
Oscar Nierstrasz

3. Safety and Synchronization

Selected material © Magee and Kramer

> Modelling interaction in FSP

> Safety — synchronizing critical sections

> Locking for atomicity

> The busy-wait mutual exclusion protocol

> Checking Safety properties

> Conditional synchronization

Roadmap

2

> Modelling interaction in FSP

> Safety — synchronizing critical sections

> Locking for atomicity

> The busy-wait mutual exclusion protocol

> Checking Safety properties

> Conditional synchronization

Roadmap

3

Modelling interaction — shared actions

4

MAKER	 = (make -> ready -> MAKER).
USER	 = (ready -> use -> USER).

||MAKER_USER = (MAKER || USER).

0 1

What are the states of the LTS?
The traces?

Actions that are common between two processes are
shared and can be used to model process interaction:

> Unshared actions may be arbitrarily interleaved
> Shared actions occur simultaneously for all participants

1-maker_user.lts

Up to now we only considered concurrent composition of two
independent processes. Communication and synchronization are
modeled in FSP as shared actions. Note that no “direction” is
assumed in these shared actions — it is purely a matter for
interpretation in terms of what you are modeling.

In this example, we model a (coffee?) maker and a user. The
MAKER makes something, and then declares that it is ready. The
USER waits for the MAKER to be ready and then uses what it
produce. The only shared action is ready.

If we compose these two processes as before, we obtain
potentially 2x2 = 4 states. However, since both processes must
take the ready action together, the number of possible
independent actions is reduced.

How many states and transitions are there in the composition?

(Work it out on the blackboard and then test it with LTSA.)

Modelling interaction — handshake

5
0 1

MAKERv2	= (make -> ready -> used -> MAKERv2).
USERv2		 = (ready -> use -> used -> USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

A handshake is an action that signals acknowledgement

What are the states and traces of the LTS?

2-maker_userv2.lts

In this example, not only does the MAKER declare when it is
ready, but the USER declares when it has consumed what has
been produced. There are therefore two shared actions that must
be synchronized.

What are the states and traces of the composed process system?

As before, work it out on the blackboard, and verify with LTSA.

> Modelling interaction in FSP

> Safety — synchronizing critical sections

> Locking for atomicity

> The busy-wait mutual exclusion protocol

> Checking Safety properties

> Conditional synchronization

Roadmap

6

Safety problems

7

m1
m2
m3
m4
m5

Consistent states

?!

Wherever shared
resources are updated
may be a critical section.

Objects must only be accessed
when they are in a consistent state,
formalized by a class invariant.

Each method assumes the class
invariant holds when it starts, and it
re-establishes it when done.

If methods interleave arbitrarily, an
inconsistent state may be
accessed, and the object may be
left in a “dirty” state.

Recap: in sequential programming, we can formalize the valid
states of an object using a class invariant. The class invariant
must hold true before and after any public method. We can reason
about the correctness of methods by relying on the class invariant
always being true at the start of any public method.

During the execution of a method, the state may be updated, and
so the class invariant may temporarily be invalid.

If one thread is executing method m1 and a second thread starts
executing method m3, the object may not be in a consistent state.
As a consequence we no longer can guarantee that method m3
will execute correctly. The entire object may then be left in a
corrupt state, and anything can happen.

Race conditions

8

A race condition exists if safety may be violated by bad timing

public class AccountBAD extends Account {
// unsynchronized!
public void withdraw(int amount) {
while (amount > assets) {
Thread.yield();			 // busy wait

}
Thread.yield();				 // race condition!
assets -= amount;
checkInvariant();			 // might fail!

}
} Account

if (!(assets >= 0)) { errors++; }

A race condition exists on a program if safety may be violated
just because of unfortunate timing.

In this example, the bad Account class busy waits until there are
enough assets available to satisfy the withdrawal request.
However it then performs another yield, during which another
thread may perform conflicting withdrawal. In the end, the
invariant that the assets never fall below zero may be violated.

