
Responsibility-Driven Design

Introduction to Software Engineering

Roadmap

2

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

Bibliography

> Designing Object-Oriented Software, R. Wirfs-Brock, B.
Wilkerson, L. Wiener, Prentice Hall, 1990.

> Design Principles and Design Patterns, R.C. Martin, 2000
> Object-Oriented Design Heuristics, A.Riel, 2000

3

Responsibility-Driven Design (RDD) was developed by Rebecca
Wirfs-Brock and colleagues in the mid 1980s as they made some
of the first industrial experiences in applying object-oriented
programming to real-world projects with Smalltalk.
The central idea is that in a “good” object-oriented design, every
object has clear and well-defined responsibilities. Responsibilities
are not concentrated centrally, but are well-distributed amongst
the objects. Such a design can evolve gracefully since changes
impact only objects responsible for the affected behaviour and
their direct collaborators.
RDD, together with Design by Contract (DbC) are considered to
be cornerstones of object-oriented development methods, and
they have proven to work well with other process-oriented
methodologies, such as agile development.

Roadmap

4

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

5

Functional Decomposition:

—Good in a “waterfall” approach: stable requirements and one
monolithic function

However
—Naive: Modern systems perform more than one function
—Maintainability: system functions evolve ⇒ redesign affect whole

system
—Interoperability: interfacing with other system is difficult

Why Responsibility-driven Design?

Decompose according to the functions a
system is supposed to perform.

Classical, top-down functional or procedural decomposition
yields a system built out of procedures calling other procedures
and manipulating shared data structures. This approach works
very well for algorithmic applications with very stable
requirements, but works less well for rapidly evolving application
domains. The problem is that the design focuses on the functions
performed, but these may not be very stable, leading to a lot of re-
design over time.

6

Why Responsibility-driven Design?

Object-Oriented Decomposition:

—Better for complex and evolving systems
However

—How to find the objects?

Decompose according to the objects a
system is supposed to manipulate.

An object-oriented design is centred around the “objects”, i.e., the
domain concepts, of a particular application. Even in a rapidly
evolving application, the underlying domain concepts tend to be
stable. As a consequence, a good object-oriented design tends to
be more robust over time than a functional design.

7

Design is not algorithmic

Engineering is about best practices, as opposed to science, which
is about empirically discovering knowledge.
Accordingly, a design method provides guidelines, not fixed rules
for designing software. This classic book by Arthur Riel describes
a set of such guidelines formulated as “heuristics”. A summary
can be found online:

http://scg.unibe.ch/teaching/ese/60-design-heuristics

Expertise matters

8

A good sense of style often helps produce clean,
elegant designs

Experienced software designers know intuitively what makes a
design good or bad.
Good designs are easy to understand, maintain and adapt; poor
designs make further development painful.

9

RDD Steps

1. Find the classes in your system

2. Determine the responsibilities of each class

3. Determine how objects collaborate with each other to
fulfill their responsibilities

4. Factor common responsibilities to build class hierarchies

RDD leads to software designs with well-distributed
responsibilities.
The first step is to identify potential classes that correspond to
domain concepts. We will explore some heuristics for identifying
such candidate classes.
The next task is to identify responsibilities for these classes.
“Responsibilities” are conceptual, and do not refer to specific
methods or interfaces, for example, “compute possible meeting
dates for a committee”.
Collaborations refer to the other objects needed to fulfil a
responsibility.
Finally, responsibilities should be factored to build conceptual
clean class hierarchies.

Roadmap

10

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

Finding Classes

> Start with requirements specification:
—What are the goals of the system being designed, its expected

inputs and desired responses?

11

12

Drawing Editor Requirements Specification

The drawing editor is an interactive graphics editor.
With it, users can create and edit drawings composed of
lines, rectangles, ellipses and text.

Tools control the mode of operation of the editor.
Exactly one tool is active at any given time.

