
Requirements Collection

Introduction to Software Engineering

> The Requirements Engineering Process
> Use Cases
> Functional and non-functional requirements
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

2

3

Sources

> Software Engineering. Ian Sommerville. Addison-Wesley,
10th edition, 2015

> Software Engineering: A Practitioner's Approach. Roger S.
Pressman. McGraw Hill; 8th edition, 2003.

> Objects, Components and Frameworks with UML, D.
D'Souza, A. Wills, Addison-Wesley, 1999

> The Requirements Engineering Process
> Use Cases
> Functional and non-functional requirements
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

4

This is the old paper form that the Dean’s office of our Faculty
used to use to schedule meetings. Every participant in the meeting
would be sent (by post) such a form to fill in. The Dean’s office
would collect the responses and try to schedule a meeting.

Electronic Time Schedule

6

How can we transform this description into a requirements specification?

“So, basically we need a form for the time schedule that can be
distributed by eMail, a place (html) where I can deposit these
forms after they have been filled out, and an algorithm that
calculates a few possible meeting times, possibly setting
priorities to certain persons of each committee (since there will
always be some time schedule overlaps). It would also be great if
there were a way of checking whether everybody of the relevant
committee has really sent their time schedule back and at the
same time listing all the ones who have failed to do so. An
automatic invitation letter for the committee meeting to all the
persons involved, generated through this program, would be
even a further asset.”

I received a request from the Dean’s office some years ago to
explore an electronic solution to this problem. (Note that this was
before Doodle appeared on the scene!)
Have a careful look at this email. Is there enough information
here to start a design?
• Who are the stakeholders in this project?
• What are the possible “use cases” and “scenarios”?
• What are the technical and non-technical requirements?
• What should the system optimize? (Reduced work for the

stakeholders? More optimal scheduling? …)

7

The Requirements Engineering Process

© Ian Sommerville 2000

Feasibility
Study

Requirements
elicitation and

analysis

Requirements
specification

Requirements
validation

Feasibility
report System

models

User and system
requirements

Requirements
document

This figure from Sommerville (2000 edition) illustrates some of
the key activities in requirements collection. An important part of
the analysis is to capture domain knowledge (AKA “system
models”). In our example, we have to understand at some level
what kind of meetings take place in the Faculty, who participates
in them, how the meetings are run, and so on.
Then we need to collect specific user requirements (use cases and
scenarios), and also understand system requirements (what kinds
of platforms do we need to consider). In the end, we have to
produce (and maintain) documentation of these models and
requirements.
Note that these activities are iterative and incremental, not
sequential.

8

Requirements Engineering Activities

Feasibility study
Determine if the user needs can be satisfied
with the available technology and budget.

Requirements
analysis

Find out what system stakeholders require
from the system.

Requirements
definition

Define the requirements in a form
understandable to the customer.

Requirements
specification

Define the requirements in detail. (Written as a
contract between client and contractor.)

“Requirements are for users; specifications
are for analysts and developers.”

Be aware that the terms “requirements collection”, “requirements
elicitation”, “requirements analysis”, “requirements definition”,
and “requirements specification” can be highly ambiguous and
confusing. What is important is that the requirements engineer
must interact with the customer and the other stakeholders to
collect the requirements, and to document them in a way that is
understandable to everyone.
At some point, these requirements may be turned into
“specifications” that may form the basis for a work contract.
That’s why we say, “Requirements are for users; specifications
are for analysts and developers.”
What would each of these activities look like for the electronic
time schedule project?

9

Requirements Analysis

Sometimes called requirements elicitation or requirements
discovery

Technical staff work with customers to determine
> the application domain,
> the services that the system should provide and
> the system’s operational constraints.

Involves various stakeholders:
> e.g., end-users, managers, engineers involved in

maintenance, domain experts, trade unions, etc.

For the electronic time schedule project, we would have to carry
out interviews with various stakeholders: the administrative head
of the Dean’s office, selected committee heads and members, and
so on. As we will see, an effective way to solicit requirements is
to discuss concrete use cases and scenarios with the stakeholders,
and then compare them for consistency.

10

Problems of Requirements Analysis

Various problems typically arise:

—Stakeholders don’t know what they really want
—Stakeholders express requirements in their own terms
—Different stakeholders may have conflicting requirements
—Organisational and political factors may influence the system

requirements
—The requirements change during the analysis process.
—New stakeholders may emerge.

In our project, stakeholders may not be aware of possible
alternative technical solutions. Each person comes to the project
with their own perspective, and may only have a vague idea of
the requirements of other stakeholders.