Look at the AccountTest class to see how to provoke the race
condition. The actual race is whether the invariant still holds or
not. The test case counts the number of violations. By reducing
the number of deposits, the race condition becomes less likely.

See also: https://en.wikipedia.org/wiki/Race_condition

Interference

9

{ x = 0 }
AInc:	 x := x+1
BInc:	 x := x+1

{ x = ? }

How can these
processes interfere?

Consider these two processes:

Consider all the ways in which these two processes could
possibly interfere.

Be careful to explicitly state your assumption about what actions
are guaranteed to be atomic in this (unnamed) language.

10

Atomic actions  

Individual reads and writes may be atomic actions:

const N		 =	 3
range T		 =	 0..N

Var				 =	 Var[0],

Var[u:T]		 =	 (read[u]	 		 -> Var[u]

| write[v:T]	 -> Var[v]).

set VarAlpha = { read[T], write[T] }
Inc 				 =	 (read[v:0..N-1]

->	 write[v+1]
->	 STOP) +VarAlpha.

Let us model the previous example as finite state processes. We
will model the variable x as a process Var, and the incrementing
processes AInc and BInc as two instances of the process Inc.

The Var process can hold the values 0 to 3 (as a macro
parameter). It participates in the actions read[] and write[].
As before, no direction is assumed, but we can clearly see that
only a read of the currently stored value u is possible, while
write causes the stored value to change to the written value v.

An Inc process reads the variable, increments it, and then writes
the incremented value.

Note that Inc cannot perform write[0], nor can it read[3].
We must explicitly add these to Inc (+ VarAlpha) else LTSA
will allow Var to independently take this action!

(Remove the annotation +VarAlpha and see what it generates …)

11

Sequential behaviour

A single sequential thread requires no synchronization:

||SeqInc = (Var||Inc).

0 1

3-inc-conflict.lts

Here we model a single increment of the variable. Although the
two processes are quite complex, their parallel composition is
trivial.

Try this without +VarAlpha — SeqInc will then allow a
write[0] at any time!

0 0 0 1

1 0

2 0

0 2 0 3 0 4

read[1]
read[2]

3 0

1 1

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3

1 4

2 4

3 4

read[0]
write[0]

write[2]

write[3]

Var

Inc

write[1]

read[0]

read[0] write[1]

write[1]

write[2]

write[3]

read[0] / write[0]

write[1]

write[2]

write[3]

read[1]
write[1]

write[0]

The combined state space contains 4×5 = 20 states, but only 3 of
these are reachable due to synchronization between the processes.
Both processes must agree on each combined transition, which
eliminates most of the states.

> Modelling interaction in FSP

> Safety — synchronizing critical sections

> Locking for atomicity

> The busy-wait mutual exclusion protocol

> Checking Safety properties

> Conditional synchronization

Roadmap

13

Concurrent behaviour

14

||ParInc = ({a,b}::Var || a:Inc || b:Inc).
0 1

Without synchronization, concurrent threads may interfere:

3-inc-conflict.lts

Here we compose two instances of Inc with a common shared
variable. Note how we prefix the two instances of Inc with “a”
and “b” to ensure that they are independent. We prefix Var with
both names, so that the variable can be shared between them. This
also allows us to distinguish a read by process a from one by
process b.

In the LTS diagram we can see two terminal states: (4) represents
the case where either a completes its incrementation before b or
vice versa, resulting in the variable being assigned a value of 2;
(7) represents the state reached when they overlap, resulting in a
value of 1.

This is a clear example of a race condition, since obtaining a
correct result or not depends on timing.

(Be sure not to ask LTSA to minimize the result, or the two
different final states will be combined!)

Locking

15

LOCK	 =	 (acquire -> release -> LOCK).
INC	 =	 (acquire

->	 read[v:0..N-1]
->	 write[v+1]
->	 release
->	 STOP)						 +VarAlpha.

0 1

Locks are used
to make a
critical section
atomic:

4-lock.lts

In this example we model a LOCK as a process that can be
acquired and then released.

Since reading and writing the variable constitutes a critical
section, we protect these actions with the help of the lock. This
effectively makes the critical section atomic, thus eliminating the
race condition.