Two kinds of tools exist: the selection tool and
creation tools. When the selection tool is active, existing
drawing elements can be selected with the cursor. One
or more drawing elements can be selected and
manipulated; if several drawing elements are selected,
they can be manipulated as if they were a single
element. Elements that have been selected in this way
are referred to as the current selection. The current
selection is indicated visually by displaying the control
points for the element. Clicking on and dragging a
control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is
empty. The cursor changes in different ways according
to the specific creation tool, and the user can create an
element of the selected kind. After the element is
created, the selection tool is made active and the newly
created element becomes the current selection.

The text creation tool changes the shape of the cursor
to that of an I-beam. The position of the first character of
text is determined by where the user clicks the mouse

button. The creation tool is no longer active when the
user clicks the mouse button outside the text element.
The control points for a text element are the four corners
of the region within which the text is formatted. Dragging
the control points changes this region. The other
creation tools allow the creation of lines, rectangles and
ellipses. They change the shape of the cursor to that of
a crosshair. The appropriate element starts to be
created when the mouse button is pressed, and is
completed when the mouse button is released. These
two events create the start point and the stop point.
The line creation tool creates a line from the start point
to the stop point. These are the control points of a line.
Dragging a control point changes the end point.
The rectangle creation tool creates a rectangle such that
these points are diagonally opposite corners. These
points and the other corners are the control points.
Dragging a control point changes the associated corner.
The ellipse creation tool creates an ellipse fitting within
the rectangle defined by the two points described
above. The major radius is one half the width of the
rectangle, and the minor radius is one half the height of
the rectangle. The control points are at the corners of
the bounding rectangle. Dragging control points
changes the associated corner.

This example is taken from the RDD book. It consists of a typical
textual description of a system to be built. We will deconstruct
this description to identify domain concepts that can serve as
candidate classes for our design.

Finding Classes ...

1. Look for noun phrases
—separate into obvious classes, uncertain candidates, and nonsense

2. Refine to a list of candidate classes
— apply heuristics to select the best candidates

13

14

Drawing Editor: noun phrases

The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool
is active at any given time.

Two kinds of tools exist: the selection tool and creation tools.
When the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are selected,
they can be manipulated as if they were a single element. Elements
that have been selected in this way are referred to as the current
selection. The current selection is indicated visually by displaying
the control points for the element. Clicking on and dragging a
control point modifies the element with which the control point is
associated.

…

As a first step we simply highlight all the nouns and noun
phrases. Many of these will be eliminated as we apply our
heuristics.

...

When a creation tool is active, the current selection is empty.
The cursor changes in different ways according to the specific
creation tool, and the user can create an element of the selected
kind. After the element is created, the selection tool is made
active and the newly created element becomes the current
selection.

The text creation tool changes the shape of the cursor to that of
an I-beam. The position of the first character of text is determined
by where the user clicks the mouse button. The creation tool is
no longer active when the user clicks the mouse button outside
the text element. The control points for a text element are the four
corners of the region within which the text is formatted. Dragging
the control points changes this region. The other creation tools
allow the creation of lines, rectangles and ellipses. They change
the shape of the cursor to that of a crosshair. The appropriate
element starts to be created when the mouse button is pressed,
and is completed when the mouse button is released. These two
events create the start point and the stop point.

The line creation tool creates a line from the start point to the
stop point. These are the control points of a line. Dragging a
control point changes the end point.

The rectangle creation tool creates a rectangle such that these
points are diagonally opposite corners. These points and the
other corners are the control points. Dragging a control point
changes the associated corner.

The ellipse creation tool creates an ellipse fitting within the
rectangle defined by the two points described above. The major
radius is one half the width of the rectangle, and the minor radius
is one half the height of the rectangle. The control points are at
the corners of the bounding rectangle. Dragging control points
changes the associated corner.