How the Customer
explained it

How the Project Leader
understood it

How the Analyst
designed it

What the Customer
really needed

There are many versions of this ancient cartoon. The key thing
not to lose sight of is “what the customer needs”! Since there may
be many stakeholders, it is important to figure out who is driving
the project and what the business case is.

12

Requirements evolution

> Requirements always evolve as a better understanding of
user needs is developed and as the organisation’s
objectives change

> It is essential to plan for change in the requirements as
the system is being developed and used

13

The Requirements Analysis Process

© Ian Sommerville 2000

Domain
understanding

Requirements
validation

Prioritization

Conflict
resolution

Requirements
collection

Classification

Requirements
definition and
specification

Another diagram from Sommerville (2000 edition).
Don’t take this diagram too literally, but consider it as a rough
guideline to the key activities:

• Domain understanding: gather & understand domain knowledge
• Collection: document use cases & scenarios by interaction with stakeholders
• Classification: into coherent clusters
• Conflict resolution: i.e., due to different stakeholders
• Prioritization: i.e., importance, value …
• Validation: checking consistency, completeness …

What would these activities look like for our timetable project?

> The Requirements Engineering Process
> Use Cases
> Functional and non-functional requirements
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

14

15

Use Cases and Scenarios

A use case is the specification of a sequence of actions,
including variants, that a system (or other entity) can
perform, interacting with actors of the system”.
—login to the timetable system
—define a new committee
—schedule a meeting

A scenario is a particular trace of action occurrences,
starting from a known initial state.
—go to the timetable web site; enter your login; click on “forgot

password” …
—enter “new committee”; enter committee name; select committee

members from database; indicate committee chair; …

Ivar Jacobson described this approach to software development in
his classic book:

Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992

The essence of the approach is to document with the stakeholders
the “use cases” that capture the key interactions with the system
to be built. Each use case is then broken down into “scenarios”
that document the different ways in which the use may play out.
These scenarios can then be simulated later to validate possible
designs.
Note that this approach captures how the system will be used,
rather than just listing the desired “features”, which expresses
only what the system should do.
Jacobson joined Rational in 1995 and OOSE was incorporated
into UML.

16

Use Cases and Viewpoints ...

Stakeholders represent different problem viewpoints.
—Interview as many different kinds of stakeholders as possible/

necessary
—Translate requirements into use cases or “stories” about the

desired system involving a fixed set of actors (users and system
objects)

—For each use case, capture both typical and exceptional usage
scenarios

Users tend to think about systems in terms of “features”.
—You must get them to tell you stories involving those features.
—Use cases and scenarios can tell you if the requirements are

complete and consistent!

Stakeholders in the timetable system would be committee
members, the Dean, the Dean's secretary, the system
administrator, ...
Exceptional scenarios cover cases where information is missing,
or errors arise: committee members are not already known to the
system; an email address is missing; no suitable meeting date can
be found …
“Features” are functionalities from the user perspective: I can
login; set my profile; find the committees I am involved in; ask to
schedule a meeting. Features need to be turned into use cases so
that individual scenarios can be simulated. Only this way can you
be gain confidence that all the requirements are covered.

17

Unified Modeling Language

Class Diagrams visualize logical structure of system
in terms of classes, objects and relationships

Use Case Diagrams
show external actors and use cases they
participate in

Sequence Diagrams visualize temporal message ordering of a
concrete scenario of a use case

Collaboration
(Communication)

Diagrams

visualize relationships of objects exchanging
messages in a concrete scenario

State Diagrams specify the abstract states of an object and the
transitions between the states

UML is the industry standard for documenting OO models

In the timetable project, class diagrams can be used both to model
the actual domain, as well as to describe the design of the
software system.
Use case diagrams describe at a high level the main activities
supported by the system (defining a new committee, adding
members to a committee, scheduling a meeting, etc.)
Sequence diagrams and Collaboration diagrams can be used to
document a particular scenario of a use case (i.e., the concrete
steps).
State diagrams are useful for describing the evolution of a process
(for example, the lifecycle of a committee, or the steps taken to
organize a particular meeting).

18

Use Case Diagrams

More on
this later …

Use cases are described in chapter 5 of the UML reference:
http://scgresources.unibe.ch/Literature/Books/Rumb99aUMLreference.pdf

NB: there are dedicated lectures on UML later in this course

19

Sequence Diagrams

20

Writing Requirements Definitions

Requirements definitions usually consist of natural language,
supplemented by (e.g., UML) diagrams and tables.

Three types of problems can arise:
—Lack of clarity: It is hard to write documents that are both precise and easy-to-

read.
—Requirements confusion: Functional and non-functional requirements tend to

be intertwined.
—Requirements amalgamation: Several different requirements may be

expressed together.

