Project Management

Jan Hornwall, Director Project Management, Siemens Digital Industries Software
Key Objectives of this Lecture

• You know more about the Project Management areas

• We have looked at some Best Practices in Project Management

• We have had a discussion on working in software development projects and managing projects
Agenda

• Introduction of the Speaker & Siemens PLM Software

• Introduction to Projects and Project Management

• The Project Management Knowledge Areas and Processes
 • including best practices

• Discussion on main challenges with working in projects and together with a Project Manager

• Key Take Aways
Introduction of the Speaker

• From Sweden, living in Switzerland since 1992
• Master of Science in Physics Engineering, Chalmers University, Gothenburg
• Background as Software Engineer in Telecom; Unix, C++
• Working internationally in Project-, Program- and Team management since 1994
• In current role as Director Project Management, Siemens PLM Software since 2007
• Certified Project Management Professional by PMI & Senior Project Manager IPMA
• Founder of PMI chapter Switzerland (www.pmi-switzerland.ch)

• Privately:
 • Family: proud father of three lovely daughters, aged 25, 23 and 7
 • Passionate ski mountaineer, windsurfer, mountain biker and Lindy Hop dancer

Email: jan.hornwall@siemens.com
LinkedIn: www.linkedin.com/in/jan-hornwall

Please feel free to contact me for any questions on this material or any other Project Management questions!
The Largest, Broadest and Most Successful Deployments in the Industry
77'000 Customers and 9 Million Licensed Seats

AEROSPACE
ATK
AVIC
BAE Systems
B/E Aerospace
Boeing
CE
General Dynamics
Goodrich
Honeywell
L3 Communications
Lockheed Martin
NASA & JPL
Rafael
Rolls-Royce
Space Systems Loral
SpaceX
United Aircraft Corporation
ULA
United Technologies
USAF

AUTOMOTIVE
Autocar
BMW
Chrysler
Daewoo
Delphi
FIAT
Ford
GM
Hyundai
Isuzu
Magna
Mazda
Nissan
Renault
Suzuki
TATA
Volkswagen
Volvo
Visteon

CONSUMER
Anheuser Busch
Boots
Delta
Dr. Martens
Estée Lauder
General Mills
Keurig Green Mountain
Kraft
Lego
L’Oréal
Nike
Procter & Gamble
PZ Cussons
RJ Reynolds
The Jones Group
Tiffany & Co.
Toys R Us
Unilever

ELECTRONICS
ASML
Applied Materials
B/S/H
Emerson
Ericsson
Fujitsu
H3C
Haier
Hauer
Lam Research
LG Electronics
Mettler-Toledo
Microsoft
Philips
RICOH
Samsung
Seagate
Teradyne
Siemens
Xerox

ENERGY
Alstom
Areva Nuclear
Baker Hughes
Balfour Beatty
China Nuclear
Con Ed
FMC
GE Oil & Gas
Max Boegl
Mitsubishi
NOV
Nuclear Waste Mgmt
Siemens Energy
Toshiba

MACHINERY
Allseeds
Caterpillar
DMG
FMC
GROB
Heidelberg
Hitachi
Husky
Hyundai
JCB
John Deere
KBA
Kone Cranes
Manroland
Mori Seiki
Sanyo
Windmöller & Höslcher
Yuchai Group
Yanmar
Zoomlion

MARINE
BAE Systems Maritime
Damen Group
DSME
Fednav
Fincantieri
Flensburger
GD Electric Boat
HII
HII Marine
Japan Marine United
Jiangnan Shipyard
Lürssen
MAN Diesel
Newport News
Shipbuilding
Rolls Royce Marine
Royal IHC
Schiffbau-Gesellschaft
SHI
Siemens
TKMS
Wartsila

