may
not proceed if the requested amount is greater than the available assets.
The method therefore tests this guard condition in a while loop. As long as
the guard fails, the thread will wait, releasing the monitor lock, and
making the thread not runnable.
Eventually (we hope) some thread will deposit some cash. At this point
notifyAll is called (Java’s equivalent to signal), which will cause all
threads waiting on this object to be made runnable. Awakened threads
will again check the guard condition, and possibly proceed or wait again.
What could go wrong if withdraw were to use an if statement instead of a
while loop?

A waiting thread may receive an InterruptedException,
so it is advisable to always wrap calls to wait within a try-catch
block. It is not a good idea to leave the body of the catch clause
empty (you should decide what is the appropriate action), but for
the example programs we will generally ignore this issue.

final Account myAccount = new Account();

new Thread() { // Withdrawing
 public void run() {
 int amount = 100;
 System.out.println("Waiting to withdraw"+amount+ "units...");
 myAccount.withdraw(amount);
 System.out.println("I withdrew " + amount + " units!");
 }
}.start();

Thread.sleep(1000); ...

new Thread() { // Depositing
 public void run() {
 int amount = 200;
 System.out.println("Depositing " + amount + " units ...");
 myAccount.deposit(amount);
 System.out.println("I deposited " + amount + " units!");
 }
}.start(); 18

wait and notify in action …
Waiting to withdraw 100 units ...
Depositing 200 units ...
I deposited 200 units!
I withdrew 100 units!

java.lang.Object

19

public class java.lang.Object
{
 ...
 public final void wait()
 throws InterruptedException;
 public final void notify();
 public final void notifyAll();
 ...
}

NB: wait() and notify() are methods rather than keywords:

While synchronized is a keyword, wait and notify are
methods defined in the class Object, i.e., the root of the Java
class hierarchy, and are thus inherited by all classes.
The difference between notify and notifyAll is that the
latter will wake up all waiting threads, while the former will only
wake up one. As we shall see in a later lecture, it is generally a
bad idea to use notify instead of notifyAll. (You risk
waking up the wrong thread.)
NB: wait and notify may only be called within a
synchronized block. Attempting to do otherwise will raise an
IllegalMonitorException. (This is a common beginner’s
mistake.)

> Threads in Java
—Threads (vs. Processes)
—Thread creation
—Thread lifecycle

> Synchronization in Java
—wait() and notify()

> Modelling Concurrency
—Finite State Processes
—Labelled Transition Systems

Roadmap

20

Non-determinism

> Multiple threads are rotated by the
processor(s)

> A thread might be interrupted at any
time

> No two runs are guaranteed to be
the same

21

22

Modelling Concurrency

Because concurrent systems are non-deterministic, it can
be difficult to build them and reason about their properties.

A model is an abstraction of the real world that makes it
easier to focus on the points of interest.

Approach:
Model concurrent systems as sets of sequential finite state

processes

FSP is a textual notation for specifying a finite state
process:

LTS (labeled transition system) is a graphical notation for
interpreting a processes as a labelled transition system:

	

The meaning of a process is a set of possible traces :
on → off → on → off → on → off → on ...

23

Finite State Processes

SWITCH = (on -> off -> SWITCH).

0 1
1-Switch.lts

FSP and LTS are two complementary notations for representing finite
state processes.
FSP is textual language for specifying processes as sequences of actions
with choices, while LTS is a graphical notation that resembles finite
state automata. In both cases, the semantics of the notations is a set of
possible traces, i.e., sequences of actions.
SWITCH is a process that can participate in the action on, then in off,
and then returns to its initial state. Note how process names start with an
upper case letter and actions are in lower case. The examples can all be
run with the LTSA tool. A snapshot of the tool and all examples from
this course can be found in the examples repo:
git clone git://scg.unibe.ch/lectures-cp-examples

For the latest version of the tool, visit the LTSA web site:
https://www.doc.ic.ac.uk/ltsa/

24

FSP Summary

Action prefix (x->P) Parallel
composition (P||Q)

