
Oscar Nierstrasz

11. Petri Nets

J. L. Peterson, Petri Nets Theory and the
Modelling of Systems, Prentice Hall, 1983.

b

a

y

Roadmap

> Definition:

—places, transitions, inputs, outputs

—firing enabled transitions

> Modelling:

—concurrency and synchronization

> Properties of nets:

— liveness, boundedness

> Implementing Petri net models:

—centralized and decentralized schemes

2

Roadmap

> Definition:

—places, transitions, inputs, outputs

—firing enabled transitions

> Modelling:

—concurrency and synchronization

> Properties of nets:

— liveness, boundedness

> Implementing Petri net models:

—centralized and decentralized schemes

3

4

Petri nets: a definition

A Petri net C = 〈P,T,I,O〉 consists of:
1. A finite set P of places
2. A finite set T of transitions
3. An input function I: T → NatP (maps to bags of places)
4. An output function O: T → NatP

A marking of C is a mapping m: P → Nat

Example:
P = { x, y }

T = { a, b }

I(a) = { x },	 I(b) = { x, x }

O(a) = { x, y }, O(b) = { y }

m = { x, x }

x

b

a

y

Petri nets (or “place/transition nets”) were invented Carl Adam
Petri. They offer a very intuitive graphical formalism for
modeling concurrent processes. Formal Petri nets are directed
bigraphs, graphs with two kinds of vertices — places and
transitions — together with a marking — a function that indicates
how many tokens are currently in every given place. Transitions
are enabled if they have at least one token in every input place.
Firing an enabled transition leads to a new marking by removing
one token from every input and adding one to every output place.

In the diagram we see the same net represented both graphically,
and using multisets.

The following classic survey (and subsequent book) offer an
excellent introduction:

James L. Peterson. Petri Nets. In ACM Computing Surveys 9(3) p. 223—252,
September 1977.

http://dx.doi.org/10.1145/356698.356702

http://scgresources.unibe.ch/Literature/CP/Pete77aSurvey.pdf

See also:

https://en.wikipedia.org/wiki/Petri_net

5

Firing transitions

To fire a transition t:

1. t must be enabled: m ≥ I(t)

2. consume inputs and generate output: mʹ= m - I(t) + O(t)

b

a

b

a

b

This diagram shows how the net of the previous slide can lead to
various possible sequences of transitions being fired. Note that
the “language” of a Petri net consists of the set of possible firing
sequences. In this case, the language can be expressed as a
regular expression.

Exercise: what is the (regular) language of this net?

Roadmap

> Definition:

—places, transitions, inputs, outputs

—firing enabled transitions

> Modelling:

—concurrency and synchronization

> Properties of nets:

— liveness, boundedness

> Implementing Petri net models:

—centralized and decentralized schemes

6

7

Modelling with Petri nets

Petri nets are good for modelling:
> concurrency

> synchronization

Tokens can represent:
> resource availability

> jobs to perform

> flow of control

> synchronization conditions ...

Petri nets can be used to model a wide range of concurrency
problems. Transitions can represent competing processes, and
places can represent resources, with tokens (markings) indicating
the availability of a resource. But a process may also correspond
to a subnet, with places representing the state of a process. Tokens
can then represent control flow, or data flow, or synchronization
conditions.

Concurrency

8

✂

Independent inputs permit “concurrent” firing of transitions

In this example, two independent subnets can fire concurrently,
since they share no resources (no common places).

Note that Petri nets have no notion of simultaneous firing of
transitions. Instead “concurrent” transitions may fire in an
interleaving way.

Conflict

9

a

bb

✂

Overlapping inputs put transitions in conflict

Only one of a or b may fire

Mutual Exclusion

10

✂

The two subnets are forced to synchronize

In this diagram we have two subnets that represent two
concurrent processes. Each subnet has two transitions — one to
enter a “critical section”, and one to leave it. The tokens within
the subnets represent flow of control. The place connecting the
subnets represents a mutual exclusion condition (or semaphore, or
lock). A token is present if the resource is available, and is absent
if there is already a process in the critical section.

Note how places and tokens represent very different things in this
model.

NB: The rectangles are there just to indicate subnets; they are not
part of the Petri net formalism.

11

Fork and Join

✂

Here the rectangles again represent subnets, but we do not show
what is in them.