MEDICAL
3M
Abbott
Baxter
Bionet
Carefusion
Edwards
Lifesciences
Exactech
Hill-Rom
Hitachi
Johnson & Johnson
Medin
Olympus
Siemens Healthcare
Smith & Nephew
St Jude Medical
Symmetry Medical
Topcon
Waldemar Link
Zimmer
Digital Enterprise with Digital Twins
Connecting the Digital Twin Product to the Digital Enterprise
<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>Country HQ</th>
<th>2014 Software revenue (US$M)</th>
<th>2014 Total revenue (US$M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microsoft</td>
<td>USA</td>
<td>$62,014</td>
<td>$93,456</td>
</tr>
<tr>
<td>2</td>
<td>Oracle</td>
<td>USA</td>
<td>$29,881</td>
<td>$38,828</td>
</tr>
<tr>
<td>3</td>
<td>IBM</td>
<td>USA</td>
<td>$29,286</td>
<td>$92,793</td>
</tr>
<tr>
<td>4</td>
<td>SAP</td>
<td>Germany</td>
<td>$18,777</td>
<td>$23,289</td>
</tr>
<tr>
<td>5</td>
<td>Symantec</td>
<td>USA</td>
<td>$6,138</td>
<td>$6,615</td>
</tr>
<tr>
<td>6</td>
<td>EMC</td>
<td>USA</td>
<td>$5,844</td>
<td>$24,439</td>
</tr>
<tr>
<td>7</td>
<td>VMware</td>
<td>USA</td>
<td>$5,520</td>
<td>$6,635</td>
</tr>
<tr>
<td>8</td>
<td>Hewlett Packard</td>
<td>USA</td>
<td>$5,082</td>
<td>$110,577</td>
</tr>
<tr>
<td>9</td>
<td>Salesforce.com</td>
<td>USA</td>
<td>$4,820</td>
<td>$5,274</td>
</tr>
<tr>
<td>10</td>
<td>Intuit</td>
<td>USA</td>
<td>$4,324</td>
<td>$4,573</td>
</tr>
<tr>
<td>11</td>
<td>Adobe</td>
<td>USA</td>
<td>$4,061</td>
<td>$4,183.5</td>
</tr>
<tr>
<td>12</td>
<td>CA Technologies</td>
<td>USA</td>
<td>$4,053</td>
<td>$4,410</td>
</tr>
<tr>
<td>13</td>
<td>SAS</td>
<td>USA</td>
<td>$2,884</td>
<td>$3,084</td>
</tr>
<tr>
<td>14</td>
<td>Cisco Systems</td>
<td>USA</td>
<td>$2,836</td>
<td>$47,823</td>
</tr>
<tr>
<td>15</td>
<td>Dassault Systèmes</td>
<td>France</td>
<td>$2,695</td>
<td>$3,038</td>
</tr>
<tr>
<td>16</td>
<td>Siemens</td>
<td>Germany</td>
<td>$2,613</td>
<td>$95,542</td>
</tr>
<tr>
<td>17</td>
<td>Fujitsu</td>
<td>Japan</td>
<td>$2,527</td>
<td>$43,526</td>
</tr>
<tr>
<td>18</td>
<td>Autodesk</td>
<td>USA</td>
<td>$2,413</td>
<td>$2,486</td>
</tr>
<tr>
<td>19</td>
<td>Citrix</td>
<td>USA</td>
<td>$2,376</td>
<td>$3,143</td>
</tr>
<tr>
<td>20</td>
<td>Google</td>
<td>USA</td>
<td>$2,273</td>
<td>$66,001</td>
</tr>
<tr>
<td>21</td>
<td>Hitachi</td>
<td>Japan</td>
<td>$2,159</td>
<td>$91,246</td>
</tr>
<tr>
<td>22</td>
<td>Apple</td>
<td>USA</td>
<td>$2,110</td>
<td>$199,800</td>
</tr>
</tbody>
</table>

https://www.pwc.com/gx/en/industries/technology/publications/global-100-software-leaders.html
Trends in our Market

Development Production

In the past: 8 Years 11 Years
Now: 3 Years 6-8 Years

IoT = Internet of Things

Industry 4.0

Digitalization

Digital Twin

Additive Manufacturing (3D Printing)
Introduction to Project Management

• What is a Project?
 A project is a **temporary** endeavor to create a **unique** product, service or result. (PMI)