> The Requirements Engineering Process
> Use Cases
> Functional and non-functional requirements
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

21

22

Functional and Non-functional Requirements

Functional requirements describe system services or
functions
—Enter a new user into the timetable system
—Schedule a meeting

Functional requirements must be precise and unambiguous

Non-functional requirements are constraints on the system
or the development process
—User data must remain confidential
—Finding a possible meeting date should be instantaneous (< 0.5s)

Non-functional requirements may be more critical than functional
requirements. If these are not met, the system is useless!

Functional requirements have to do with the functions computed
by the system under construction. They can typically be tested
using unit tests.
Non-functional requirements, on the other hand, express all the
constraints that the system must fulfil. They may range from
constraints like the platform that must be used, to run-time
constraints like performance and throughput.

23

Non-functional Requirements

Product
requirements:

specify that the delivered product must behave
in a particular way
e.g. execution speed, reliability, etc.

Organisational
requirements:

are a consequence of organisational policies
and procedures
e.g. process standards used, implementation
requirements, etc.

External
requirements:

arise from factors which are external to the
system and its development process
e.g. interoperability requirements, legislative
requirements, etc.

24

Types of Non-functional Requirements

© Ian Sommerville 2000

Non-functional
requirements

Product
requirements

Organizational
requirements

External
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Usability
requirements

Performance
requirements

Space
requirements

Delivery
requirements

Implementation
requirements

Standards
requirements

Legislative
requirements

Privacy
requirements

Safety
requirements

25

Examples of Non-functional Requirements

Product
requirement

The timetable system should run on all standard
browsers, i.e., Safari, Firefox, Chrome, IE

Organisational
requirement

Committees must be constituted according to University
and Faculty regulations.

External
requirement

User profile data is confidential and must confirm to
Swiss privacy laws. Users have the right to audit their
data and to request that their data be removed from the
system.

26

Requirements Verifiability

Requirements must be written so that they can be
objectively verified.

Imprecise:
—The timetable system should be easy to use and should be

organised in such a way that user errors are minimised.
Terms like “easy to use” and “errors shall be minimised” are
useless as specifications.

Verifiable:
—Users should be able to use the timetable system without having to

read a user manual. Users should be able to enter their conflicts for
a proposed meeting in under 2 minutes.

Verifiability is an important criterion that is typically checked in a
formal review of the requirements document. Every single
requirement must be expressed in such a way that it is possible to
verify that the requirement is fulfilled or not.
The classic example of a poorly phrased requirement is that the
software should be “easy to use”. Since “easy to use” is
subjective, it is useless as a formal requirement.
Instead, the requirements should state explicit, measurable
criteria, such as the amount of time it should take a new user to
learn it, what the expected throughput of the system should be for
a new or an experienced user, or the expected error rate.

27

Precise Requirements Measures (I)

Property Measure

Speed

Time to define a new committee
Time to enter one’s conflict 
Response time to identify potential meeting schedule
Time to load the application

Size
Deployment size (MB)
Source LOC
Number of packages/classes

Ease of use
Training time  
Rate of errors made by trained users 
Number of help frames

28

Precise Requirements Measures (II)

Property Measure

Reliability
Mean time to failure
Probability of unavailability
Rate of failure occurrence

Robustness
Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Dependency on underlying platforms (which)
Number of target systems

> The Requirements Engineering Process
> Use Cases
> Functional and non-functional requirements
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

29

30

Prototyping Objectives

The objective of throw-away prototyping is to validate or
derive the system requirements.

—Prototyping starts with that requirements that are poorly
understood.

The objective of evolutionary prototyping is to deliver a
working system to end-users.

—Development starts with the requirements that are best understood.

The purpose of all prototypes is to reduce risk.
An evolutionary prototype is simply a very early version of the
software under development using an iterative development
lifecycle. The risk that is reduced is that the wrong system will be
developed. By delivering early demos as prototypes, dialogue
with the stakeholders is maintained, which helps the development
team focus on delivering maximum value to the customer.
A throwaway prototype is not an early version of the software, but
exists to test out some idea that is not well understood. The risk
that is reduced is that the project will proceed under false
assumptions. The prototype may test out any aspect of the
project: user interface ideas, scenarios, feasibility of one
technology or another. The prototype need not be running
software. A good example is paper prototypes of the user
interface.

Throw-away Prototyping

> Used to reduce requirements risk
—The prototype is developed from an initial specification, delivered

for experiment then discarded

> The throw-away prototype should not be considered as a
final system
—Various system characteristics may be left out

– A mockup of the timetable system may consist of static HTML pages
—There is no specification for long-term maintenance

31

Paper prototypes

32

Prototypes do not have to be executable or pretty!