Note that this only works if all participants obey the locking
protocol. (This is guaranteed with monitors since they
encapsulate both operations on shared data and the locking
protocols.)

16

Synchronization

Processes can synchronize critical sections by sharing a lock:

||ParInc2 = ({a,b}::VAR || {a,b}::LOCK || a:INC || b:INC).

0 1
4-lock.lts

Here we guarantee that a and b cannot both be in their critical
section at the same time, and thus eliminate the race condition.

What are the possible traces in this solution?

Synchronization in Java

17

synchronized T m() {
// method body

}

T m() {
synchronized (this) {
// method body

}
}

Java Threads also synchronize using locks:

is just convenient syntax for:

Every object has a lock, and Threads may use them
to synchronize with each other.

> Modelling interaction in FSP

> Safety — synchronizing critical sections

> Locking for atomicity

> The busy-wait mutual exclusion protocol

> Checking Safety properties

> Conditional synchronization

Roadmap

18

19

Busy-Wait Mutual Exclusion Protocol

P1 sets enter1 := true when it wants to enter its CS, but sets
turn := “P2” to yield priority to P2

process P1
loop

enter1 := true
turn := “P2”
while enter2 and

turn = “P2”
do skip

Critical Section
enter1 := false
Non-critical Section

end
end

process P2
loop

enter2 := true
turn := “P1”
while enter1 and

turn = “P1”
do skip

Critical Section
enter2 := false
Non-critical Section

end
end

Is this protocol correct? Is it fair? Deadlock-free?

Mutual exclusion: When P1 enters its CS, we know that enter1 =
true and that either (1) enter2 = false, or (2) turn = “P1”.

1. If enter2 = false, then P2 has entered its non-CS, will set enter2

= true and turn = “P1”. Since enter1 = true, it will then busy-
wait till P1 leaves its CS.

2. Else, if turn = “P1”, then we know that P2 set turn = “P1” after
P1 set enter1 = true and turn = “P2”. So P2 must be busy-
waiting!

Fairness: If P1 is busy-waiting, then enter1 = true, enter2 = true
and turn = “P2”. Eventually P2 will go around the loop and set
turn = “P1”, letting P1 proceed and forcing P2 to busy-wait.
Similarly, if P2 wants to get into its CS, P1 will eventually let it
do so, as long as its CS and non-CS eventually terminate.

20

Atomic read and write  

We can model
integer and boolean
variables as
processes with
atomic read and
write actions:

range T = 1..2

Var = Var[1],
Var[u:T] =

(read[u] 		 -> Var[u]
| write[v:T]		 -> Var[v]).

set Bool = {true,false}

BOOL(Init='false) 	 = BOOL[Init],
BOOL[b:Bool] =

(is[b]					 -> BOOL[b]
| setTo[x:Bool]	 -> BOOL[x]).

We will use these
to model the
variables enter1,
enter2 and turn.

21

Modelling the busy-wait protocol

Each process performs two actions in its critical section:
P1 = (enter1.setTo['true]

-> turn.write[2]
-> Gd1),

Gd1 =
(enter2.is['false] -> CS1
| enter2.is['true] ->

(turn.read[1] -> CS1
| turn.read[2] -> Gd1)),

CS1 = (a -> b
-> enter1.setTo['false]
-> P1).

P2 = (enter2.setTo['true]
-> turn.write[1]
-> Gd2),

Gd2 =
(enter1.is['false] -> CS2
| enter1.is['true] ->

(turn.read[2] -> CS2
| turn.read[1] -> Gd2)),

CS2 = (c -> d
-> enter2.setTo['false]
-> P2).

||BusyWait = (enter1:BOOL||enter2:BOOL||turn:Var||P1||P2)@{a,b,c,d}.

Since we are only interested in the actions performed in the
critical sections (a, b, c, d), we use the interface operator to make
only those actions visible. All other, internal actions will be
translated to “tau”.

22

Busy-wait composition

0 1

Very pretty, but how
do we know there
are no errors?!