Choice (x->P|y->Q) Replicator forall [I:1..N] P(I)

Guarded
Action (when B x->P|y->Q) Process labelling a:P

Alphabet
extension P + S Process sharing {a1,...,an}::P

Conditional x-> If B then P else Q Priority High ||C=(P||Q)<<{a1,…,an}

Relabelling /{new1/old1,…} Priority Low ||C=(P||Q)>>{a1,…,an}

Hiding \{a1,…,an} Safety property property P

Interface @{a1,…,an}
Progress
property progress P = {a1,…,an}

We will encounter and use these features in the lectures to come …

This slide is provided both as a quick reference and as an
overview to give a flavour of what the FSP language looks like.
Each of these operators can be used to compose processes or
modify processes, yielding a new process each time.
We will encounter many of these operators in later lectures, and
explain them in detail when necessary.
For a brief explanation, see the on-line appendix:

https://www.doc.ic.ac.uk/~jnm/book/ltsa/Appendix-A-2e.html

25

FSP — Action Prefix

If x is an action and P a process then (x->P) is a process that initially
engages in the action x and then behaves like P.

Convention:
Processes start with UPPERCASE, actions start with lowercase.

ONESHOT = (once -> STOP).

0 1

A terminating process

2-OneShot.lts

The most basic operator in FSP is action prefix. Here the process
ONESHOT may participate in the action once, turning into the
process STOP.
STOP is a predefined process that does nothing.
Note that a process expression in FSP also represents the state of
a process. In the LTS graph of the process ONESHOT, state (0) is
the same as ONESHOT while state (1) is the same as STOP.
The meaning of the process ONESHOT is the trivial set of traces:
{ once }.

FSP — Recursion

26

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion:

A recursively-defined process is one that, following a particular
sequence of actions, may return to its initial state.
The process SWITCH starts in the state (process) OFF, then
transitions to ON, and back again. In the LTS diagram, OFF is the
same as state (0) and ON is state (1).
Note the syntax: SWITCH is defined as a comma-separated
sequence of process definitions, terminated with a period.
The meaning of SWITCH is the singleton set of traces
{ on off on off ... }

FSP — Choice

27

DRINKS =
(red -> coffee -> DRINKS
| blue -> tea -> DRINKS
).

0 1

If x and y are actions then (x->P | y->Q) is a process which
initially engages in either of the actions x or y.

If x occurs, the process then behaves like P; otherwise, if y occurs, it
behaves like Q.

What are the
possible traces
of DRINKS?

3-Drinks.lts

A process that can only follow a fixed sequence of actions is not
very interesting. The choice operator allows a process to follow
two possible different paths.
Note that the actions that DRINKS may participate in are
mutually exclusive. If the red button is pushed (action “red”),
then the drinks machine deterministically produces a cup of
coffee.
Note how the notion of an “action” in FSP (“transition” in LTS)
can be used to model different kinds of events (pushing a button,
producing a cup of coffee or tea). Within FSP/LTS, there is no
notion of a direction of an interaction between processes, but
there may be in the world that is being modeled.
What are the possible traces of the DRINKS machine?

28

FSP — Non-determinism

(x->P | x->Q) performs x and then behaves as either P or Q.

COIN =
(toss -> heads -> COIN
| toss -> tails -> COIN
).

0 1

4-Coin.lts

This example is very similar to the DRINKS machine, except that
the choices here are not mutually exclusive. A COIN can be
tossed, at which point it non-deterministically moves either to the
state heads->COIN or tails->COIN.

FSP — Guarded actions

29

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] =

(when(i<N) inc->COUNT[i+1]
| when(i>0) dec->COUNT[i-1]
).

0 1

(when B x->P | y->Q) means that when the guard B is true then
either x or y may be chosen; otherwise if B is false then only y may be
chosen. (default case is optional)

5-Count.lts

Guards can be used as a high-level way to define more complex
processes. It is important to realize that these guards are actually
static, not dynamic. This means that the “variables” and guards
can be macro-expanded.
This example is equivalent to:
COUNT = COUNT0,

COUNT0 = (inc -> COUNT1),

COUNT1 = (inc -> COUNT2 | dec -> COUNT0),

COUNT2 = (inc -> COUNT3 | dec -> COUNT1),

COUNT3 = (dec -> COUNT2).