A paper prototype is a cheap way to explore design options for a
user interface. Each page can illustrate one step in the scenario of
a use case.
A key advantage of paper prototypes is that no one can possible
confuse them with the finished system! (Sometime very flashy
software prototypes can give the false impression that
development is much further along than it really is.)

Evolutionary Prototyping

> Can be seen as the early versions of the system under
development in a spiral development lifecycle.
—Early prototypes help to clarify requirements

– Who should initiate the meeting schedule? Who approves it?
—Can be used to explore design options

– How should the timetable be displayed?

33

> The Requirements Engineering Process
> Use Cases
> Functional and non-functional requirements
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

34

35

Requirements Checking

Validity Does the system provide the functions
which best support the customer’s needs?

Consistency Are there any requirements conflicts?

Completeness Are all functions required by the customer
included?

Realism Can the requirements be implemented
given available budget and technology?

Validity: do the stakeholders agree on the needs?
Consistency: do the Dean's office and the Committees agree on
the procedure to schedule a meeting? Who selects the possible
dates? Who decides amongst the potential dates?
Completeness: have all stakeholders been interviewed?
Realism: where will the system be deployed? Who will maintain
it?

36

Requirements Reviews

> Regular reviews should be held while the requirements
definition is being formulated

> Both client and contractor staff should be involved in
reviews

> Reviews may be formal (with completed documents) or
informal.
—Good communications between developers, customers and users

can resolve problems at an early stage

37

Review checks

Verifiability Is the requirement realistically testable?

Comprehensibility Is the requirement properly understood?

Traceability Is the origin of the requirement clearly
stated?

Adaptability Can the requirement be changed without a
large impact on other requirements?

38

Sample Requirements Review Checklist

> Does the (software) product have a succinct name, and a clearly
described purpose?

> Are the characteristics of users and of typical usage mentioned?  
(No user categories missing.)

> Are all external interfaces of the software explicitly mentioned?  
(No interfaces missing.)

> Does each specific requirement have a unique identifier ?
> Is each requirement atomic and simply formulated ?  

(Typically a single sentence. Composite requirements must be split.)
> Are requirements organized into coherent groups ?  

(If necessary, hierarchical; not more than about ten per group.)
> Is each requirement prioritized ?  

(Is the meaning of the priority levels clear?)
> Are all unstable requirements marked as such?  

(TBC=`To Be Confirmed', TBD=`To Be Defined')

http://wwwis.win.tue.nl/2M390/rev_req.html

39

Sample Requirements Review Checklist

> Is each requirement verifiable (in a provisional acceptance test)?  
(Measurable: where possible, quantify; capacity, performance,
accuracy)

> Are the requirements consistent ? (Non-conflicting.)
> Are the requirements sufficiently precise and unambiguous ?  

(Which interfaces are involved, who has the initiative, who supplies
what data, no passive voice.)

> Are the requirements complete? Can everything not explicitly
constrained indeed be viewed as developer freedom? Is a product
that satisfies every requirement indeed acceptable? (No requirements
missing.)

> Are the requirements understandable to those who will need to work
with them later?

> Are the requirements realizable within budget?
> Do the requirements express actual customer needs (in the language

of the problem domain), rather than solutions (in developer jargon)?
http://wwwis.win.tue.nl/2M390/rev_req.html

40

Traceability

To protect against changes you should be able to trace back
from every system component to the original requirement
that caused its presence

C1 C2 … … Cm
req1 x
req2 x
… x
… x

reqn x x

A software process should
help you keep this virtual
table up-to-date

Simple techniques may be
quite valuable (naming
conventions, ...)

“Feature creep” refers to the uncontrolled addition of features to
the system.
To avoid feature creep it is critical to have a clear business vision
of what the system should achieve or optimize.
Traceability helps to keep feature creep under control by tracing
new features to the actual requirements they should address.
In upcoming lectures we will see how agile methods address this
issue by guiding both the development team and the customer
towards features that bring the most business value to the
customer.

41

What you should know!

> What is the difference between requirements analysis
and specification?

> Why is it hard to define and specify requirements?
> What are use cases and scenarios?
> What is the difference between functional and non-

functional requirements?
> What’s wrong with a requirement that says a product

should be “user-friendly”?
> What’s the difference between evolutionary and throw-

away prototyping?

42

Can you answer the following questions?

> Why isn’t it enough to specify requirements as a set of
desired features?

> Which is better for specifying requirements: natural
language or diagrams?

> How would you prototype a user interface for a web-
based ordering system?

> Would it be an evolutionary or throw-away prototype?
> What would you expect to gain from the prototype?
> How would you check a requirement for “adaptability”?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