• Why Project Management?
 • Almost all software products are obtained via **projects**, as opposed to manufactured products.
 • Enterprise Software is deployed and customized to customer business through projects

• The **challenge** with many projects is to manage the “triple constraints”:
 - Deliver on time
 - Deliver within budget
 - Deliver agreed functionality to agreed quality = performance
Introduction to Project Management

• What is a Program?
 A group of related projects and program activities that are managed in a coordinated way to obtain benefits not available from managing them individually (PMI)

• What is not a project or a program?
 Examples:
 • Monthly magazine
 • Maintenance / bug fixing of released product
 • Yearly contract for manage data servers
Introduction to Project Management

A typical lifecycle of a Project:

= Stress level of the Project Manager
The Project Management Knowledge Areas & Processes

Project Management Institute (PMI) is the world's leading not-for-profit professional membership association for the project, program and portfolio management profession. Founded in 1969. It publishes PMBOK Guide. Over 700’000 members world wide.

We will today review:

The Project Management Processes

The Project Management Knowledge Areas:

1. Project Integration Management
2. Project Scope Management
3. Project Schedule Management
4. Project Cost Management
5. Project Quality Management
6. Project Resources Management
7. Project Communications Management
8. Project Risk Management
9. Project Procurement Management
10. Project Stakeholder Management
The Project Management Knowledge Areas & Processes
- The Project Management Processes

The 5 main process areas are:
Agile Methods

The Agile: Scrum Framework at a glance

- **Inputs from Executives, Team, Stakeholders, Customers, Users**

 - **Product Owner**
 - **The Team**

 - **Sprint Backlog**
 - Ranked list of what is required: features, stories, ...

 - **Sprint Planning Meeting**
 - Team selects starting at top as much as it can commit to deliver by end of Sprint

 - **Task Breakout**

 - **Sprint Backlog**

 - **1-4 Week Sprint**
 - Sprint end date and team deliverable do not change

 - **Daily Scrum Meeting**
 - Every 24 Hours
 - Burndown/up Charts
 - Scrum Master

 - **Sprint Review**
 - Finished Work
 - Sprint Retrospective

Siemens PLM Software
Let’s Start with Your Project

• This year, students in small teams will build a small web application using Angular and Express. In this application, users (fans of a specific topic, e.g., Harry Potter fans, Manchester United fans) can create posts.
• In short, you will build a fan community platform to post related content, such as memes, photos, and buy fan merchandise in an online store.
• We will divide students into teams of 5-6, and each team can pick up a common interest for which they want to build such a platform.
• We will provide the necessary requirements and guide students through the entire process of development and project management.

For this session today, imagine that you have a contract with the customer and you have agreed to a fixed price
Agile Methods

Projects using agile methods are in two different situations:

1. **In-house software development**, or customer is flexible on scope and costs

2. Software is developed by **a supplier with a contract** with the customer:
 - fixed price / estimated price
 - fixed scope / functionality
 - milestones with deliverables and invoice dates

We will look at this situation
Your Project

1. How did you start?
2. What did you do next?
Project Scope Management is about ensuring that the project includes all the work required, and only the work included, to complete the project successfully.

- Plan Scope / Statement of Work
- Collect Requirements / Use Cases / Epics / Scenarios
- Define Objectives / Scope / Deliverables / Acceptance Criteria
 - Establish Scope Baseline
 - Define out-of-scope and assumptions
- Create the Work Breakdown Structure (WBS)

Scope covers:
- Product Scope – such as specifications, functions, features
- Project Scope – activities such as testing, data migration, training
The Project Management Knowledge Areas
- Project Schedule Management

Project Schedule Management is about getting the project done on time.

- Define Activities
- Sequence Activities / Dependencies
- Estimate Activity Resources & Duration
- Develop Schedule
- Define Milestones and Gates
- Control Schedule

Planning is iterative; monitor and revise schedules during the project.