5-busywait.lts

We have exhaustively modeled all possible transitions of our
busy-waiting protocol. Note how LTSA translates all internal
actions to tau.

The problem with this analysis is that we have not (yet) expressed
which states or traces correspond to safety violations.

Model checking

> LTSA is an example of a model checker

—Express an abstract, finite-state model of a system

—Exhaustively check all possible state transitions

—Ensure that certain properties are not violated

– E.g., no safety violations, no deadlock or other liveness violations.

23

There are many different kinds of model checkers. LTSA is one
that is dedicated to modeling and analyzing concurrent systems as
finite state processes.

See also: https://en.wikipedia.org/wiki/Model_checking

Checking for errors

24

Ok	 =	 (a -> (c -> ERROR | b -> Ok)
| c -> (a -> ERROR | d -> Ok)).

||BusyWaitOK = (enter1:BOOL||enter2:BOOL||turn:Var||P1||P2||Ok).

0 1

We can check for errors by composing our system with an agent
that moves to the ERROR state if atomicity is violated:

What happens if we break the protocol?
6-brokenbusywait.lts

5-busywait.lts

In order for LTSA to check for safety errors, we have to tell it
explicitly which are the erroneous states that must be avoided.

In the busy-wait example, we want to avoid that two processes
may be in their critical sections at the same time. This would be
the case if we observe the sequence of actions ac (i.e., P2 starts
its critical section while P1 has not yet completed its own). The
process Ok expresses exactly the traces that should lead to an
ERROR state, as well as the ones that are safe.

(In a few slides we will see a better way to express this by turning
Ok into a “property”.)

Change one of the guards to see how the protocol breaks!

> Modelling interaction in FSP

> Safety — synchronizing critical sections

> Locking for atomicity

> The busy-wait mutual exclusion protocol

> Checking Safety properties

> Conditional synchronization

Roadmap

25

Safety revisited

26

Trace to property violation in ACTUATOR:
command
command 0 1

A safety property asserts that nothing bad happens
Use the ERROR process (-1) to indicate erroneous behaviour

ACTUATOR 	 =	 (command->ACTION),
ACTION		 =	 (respond->ACTUATOR

| command->ERROR).

7-actuator.lts

In this example we explicitly define which traces should lead to
an ERROR state. This is clumsy, and may accidentally leave out
some erroneous traces. (For example, “respond” should also
not be possible in the initial state.)

Safety — property specification

27

Trace to property violation in SAFE_ACTUATOR:
respond

property SAFE_ACTUATOR
= 	 (command

-> respond
-> SAFE_ACTUATOR).

0 1

ERROR conditions state what is not required.
In complex systems, it is usually better to specify directly what is required.

8-checkActuator.lts

A much better way to express safety conditions is as a property.

A safety property is an FSP expression that states which actions
are allowed; all other actions are assumed to lead to an ERROR.

Notice here that SAFE_ACTUATOR only specifies that the
actions command and respond must alternative. Since it is
defined as a property, LTSA automatically expands this to a
process that leads to an error state if any unspecified actions
occur.

We can now compose this property with our original system and
LTSA will either verify that ERROR is unreachable, or it will
provide a trace that proves the property is violated.

Checking Busy-Wait (revisited)

28

property Ok	 =	 (a -> b -> Ok
| c -> d -> Ok).

Ok = (a -> (c -> ERROR | b -> Ok)
| c -> (a -> ERROR | d -> Ok)).

0 1

Ok is a deterministic process that
specifies which traces are safe —
everything else leads to ERROR.

Contrast:

with:

9-busywait2.lts

Now we are ready to specify the safety property for our busy-wait
protocol. The property Ok states that either the first critical
section or the second one may complete, but they may not
overlap. Everything else leads to an error.

Notice how the property expresses additional error traces that we
missed with our first attempt (e.g., aa, or cb).

As we shall see in the next slide, it is essential that a property be
deterministic.

29

Safety properties

A safety property P defines a deterministic process that
asserts that any trace including actions in the alphabet of
P is accepted by P.