Roadmap

17

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

18

Class Selection Rationale

Model physical objects:
—mouse button [event or attribute]

Model conceptual entities:
—ellipse, line, rectangle
—Drawing, Drawing Element
—Tool, Creation Tool, Ellipse Creation Tool, Line Creation

Tool, Rectangle Creation Tool, Selection Tool, Text Creation
Tool

—text, Character
—Current Selection

Not all nouns or noun phrases will be candidate classes.
Physical or real-world entities are often important domain
concepts. In this case there are none, since the application domain
is a technical one. The only physical entity is a mouse, but the
requirements description actual refers to “clicking” the mouse
button, so it is the event that is important, not the object. We
scratch it out.
Another heuristic is to model “conceptual entities”, or domain
concepts. Since the application is a drawing editor, the important
domain concepts are drawings and drawing elements.

19

Class Selection Rationale ...

Choose one word for one concept:
—Drawing Editor ⇒

 editor, interactive graphics editor
—Drawing Element ⇒ element
—Text Element ⇒ text
—Ellipse Element, Line Element, Rectangle Element  
⇒ ellipse, line, rectangle

Beware of synonyms. It is normal to vary ones descriptions in
natural language to enrich the text, but this may lead to confusion
in the exercise of identifying domain concepts. An important task
is therefore to search for such synonyms and to introduce a single,
normalized term for each concept.

20

Class Selection Rationale ...

Be wary of adjectives:
—Ellipse Creation Tool, Line Creation Tool, Rectangle

Creation Tool, Selection Tool, Text Creation Tool
– all have different requirements

—bounding rectangle, rectangle, region ⇒ Rectangle
– common meaning, but different from Rectangle Element

—Point ⇒ end point, start point, stop point
—Control Point

–more than just a coordinate
—corner ⇒ associated corner, diagonally opposite corner

– no new behaviour

Adjectives sometimes introduce a specialized domain concept. A
“Line Creation Tool” is a special kind of Tool just for creating
lines. A Control Point is a special kind of point for controlling the
shape of a drawing element.
In other cases adjectives may just indicate a special state of a
given entity, or its relation to other entities. An end point and a
start point are both Point objects, just occurring at different ends
of a Line Element.

21

Class Selection Rationale ...

Be wary of sentences with missing or misleading subjects:
—“The current selection is indicated visually by displaying

the control points for the element.”
– by what? Assume Drawing Editor ...

Model categories:
—Tool, Creation Tool

Model interfaces to the system: — no good candidates
here ...
—user — don’t need to model user explicitly
—cursor — cursor motion handled by operating system

Sentences written in the passive voice are missing a subject. That
subject might be an important, but unstated domain concept.
Categories of domain concepts are important to capture. In a later
phase we might organise them into a specialization hierarchy, but
at this stage it is enough to capture them. There are several
different kinds of tools. Choose a unique name for each of them.
It might be important to model interfaces to a system, that is,
where information enters or leaves the system. This application is
pretty much self-contained, so there are no good examples.

22

Class Selection Rationale ...

Model values of attributes, not attributes themselves:
—height of the rectangle, width of the rectangle
—major radius, minor radius
—position — of first text character; probably Point attribute
—mode of operation — attribute of Drawing Editor
—shape of the cursor, I-beam, crosshair — attributes of

Cursor
—corner — attribute of Rectangle
—time — an implicit attribute of the system

Many nouns will just refer to attributes of certain entities. Be
careful to distinguish the role of an attribute from the type of
value it is. Simple values do not need to be modeled as separate
classes.
The height and width of a rectangle, and the major and minor
radius of an ellipse are simple value attributes of rectangles and
ellipses. We do not need to model them.
A corner of a Rectangle is probably a Point. Once we model
Rectangle and Point, we do not need to model “corner” as a
concept, but only as an attribute of a rectangle.

23

Candidate Classes

Character Line Element
Control Point Point
Creation Tool Rectangle
Current Selection Rectangle Creation Tool
Drawing Rectangle Element
Drawing Editor Selection Tool
Drawing Element Text Creation Tool
Ellipse Creation Tool Text Element
Ellipse Element Tool
Line Creation Tool

Preliminary analysis yields the following candidates:

Expect the list to evolve
as design progresses.