Agile methodologies influence this area of course.
The Project Management Knowledge Areas
- Project Schedule Management

Estimation Techniques:
A good Work Breakdown Structure (WBS) is the base for any estimation, down to task level of 1-2 weeks duration.

1. Three-Point Estimating (PERT) uses three estimates to define an approximate range for an activity’s duration:

 Most likely (M): given the resources likely to be assigned, their productivity, known dependencies and normal interruptions.

 Optimistic (O): Based on the best-case scenario for the activity

 Pessimistic (P): Based on the worst-case scenario for the activity

 Duration = \(\frac{O + 4*M + P}{6} \) (beta distribution)

 Example; Estimate of 8 days with 4 days as optimistic and 20 days as pessimistic results in 9.5 days

 Note: it’s pointless to use O=4, M=8, P=12
The Project Management Knowledge Areas
- Project Schedule Management

2. Expert Judgment; consult experts and compare estimates
 -> challenge: do they know the skill level of resources available?

3. Estimation by analogy; compare with past projects in the same application domain
 -> challenge: limited applicability

4. Algorithmic cost modelling; use historical data, e.g., lines of code or Function Points
 -> challenge: requires strict procedures to capture data, can be very effective

5. Pricing to win; the project costs whatever the customer has to spend on it
 -> very risky if fix price contract (unlikely) if not scope is flexible (agile)

6. Agile estimations; Planning Poker, Story Points, T-Shirt Size…
 - Each method has strengths and weaknesses
 - Estimation should ideally be based on several methods
 - If these do not return approximately the same result, more effort is required to get to one estimate
The Project Management Knowledge Areas
- Project Schedule Management

Best Practice - Estimation: Build company specific estimator tools:
- Covering time needed for documentation, meetings, review, tests, assist customer tests, travel
- Covering company specific tasks and experiences
The Project Management Knowledge Areas
- Project Schedule Management

Let's look at an example:

<table>
<thead>
<tr>
<th>Task</th>
<th>Duration (days)</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>15</td>
<td>T1</td>
</tr>
<tr>
<td>T4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>10</td>
<td>T2, T4</td>
</tr>
<tr>
<td>T6</td>
<td>5</td>
<td>T1, T2</td>
</tr>
<tr>
<td>T7</td>
<td>20</td>
<td>T1</td>
</tr>
<tr>
<td>T8</td>
<td>25</td>
<td>T4</td>
</tr>
<tr>
<td>T9</td>
<td>15</td>
<td>T3, T6</td>
</tr>
<tr>
<td>T10</td>
<td>15</td>
<td>T5, T7</td>
</tr>
<tr>
<td>T11</td>
<td>7</td>
<td>T9</td>
</tr>
<tr>
<td>T12</td>
<td>10</td>
<td>T11</td>
</tr>
</tbody>
</table>

What is the minimum total duration of this project?
The Project Management Knowledge Areas
- Project Schedule Management

Build Network Diagram

Analyze the Critical Path:

The Critical Path is the sequence of activities that represents the longest path through a project – this determines the shortest duration

Answer is 55 days.

Identify also activities that are close to becoming critical path, ensure those are not delayed.
The Project Management Knowledge Areas
- Project Schedule Management

The same example in a Scheduling tool (MS Project) – Gantt Chart view:
The Project Management Knowledge Areas
- Project Schedule Management

Highlight of Critical Path in Gantt Chart view:
The Project Management Knowledge Areas
- Project Schedule Management

Changing Task 6 from 5 days to 9 days creates a new critical path, and delays the finish one day:
The Project Management Knowledge Areas
- Project Schedule Management

Question: you have estimated *five days* to implement and test a certain function. After *three days* you are finished, it is tested and it works! You face three options now:

A. Review and improve the code for two days to see if you can make it of higher quality and more structured. It will also make it easier to re-use and maintain later. Total effort is 5 days.

B. Develop a cool feature that you came up with, spending two days on this. Total effort is 5 days.

C. Report back to the project manager to start working on another task. Total effort is 3 days.

What would you do?