Note how the first transition (“fork”) spawns several threads of
control, each thread being represented by a token. The final
transition (“join”) waits for all threads to complete, and then fires,
replacing the multiple threads by a single one.

What assumptions need to hold over the subnets for this to work?

12

Producers and Consumers

producer consumer

✂

Here we again have subnets representing communicating
processes, with tokens inside the subnets representing flow of
control. The place connecting them, however, this time represents
a buffer, with the tokens it contains representing payloads
(messages) produced by one subnet and consumed by the other.

13

Bounded Buffers

#occupied
slots

#free slots

✂

While the previous example made use of an unbounded buffer,
this example shows how a bounded buffer can be modeled.
Tokens in the middle represent either the number of occupied
slots or the available ones. The producer needs at least one free
slot to produce an output, and the consumer needs at least one full
slot to consume an input.

In this way the producer cannot get ahead of the consumer.

Roadmap

> Definition:

—places, transitions, inputs, outputs

—firing enabled transitions

> Modelling:

—concurrency and synchronization

> Properties of nets:

—liveness, boundedness

> Implementing Petri net models:

—centralized and decentralized schemes

14

15

Reachability and Boundedness

Reachability:
> The reachability set R(C,m) of a net C is the set of all

markings mʹ reachable from initial marking m.

Boundedness:
> A net C with initial marking m is safe if each place always

holds at most 1 token.

> A marked net is (k-)bounded if each place never holds

more than k tokens.

> A marked net is conservative if the total number of tokens

is constant.

Note that each marking m represents a possible state of the net.
As we have seen in the various examples, the reachability set may
be finite or infinite.

A safe net is clearly k-bounded (k=1).

Are conservative nets necessarily k-bounded? Is the reverse true?

Which of these have finite reachability sets?

Liveness and Deadlock

16

x

a

y z

b

c

This net is both safe and
conservative.
Transition a is deadlocked.
Transitions b and c are live.
The reachability set is {{y}, {z}}.

Liveness:
> A transition is deadlocked if it can never fire.
> A transition is live if it can never deadlock.

Are the examples we have seen
bounded? Are they live?

Note that liveness is a very strong condition, since it states that it
is always possible for the transition to become enabled again.
However there is no guarantee that it will fire, only that it might.

Go back through all the examples and for each net explain
whether or not is it is bounded (safe, conservative, k-bounded) or
live.

17

Related Models

Finite State Processes
> Equivalent to regular expressions
> Can be modelled by one-token conservative nets

The FSA for: a(b|c)*d

a
b

c

d

Finite state processes (FSPs) can easily be modeled by Petri nets
simply by adding a single net transition between every pair of
connected states. A single token then models the current state.

Finite State Nets

18

Some Petri nets can be modelled by FSPs

u

w

a
v

x
c

b

{u,w}

{v,w} {u,x}

{v,x}

a

b a

b

c

✂

Precisely which nets can
(cannot) be modelled by FSPs?

Any bounded net, i.e., with a finite reachability set, can be
modeled by a FSA. Simply introduce one state for each reachable
marking FSA indicating which net transitions fire between the
states, and addd a single token for the initial marking.

In the example, there are just four reachable markings, hence four
states in the FSP.

NB: An infinite reachability set does not guarantee that an
equivalent FSP does not exist. A counterexample is the first
example of the slide deck, which models the regular language
a*b, so even though it has an infinite reachability set, it is
equivalent to the FSP (0)—a→(0), (0)—b→(STOP).

Zero-testing Nets

19

a

b

c
d

✂

A zero-testing net: An equal
number of a and b transitions
may fire as a sequence during
any sequence of matching c
and d transitions.  
(#a ≥ #b, #c ≥ #d)

Petri nets are not computationally complete
> Cannot model “zero testing”

> Cannot model priorities

Petri nets are strictly more powerful than FSPs (or FSAs), but less
powerful than Turing machines. (Turing machines can generate
languages that nets cannot, just as nets can generate languages
that FSAs cannot.)

Adding almost any feature to nets (such as zero-testing), however,
will make them Turing-complete.

In the example, d can only fire if the zero-input place between a
and b is empty, i.e., if a and b have fired exactly the same number
of times. This behaviour is impossible to express with a “plain”
Petri net.