Roadmap

24

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

25

CRC Cards

Use CRC cards to record candidate classes:

Record the candidate Class Name and superclass (if known)
Record each Responsibility and the Collaborating classes

—compact, easy to manipulate, easy to modify or discard!
—easy to arrange, reorganize
—easy to retrieve discarded classes

Text Creation Tool subclass of Tool
Editing Text Text Element

CRC (Class-Responsibility-Collaboration) cards are a lightweight
tool to keep track of candidate classes. Just use index cards (or
cut up regular A4 sheets into 1/4 pieces).
On each card write the name of the candidate class at the top. For
each class, list the high-level responsibilities in a column (there
should not be too many of them). For each responsibility, list any
collaborating classes to the right.
You will then use the cards to elaborate and validate your design.

https://en.wikipedia.org/wiki/Class-responsibility-collaboration_card

NB: You don’t have to use index cards, but they have the
advantage of being easy to add, change, move around and throw
away. You don’t need a high-tech tool.

CRC Sessions

26

CRC cards are not a specification of a
design.

They are a tool to explore possible
designs.
—Prepare a CRC card for each candidate class
—Get a team of developers to sit around a table

and distribute the cards to the team
—The team walks through scenarios, playing the

roles of the classes.

This exercise will uncover:
—unneeded classes and responsibilities
—missing classes and responsibilities

CRC cards can be used to explore possible design in “CRC
sessions”. The idea is to play a game in which team members
each take a few of the cards, and then try to play through a
concrete scenario (such as “schedule a committee meeting”).
At each step of the scenario, some object must assume
responsibility for the task at hand. The game will expose missing
responsibilities, unneeded responsibilities, missing classes,
missing collaborations.

Roadmap

27

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

28

Responsibilities

What are responsibilities?
—the knowledge an object maintains and provides
—the actions it can perform

Responsibilities represent the public services an object may
provide to clients (but not the way in which those
services may be implemented)
—specify what an object does, not how it does it
—don’t describe the interface yet, only conceptual responsibilities

Responsibilities are high-level specifications of what instances of
a class know and do. These will later translate to state (instance
variables) and behavior (methods), but at this stage they should
just be specified in as general way as possible.
Examples: “keep track of committee members”, “schedule
meetings”

29

Identifying Responsibilities

> Study the requirements specification:
—highlight verbs and determine which represent responsibilities
—perform a walk-through of the system

– explore as many scenarios as possible
– identify actions resulting from input to the system

> Study the candidate classes:
—class names ⇒ roles ⇒ responsibilities
—recorded purposes on class cards ⇒ responsibilities

Just as we identified candidate classes by highlighting nouns and
noun phrases, we can identify potential responsibilities by
highlighting verbs and verb phrases. Any action appearing in the
requirements document must be the responsibility of some person
or thing. If it is part of the system, figure out what class should be
responsible for it.
Playing through CRC sessions can be helpful for assigning
responsibilities. New responsibilities should be assigned to
existing classes that have the needed knowledge.
(If a Committee class is responsible for keeping track of
committee members, then adding a new member should also be
the responsibility of that class.)
Some further hints follow …

How to assign responsibilities?

Assigning Responsibilities: Be lazy

31

“Don’t do anything you can push off to someone else.”
(Pelrine)

If you have a job to do but don't have all the needed resources
yourself, figure out who does and pass the job on.
This is the object-oriented way of distributing responsibilities.
In a centralised design it is more common to gather all the needed
resources and then handle tasks locally. This leads to a lot of
needless interaction and a fragile design. The object-oriented way
leads to a more robust and distributed design.

Assigning Responsibilities: Be tough

32

“Don't let anyone else play with your toys”.
(Pelrine)

Why not?
If you let others play with your data, then you suddenly cannot
change since they rely on things that are not in your public
interface.