Parkinson's law is the adage that "work expands so as to fill the time available for its completion".
Project Resource Management is about organizing, managing, developing and leading the project team.

- **Plan and acquire Project Team**
 - Project Organization
 - Define roles and responsibilities
 - Skills and experiences required
- **Manage & Develop Project Team**
 - Adding and on-boarding team members
 - Plan and develop skills
 - Provide Feedback on performance
 - Manage conflicts & Motivate Team
- **Administration:**
 - Manage & negotiate internal resource agreements
 - Manage & negotiate contracts of external resources
 - Manage work permits
The Project Management Knowledge Areas
- Project Resources Management

Team Organization - Teams should be relatively small (< 8 members)
• minimize communication overhead
• team quality standard can be developed
• programs are regarded as team property (“egoless programming”)
• members can work closely together
• continuity can be maintained if members leave

• Break big projects down into multiple smaller projects

• Small teams may be organized in an informal, democratic way
Best Practice: Resource Management and Levelling in Scheduling Tool

Any over-allocation is shown in the tool:

Task 7 assigned to Jim:
The Project Management Knowledge Areas - Project Procurement Management

Project Procurement Management is about purchase or acquire products, services and resources needed in the project.

Examples:
- Resources from external suppliers
- Specialist services
- Hardware, computers, storage
- Cloud services, apps

This also includes **evaluation of suppliers** and **contracting** these products and services.
The Project Management Knowledge Areas
- Project Cost Management

Project Cost Management is about getting the project done within budget.

- Estimate Costs and Determine Project Budget
- Control Cost - the Project Manager needs to determine actual cost incurred and also make a forecast of total cost.

The Project Manager will ask how much have you spent on an activity and also how much will you need to complete it.

Reserves also affect cost management:
- Risk contingency reserve
- Management reserve
Project Quality Management is about ensuring that the project will satisfy the needs for which it was undertaken.

- Document review; peer reviews, formal review meetings (plan time for this!)
- Code review (also plan time for this!)
- Usability test lab / Prototyping
- Testing:
 - Unit tests
 - User tests
 - Performance / Stress tests
 - Acceptance tests
- Pilot usage
- Root cause analysis
- Project Retrospectives

Cutting back in testing and reviewing is a recipe for disaster!
Best Practice: Project Retrospective

A project retrospective review is an in-depth discussion that happens after the completion of a project, event or activity. It is structured to help the people involved reflect on the project in detail.

Lessons Learned and Best Practices are collected and shared afterwards.

Agile Retrospective approach; short retrospective after each sprint.
The Project Management Knowledge Areas
- Project Risk Management

Project Risk Management is about identifying, assessing and controlling risk on a project.

The objectives are to increase the likelihood and impact of positive risks (opportunities) and decrease the likelihood and impact of negative risks in the project.

Risk response strategies (negative risks):
- Avoid
- Transfer
- Mitigate
- Accept
- Escalate

Risks are assessed in terms of Probability and Impact.
The Project Management Knowledge Areas
- Project Risk Management

<table>
<thead>
<tr>
<th>Risk</th>
<th>Risk Response</th>
<th>Probability</th>
<th>Impact</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values:
Probability: 1-99%
Impact: 1-5 (5 highest)
The Project Management Knowledge Areas
- Project Risk Management

Examples of typical Risks:

<table>
<thead>
<tr>
<th>Risk</th>
<th>Risk Response</th>
<th>Probability</th>
<th>Impact</th>
<th>Score</th>
</tr>
</thead>
</table>
| 1. Lack of skilled resources creates a delay | *Mitigate:* Staffing with top talent and experts, assign resources well in time.
Transfer: Out-source some well defined work packages | 50% | 5 | 2.5 |
| 2. Users will not accept application’s user interface | *Mitigate:* Invest in Usability Test
Avoid: review early and/or cut functionality | 30% | 3 | 0.9 |
| 3. Developing wrong functions leads to unsatisfied customer | *Mitigate:* Agile development, mock-ups, sign-off on requirements | 20% | 5 | 1.0 |
| 4. Unknown data in customer’s DB | *Mitigate:* analyze data upfront
Escalate: ask customer to provide sample dataset to test against and do acceptance against | 40% | 5 | 2.0 |
The Project Management Knowledge Areas
- Project Risk Management