20

Other Variants

There exist countless variants of Petri nets

Coloured Petri nets:
> Tokens are “coloured” to represent different kinds of

resources

Augmented Petri nets:
> Transitions additionally depend on external conditions

Timed Petri nets:
> A duration is associated with each transition

Augmented Petri nets have been used to model “active databases”
in which activities are triggered when some event takes place,
such as an integrity constraint being violated.

21

Applications of Petri nets

Modelling information systems:
> Workflow

> Hypertext (possible transitions)

> Dynamic aspects of OODB design

Roadmap

> Definition:

—places, transitions, inputs, outputs

—firing enabled transitions

> Modelling:

—concurrency and synchronization

> Properties of nets:

— liveness, boundedness

> Implementing Petri net models:

—centralized and decentralized schemes

22

23

Implementing Petri nets

We can implement Petri net structures in either centralized
or decentralized fashion:

Centralized:
> A single “net manager” monitors the current state of the

net, and fires enabled transitions.

Decentralized:
> Transitions are processes, places are shared resources,

and transitions compete to obtain tokens.

The centralized scheme just implements the formal definition of
Petri nets, but has no “real” concurrency. The distributed version
is truly concurrent, but the difficulty is in realizing the atomic
nature of firing transitions competing for the same tokens.

Centralized schemes

24
Concurrently enabled transitions can be fired in parallel.

In one possible centralized scheme, the Manager selects and fires
enabled transitions.

Net Manager

Identify enabled
transitions

Select and fire
transitions

deadlocked

found
some

got new
markings

Possible problems: starvation (dining phils); deadlock (no
detection) ...

25

Decentralized schemes

In decentralized schemes transitions are processes and
tokens are resources held by places:

Transitions can be implemented as thread-per-message
gateways so the same transition can be fired more than
once if enough tokens are available.

x y

a b

x y

a bget()

The idea is that the availability of a token in a place will trigger a
new thread in transitions that input that place.

26

Transactions

Transitions attempting to fire must grab their input tokens as
an atomic transaction, or the net may deadlock even though
there are enabled transitions!

If a and b are implemented by independent processes, and x
and y by shared resources, this net can deadlock even
though b is enabled if a (incorrectly) grabs x and waits for y.

a

b

x y

27

Coordinated interaction

A simple solution is to treat the state of the entire net as a
single, shared resource:

After a transition fires, it notifies waiting transitions.

a

b

x y

a b
get()

This solution combines the centralized and distributed
approaches. NB: We can represent the entire state as an object in
a shared one-slot buffer!

Distributed scheme — idea: define equivalence classes via input
relation x~y if {x,y} in I(a) for some a.

Can you think of other, simple approaches that maximize
concurrency while avoiding deadlock?

Petit Petri — a Petri Net Editor built with Etoys

28

Petit Petri is a Petri Net editor and simulator implemented in
eToys.

See: http://scg.unibe.ch/download/petitpetri/

Etoys implementation

29

Mouse down

Mouse up

The entire implementation consists of 9 simple event driven
scripts. After building a net, the user can simulate its execution by
clicking on an enabled transition. Mouse down will instruct all
input places to decrease their token count by one, and mouse up
will instruct output places to increase their token count. When a
place’s token count drops to zero, it tells its successor transitions
to become disabled. When a place’s token count increases, it tells
its successors to check if they are enabled (checkIfFirable
optimistically sets itself to green, and then asks its predecessors to
disable it if any of them are empty).

Mouse enter and mouse leave for a place will update its color,
leaving it yellow if it is empty.

Examples

30

Several examples from the lecture are implemented in Petit Petri,
as well as a few different versions of Dining Philosophers and the
“Star Game” (the goal is to move all five tokens from their
current place to their neighbour).

31

What you should know!

> How are Petri nets formally specified?
> How can nets model concurrency and synchronization?
> What is the “reachability set” of a net? How can you

compute this set?
> What kinds of Petri nets can be modelled by finite state

processes?
> How can a (bad) implementation of a Petri net deadlock

even though there are enabled transitions?
> If you implement a Petri net model, why is it a good idea

to realize transitions as “thread-per-message gateways”?

32

Can you answer these questions?

> What are some simple conditions for guaranteeing that a
net is bounded?

> How would you model the Dining Philosophers problem
as a Petri net? Is such a net bounded? Is it conservative?
Live?

> What could you add to Petri nets to make them Turing-
complete?

> What constraints could you put on a Petri net to make it
fair?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