Transparency of safety properties:
> Since all actions in the alphabet of a property are eligible

choices, composing a property with a set of processes
does not affect their correct behaviour.

> If a behaviour can occur which violates the safety
property, then ERROR is reachable.

A safety property is a process that is composed with a system to
check that an error state cannot be reached. The safety property
must not alter the behaviour of the system being checked, that is,
it must be transparent.

If a process is non-deterministic, then when it is composed with
an existing system, it can arbitrarily decide to take one path rather
than another. This means that such a process alters the behaviour
of the base system. As a consequence such a process is not
transparent and cannot be a safety property.

Why must properties be deterministic to be transparent?

Consider:

Is a->b allowed or not?

Transparency

30

property P = (a->b->P|a->c->P).

0 1

10-NDprop.lts

This example won’t compile because LTSA detects that the
property is ND. Instead we could manually specify an equivalent
process:

PropertyP = P,

P = (a -> P1 | a -> P2 |{b,c} -> ERROR),

P1 = (b -> P | {a,c} -> ERROR),

P2 = (c -> P | {a,b} -> ERROR).

This is still ND. What we really want is the following:

property P = (a ->{b,c}->P).

This is deterministic, and states that after action a, either b or c
may follow.

Safety properties

31

property CALM = STOP + {disaster}.

A safety property must be specified
so as to include all the acceptable,
valid behaviours in its alphabet.

How can we specify that some action, disaster, never occurs?

LTSA expands a property with actions to the ERROR state only
using actions in the alphabet of the process. In this case, STOP
has an empty alphabet, so we must explicitly add the actions that
must not take place.

> Modelling interaction in FSP

> Safety — synchronizing critical sections

> Locking for atomicity

> The busy-wait mutual exclusion protocol

> Checking Safety properties

> Conditional synchronization

Roadmap

32

Conditional synchronization

33

LOCK = (acquire -> release -> LOCK).

const N = 2
Slot =	 (put[v:0..N]

->	get[v]
->	Slot).

Similarly, a one-slot buffer delays a put request if it is full and
delays a get request if it is empty:

A lock delays an acquire request if it is already locked:

34

Producer/Consumer composition

Producer = 	 (put[0]
-> put[1]
-> put[2]
-> Producer).

Consumer = 	 (get[x:0..N]
 -> Consumer).

||Chain =	 (Producer
|| Slot
|| Consumer)

0 1
11-slot.lts

Notice how the Slot is used to synchronize the behaviour of the
Producer and the Consumer.

Wait and notify

35

A Java object whose methods are all synchronized behaves like a monitor

Within a synchronized method or block:
> wait() suspends the current thread, releasing the lock
> notify() wakes up one thread waiting on that object
> notifyAll() wakes up all threads waiting on that object

NB: Outside of a synchronized block, wait() and notify() will raise an
IllegalMonitorStateException

Always use notifyAll() unless you are sure it
doesn’t matter which thread you wake up!

36

Slot (put)

class Slot<Value> implements Buffer<Value> {	
private Value slotVal;			 // initially null

public synchronized void put(Value val) {
while (slotVal != null) {

try { wait(); }			 // become NotRunnable
catch (InterruptedException e) { }

}
slotVal = val;
notifyAll();					 // make waiting threads Runnable
return;

}
... interface Buffer<Value> {

public void put(Value val);
public Value get();

}

Slot

Note the idiomatic structure of a Java monitor visible in this
method and the next:

—All public methods are synchronized.

—Any synchronization condition is checked before taking any

other action.

—The condition is checked within a while loop, and wait() is

performed within a try-catch statement.

—Finally, after changing state but just before completing the

method, notifyAll() is signalled to wake up all waiting
threads.

37

Slot (get)

...
public synchronized Value get() {

Value rval;
while (slotVal == null) {

try { wait(); }
catch (InterruptedException e) { }

}
rval = slotVal;
slotVal = null;
notifyAll();
return rval;

}
}

Slot
put(Object)
get():Object

Buffer
«interface»

run()

Thread

action()

ActiveObject

action()

Producer

action()

Consumer

slotslot

Slots and Active Objects

38

Active objects have
their own thread.