33

Assigning Responsibilities: Be socialist

Evenly distribute system intelligence

Avoid procedural centralization of responsibilities
One example: it is well known that in Smalltalk, any method that
is longer than 10 lines of code is too long and should be split.
Why? Because like this the code is self-explaining with method
names explaining what the code does.

Assigning Responsibilities: Be general

> State responsibilities as generally as possible

—“draw yourself” vs. “draw a line/rectangle etc.”
—leads to sharing, reuse, and extensibility

34

Assigning Responsibilities: Be organized

> Keep behaviour together with any related information
—principle of encapsulation

> Keep information about one thing in one place
—if multiple objects need access to the same information

– a new object may be introduced to manage the information, or
– one object may be an obvious candidate, or
– the multiple objects may need to be collapsed into a single one

> Share responsibilities among related objects
— break down complex responsibilities

35

Roadmap

36

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

37

Relationships Between Classes

> Drawing Element has-knowledge-of Control Points

> Drawing element is-part-of Drawing

> Rectangle Tool is-kind-of Creation Tool

These are the three key kinds of relationships between classes
(more on this in the static UML lecture).
One class can have a reference to another. Instances of these
classes exist independently. The reference relation can change
over time. A Person can be the Chair of different
Committees over time.
A class can be part of another. The containment relationship is
generally fixed, and the part cannot exist without the whole. A
meeting Schedule contains consists of several possible meeting
Dates.
A class can be a specialization of (kind-of) another class. A
CommitteeMember is a Person.
These relationships have implications for assigning
responsibilities …

Relationships Between Classes

> The “Is-Part-Of” Relationship:
—distinguish (don’t share) responsibilities of part and of whole

38

Very often the whole will delegate responsibilities to its parts. A
TestSuite delegates to its individual Test instances. A
Committee may delegate certain tasks to its Chair.

39

Relationships Between Classes

> The “Is-Kind-Of” Relationship:
—classes sharing a common attribute often share a common

superclass
—common superclasses suggest common responsibilities

e.g., to create a new Drawing Element, a Creation Tool must:
1. accept user input — implemented in subclass
2. determine location to place it — generic
3. instantiate the element – implemented in subclass

A specialization shares (inherits) responsibilities of its parent.
Subclasses typically specialize or add to existing responsibilities
of their parents.

40

Relationships Between Classes ...

> The “Is-Analogous-To” Relationship:
—similarities between classes suggest as-yet-undiscovered

superclasses

Difficulties in assigning responsibilities suggest:
—missing classes in design, or — e.g., Group Element
—free choice between multiple classes

41

Collaborations

What are collaborations?

> collaborations are client requests to servers needed to
fulfill responsibilities

> collaborations reveal control and information flow and,
ultimately, subsystems

> collaborations can uncover missing responsibilities
> analysis of communication patterns can reveal

misassigned responsibilities

42

Finding Collaborations

For each responsibility:
1. Can the class fulfill the responsibility by itself?
2. If not, what does it need, and from what other class can it obtain

what it needs?

For each class:
1. What does this class know?
2. What other classes need its information or results? Check for

collaborations.
3. Classes that do not interact with others should be discarded.

(Check carefully!)

43

Listing Collaborations

Drawing

Knows which elements it contains

Maintains order of elements Drawing Element

Roadmap

44

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

Finding Abstract Classes

45

Warning: beware of premature
classification; your hierarchy will evolve!

Abstract classes factor out common behaviour shared by other classes

> group related classes with common attributes
> introduce abstract superclasses to represent the group
> “categories” are good candidates for abstract classes

Tool

Creation ToolSelection Tool

Ellipse Tool Line Tool Rectangle Tool Text Tool

An abstract class is a class that has no instances of its own. It
serves only as a template for its subclasses by defining shared
responsibilities.
You can easily identify abstract classes by looking for groups of
related classes with similar responsibilities. Introduce an abstract
class to represent the group.
You may find you need multiple abstract classes if there are
subgroups with similar responsibilities, as in the example.