Clearly the version with macro variables and guards is easier to
read and write.

Competitor FSP

30

Or, more generically:

const N = 4
COMPETITOR = KM[0],
KM[n:0..N] = (when (n<N) [n+1] -> KM[n+1]
 | when(n==N) done -> STOP).

Competitor =([1]->[2]->[3]->[4]-> done-> STOP).

0 1

Competitor can be modelled as a single, sequential, finite state process:

6-Competitor.lts

Here we model the Competitor Java class we saw earlier in
the lecture. From the process modeling perspective, the only
interesting point is that every kilometer, the Competitor
announces its progress.

FSP — Concurrency

31

||Race5K = (tortoise:Competitor || hare:Competitor).

We can relabel the transitions of Simple and
concurrently compose two copies of it:

How many possible
traces are there?

There are two things going on in this example.
First we prefix two instances of Competitor, one with
“tortoise” and the other with “hare”. This has the effect of
relabeling all the actions of each process, so [1] becomes
tortoise[1], and so on. These relabeled events are
independent of each other, as their names are different.
Second, we concurrently compose these two processes with the
|| operator. (Note that this is different from the choice operator
| we saw earlier.)
These two processes may now proceed independently, arbitrarily
interleaving their actions. (In a later lecture we will see how two
processes may synchronize with each other if they share common
actions.)

If we restrict ourselves to two steps, the composition will have nine states:

32

FSP — Composition

0 1

6-Competitor.lts

Try this example with LTSA. Change the number of iterations
from 5 to 2 to get this result.
How does LTSA decide which are the shared states of the
composed processes?

33

Composition state space

0 0 0 1

1 0 1 1

2 0 2 1

0 2

1 2

2 2

hare[1]

hare[1]

hare[1]

hare.done

hare.done

hare.done

tortoise.donetortoise.donetortoise.done

tortoise[1] tortoise[1] tortoise[1]
The state space of two
composed processes is
(at most) the Cartesian
product of the individual
state spaces

hare

to
rt

oi
se

If two independent process are composed, the resulting state
space is potentially the Cartesian product of the two state spaces.
Since the tortoise and the hare do not interact, we obtain 9 states.
(Later we will see that if composed processes need to
synchronize, the resulting state space may be drastically reduced.)
Compare this diagram with the one in the previous slide produced
by the LTSA tool.

34

Transitions between Thread States

Thread

Runnable

Not Runnable

start()
run()
exits

yield()

time elapsed
notify() / notifyAll()
i/o completed

sleep()
wait()
i/o block

Recall the UML statechart describing the possible state transitions
of a Java thread. We can easily model this with FSP.

35

LTS for Thread States

0 1

Thread = (start -> Runnable),
Runnable =

(yield -> Runnable
| {sleep, wait, blockio} -> NotRunnable
| stop -> STOP),

NotRunnable =
({awake, notify, unblockio} -> Runnable).

7-Thread.lts

The only new feature of FSP here is the ability to specify a set of
actions in a transition to a new process state.

36

What you should know!

> What are finite state processes?
> How are they used to model concurrency?
> What are traces, and what do they model?
> How can the same FSP have multiple traces?
> How do you create a new thread in Java?
> What states can a Java thread be in?
> How can it change state?
> What is the Runnable interface good for?
> What is a critical section?
> When should you declare a method to be synchronized?

37

Can you answer these questions?

> How do you specify an FSP that repeatedly performs
hello, but may stop at any time?

> How many states and how many possible traces does the
full Race5K FSP have?

> When should your class inherit from Thread?
> How can concurrency invalidate a class invariant?
> What happens if you call wait or notify outside a

synchronized method or block?
> When is it better to use synchronized blocks rather than

methods?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