Producers and
Consumers are
active objects that
communicate and
synchronize through
a shared buffer.

NB: in UML active objects are designated using class boxes with
sidebars.

39

Active objects

abstract class ActiveObject extends Thread {
protected int count;
ActiveObject(String name, int count) {

super(name);
this.count = count;

}
public void run() {

int i;
for (i=1;i<=count;i++) {

this.action(i);
}

}
protected abstract void action(int n);

} Slot

An active object has
a thread of its own.

40

Producer in Java

A generic Producer puts count messages to the slot:

abstract class Producer<Value> extends ActiveObject {
protected Buffer<Value> slot;
Producer(String name, int count, Buffer<Value> slot) {

super(name, count);
this.slot = slot;

}
protected void action(int n) {

slot.put(produce(n));
}
protected abstract Value produce(int n);

} Slot

Consumer in Java

41

abstract class Consumer<Value> extends ActiveObject {
protected Buffer<Value> slot;
Consumer(String name, int count, Buffer<Value> slot) {

super(name, count);
this.slot = slot;

}
protected void action(int n) {

consume(n, slot.get());
}
protected abstract void consume(int n, Value val);

}

... and the Consumer gets them:

Fruit producers and consumers

public class ProducerConsumerDemo {
...
private class FruitProducer extends Producer<String> {

protected String wares;
FruitProducer(...) { ... }
protected String produce(int n) {

String message;
message = wares + "(" + n + ")";
System.out.println(getName() + " put " + message);
return message;

}
}

private class FruitConsumer extends Consumer<String> {
...

}
} 42

43

Composing Producers and Consumers

public class ProducerConsumerDemo {
static int COUNT = 5;
...
public void demo() {
Buffer<String> slot = new Slot<String>();

new FruitProducer("Peter", COUNT, slot, "apple").start();
new FruitProducer("Paula", COUNT, slot, "orange").start();
new FruitProducer("Patricia", COUNT, slot, "banana").start();

new FruitConsumer("Carla", COUNT, slot).start();
new FruitConsumer("Cris", 2*COUNT, slot).start();

}
...

}

Multiple producers and consumers may share the buffer:

Peter put apple (1)
Carla got apple (1)
Paula put orange(1)
Cris got orange(1)
Patricia put banana(1)
Carla got banana(1)
Peter put apple (2)
Cris got apple (2)
Patricia put banana(2)
Carla got banana(2)
Peter put apple (3)
Cris got apple (3)
Paula put orange(2)
Carla got orange(2)
Patricia put banana(3)
Cris got banana(3)
Peter put apple (4)
Cris got apple (4)
Peter put apple (5)
Carla got apple (5)
Paula put orange(3)
Cris got orange(3)
Patricia put banana(4)
Cris got banana(4)
Patricia put banana(5)
Cris got banana(5)
Paula put orange(4)
Cris got orange(4)
Paula put orange(5)
Cris got orange(5)

44

What you should know!

> How do you model interaction with FSP?
> What is a critical section? What is critical about it?
> Why don’t sequential programs need synchronization?
> How do locks address safety problems?
> What primitives do you need to implement the busy-wait mutex

protocol?
> How can you use FSP to check for safety violations?
> What happens if you call wait or notify outside a synchronized method

or block?
> When is it safe to use notifyAll()?
> What are safety properties? How are they modelled in FSP?

45

Can you answer these questions?

> What is an example of an invariant that might be violated by
interfering, concurrent threads?

> What constitute atomic actions in Java?
> Can you ensure safety in concurrent programs without using locks?
> When should you use synchronize(this) rather than

synchronize(someObject)?
> Is the busy-wait mutex protocol fair? Deadlock-free?
> How would you implement a Lock class in Java?
> Why is the Java Slot class so much more complex than the FSP Slot

specification?
> How would you manually check a safety property?
> Why must safety properties be deterministic to be transparent?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