46

Sharing Responsibilities

Concrete classes may be both
instantiated and inherited from.
Abstract classes may only be
inherited from.

Note on class cards and on
class diagram.

Venn Diagrams can be used to
visualize shared
responsibilities.
(Warning: not part of UML!)

Tool
{ abstract }

Creation Tool
{ abstract }Selection Tool

ToolSelection Tool Creation Tool

OrderedCollection

Array

IndexableCollection

OrderedCollection

Matrix

IndexableCollection

Matrix

Magnitude

String Date

Magnitude Date

String

Array

47

Multiple Inheritance

Decide whether a class will be
instantiated to determine if it
is abstract or concrete.

Responsibilities of subclasses
are larger than those of
superclasses.
Intersections represent
common superclasses.

Some programming languages (like C++ and Python) support
multiple inheritance and others do not (like Java and Smalltalk).
In any case multiple inheritance may be useful in your design,
although you may have to translate it in your implementation. In
Java, for example, you can use interfaces to partly compensate for
the lack of multiple inheritance.

48

Building Good Hierarchies

Model a “kind-of” hierarchy:
> Subclasses should support all inherited responsibilities,

and possibly more

Factor common responsibilities as high as possible:
> Classes that share common responsibilities should inherit

from a common abstract superclass; introduce any that
are missing

49

Building Good Hierarchies …

Abstract classes do not inherit from concrete classes:
> Eliminate by introducing common abstract superclass:

abstract classes should support responsibilities in an
implementation-independent way

Eliminate classes that do not add functionality:
> Classes should either add new responsibilities, or a

particular way of implementing inherited ones

50

Building Kind-Of Hierarchies

Correctly Formed Subclass Responsibilities:

C assumes all the
responsibilities of

both A and B

A

C

B

A C B

E

G

E G

GE

GE

D D

51

Building Kind-Of Hierarchies ...

Incorrect Subclass/Superclass
Relationships

> G assumes only some of the
responsibilities inherited from E

Revised Inheritance
Relationships

> Introduce abstract superclasses
to encapsulate common
responsibilities

Drawing Element
{ abstract }

Text
Element

Line
Element

Ellipse
Element

Rectangle
Element

Group
Element

Drawing Element
{ abstract }

Text
Element

Line
Element

Ellipse
Element

Rectangle
Element

Group
Element

Linear Element
{ abstract }

52

Refactoring Responsibilities

Lines, Ellipses and
Rectangles are
responsible for
keeping track of the
width and colour of the
lines they are drawn
with.
This suggests a
common superclass.

Roadmap

> Responsibility-Driven Design
—Finding Classes
—Class Selection Rationale
—CRC sessions
—Identifying Responsibilities
—Finding Collaborations
—Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

53

54

SOLID (object-oriented design principles)

Robert C. Martin. Design Principles
and Design Patterns. 2000.

Concerns: rigidity,
fragility, immobility,
viscosity (!)

> Single responsibility
> Open-closed
> Liskov substitution
> Interface segregation
> Dependency inversion

“Uncle Bob” (Robert) Martin has written extensively on OO
design principles. The principles here did not originate with him,
but he has done a good job of popularizing them in terms of the
following concerns:

• “rigidity”: hard to change
• “fragility”: breaks when changed
• “immobility”: impossible to reuse (too many dependencies)
• “viscosity”: changes break design

Robert C. Martin. Design Principles and Design Patterns. 2000.
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://scgresources.unibe.ch/Literature/ESE/Mart00b-principles_and_patterns.pdf

Single responsibility principle

55

Every class should have a single responsibility

There should never be more than
one reason for a class to change

If a class has multiple responsibilities, then they become coupled.
A change to one responsibility will then impact another.
Difficulty: what is the granularity of a “responsibility”?
Martin equates this principle with “cohesion” — a cohesive class
is one that has a single responsibility.

http://scgresources.unibe.ch/Literature/ESE/SRP.pdf
https://en.wikipedia.org/wiki/Single_responsibility_principle

Open/closed principle

56

Bertrand Meyer, Object-Oriented
Software Construction, 1988.

Software entities should be open for
extension, but closed for modification.

“In other words, we want to be able to
change what the modules do, without
changing the source code of the modules.”

This principle was first formulated by Bertrand Meyer. The idea
is that classes should be closed for instances (do not violate
encapsulation), but open for subclasses (inherit, reuse and
extend).

http://scgresources.unibe.ch/Literature/ESE/OCP.pdf
https://en.wikipedia.org/wiki/Open/closed_principle

Liskov substitution principle

57

Restated in terms of contracts, a derived class is substitutable
for its base class if:
• Its preconditions are no stronger than the base class method.
• Its postconditions are no weaker than the base class method.

(Instances of) subclasses should be substitutable
for (instances of) their base classes.

The basic idea of “LSP” is straightforward and appealing. If your
code expects an object of a given type (or class), then it should still
work if you substitute an instance of a subtype (subclass).
Liskov explains substitutability in terms of “contracts”, as shown in
the slide. Example: Is a Circle an Ellipse? Depends on the
contract clients expect! (Ditto for Square and Rectangle.)

Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM
TOPLAS, 1994.

http://scgresources.unibe.ch/Literature/ESE/Lisk94a-TOPLAS94.pdf
https://en.wikipedia.org/wiki/Liskov_substitution_principle

Peter Wegner, Stanley Zdonik. Inheritance as an Incremental Modification
Mechanism or What Like Is and Isn't Like. ECOOP 1988.

http://scgresources.unibe.ch/Literature/ESE/Wegn88a-ECOOP88.pdf

Interface segregation principle

58

Clients should not be forced to depend
upon interfaces that they don't use.

Many client-specific interfaces are better
than one general purpose interface.

The point is to reduce coupling, and thus to avoid rippling
changes to many clients when interfaces inevitably change.
The problem can be solved either by allowing classes to
implement multiple interfaces (as in Java), or by delegation
(interposing an Adapter).

Robert C. Martin, The Interface Segregation Principle, C++ Report, June
1996.
http://scgresources.unibe.ch/Literature/ESE/ISP.pdf
https://en.wikipedia.org/wiki/Interface_segregation_principle

Dependency inversion principle

59

High-level modules should not
depend on low-level modules.
Both should depend on
abstractions (i.e., interfaces).
Abstractions should not
depend upon details. Details
should depend upon
abstractions.

Depend upon abstractions.
Do not depend upon concretions.

Avoid referring to concrete classes in your code. Decouple high-
level code from low-level code so details can change!
This can be solved by interfaces, subclassing, plugins, code
generation, dependency injection ...

Problem: you need a concrete class when you create instances.
Solution: use an Abstract Factory!

Robert C. Martin, The Dependency Inversion Principle. C++ Report, May
1996.
http://scgresources.unibe.ch/Literature/ESE/DIP.pdf
https://en.wikipedia.org/wiki/Dependency_inversion_principle

“Meme” from this blog post:
https://blogs.msdn.microsoft.com/cdndevs/2009/07/15/the-solid-principles-
explained-with-motivational-posters/

Design is iterative

60

“There is no great writing, only great rewriting.”
— Louis Brandeis

What you should know!

> What criteria can you use to identify potential classes?
> How can CRC cards help during analysis and design?
> How can you identify abstract classes?
> What are class responsibilities, and how can you identify

them?
> How can identification of responsibilities help in identifying

classes?
> What are collaborations, and how do they relate to

responsibilities?
> How can you identify abstract classes?
> What criteria can you use to design a good class hierarchy?
> How can refactoring responsibilities help to improve a class

hierarchy?
61

Can you answer the following questions?

> When should an attribute be promoted to a class?
> Why is it useful to organize classes into a hierarchy?
> How can you tell if you have captured all the

responsibilities and collaborations?
> What use is multiple inheritance during design if your

programming language does not support it?

62

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