Best Practice: Risk Assessment Workshop

- Brain-storm risks on Post-It notes
- Sort into risk categories
- Group similar risks together
- Assess Probability and Impact
- Start identify risk responses for the top risks

In addition, this is a great exercise for project members from different areas to understand the whole project and the risks.
The Project Management Knowledge Areas
- Project Risk Management

Best Practice: Risk Breakdown Structure

Project X

Technical Risks
Number of risks: 10
Percentage: 42%

Management Risks
Number of risks: 13
Percentage: 43%

Commercial Risks
Number of risks: 1
Percentage: 2%

External Risks
Number of risks: 3
Percentage: 13%

Other Risks
Number of risks: -
Percentage: - %

But even companies with the most rigorous risk management in place fail, example:
Mars Climate Orbiter 1999 crashed
Root cause: Metric vs US units
The Project Management Knowledge Areas
- Project Communications Management

Project Communications Management is about ensuring that the project team has the necessary information and resources to complete the job.

- Project Kick-Off
- Meetings, stand-up meetings
- Project Progress reporting
- Repositories, keeping documents up to date
- Code sharing
- Sharing knowledge, internal social media, social collaboration
- Newsletters

Quote:
Project teams often detest progress reporting because it manifests their lack of progress.

Communication is key, make sure you communicate on all levels!
The Project Management Knowledge Areas
- Project Communications Management

Best Practice: Monitor deliverables, also specifications and use cases, and report progress regularly:

This is an excellent way to spot delays early and to communicate plan and progress to project team and to management.

Software development is tricky for management, hard to see progress; make transparent.
The Project Management Knowledge Areas
- Project Integration Management

Project Integration Management is about managing all parts of the project to ensure that the project’s objectives are met. It spans across all other nine knowledge areas and processes.

Mainly it is about leadership, driving decisions and negotiate, enabling the project team to work effectively.

- Develop Project Charter / Customer Contracts
- Develop Project Management Plan
- Manage, Monitor and Control Project Work
- Coordination
- **Change Control**
- Close Project or Phase

At any instant, the Project manager must know what is the most important **now** while at the same time looking into the **future**.
Key Take Aways

• Project Management is about managing all parts of the project to ensure that the project’s objectives are met, on time and within budget.

• Project Management is about leadership, driving decisions and negotiate, enabling the project team to work effectively.

• Project Management is a team effort; it requires the support of all team members, even though the benefits of some project management processes are not obvious to all.

• Typically, the Project Management effort is 10-15% of total project effort.
References, Links

• Agile Retrospectives: www.funretrospectives.com
• Function Point estimation technique http://en.wikipedia.org/wiki/Function_point

• Project Management Institute (PMI) www.pmi.org
• PMI Switzerland www.pmi-switzerland.ch

• PwC Global 100 Software Leaders: http://www.pwc.com/gx/en/industries/technology/publications/global-100-software-leaders.html

• Siemens Digital Industries Software: sw.siemens.com
• short video: https://www.youtube.com/watch?v=k6mVLaUyO4U
Questions?
Appendix – Additional Information

Literature

Sources

Recommended Reading
> The Mythical Man-Month, F. Brooks, Addison-Wesley, 1975
> Succeeding with Objects: Decision Frameworks for Project Management, A. Goldberg and K. Rubin, Addison-Wesley, 1995
Appendix – Additional Information

Chief Programmer Teams (example)

> Consist of a kernel of specialists helped by others as required
 > chief programmer takes full responsibility for design, programming, testing and installation of system
 > backup programmer keeps track of CP’s work and develops test cases
 > librarian manages all information
 > others may include: project administrator, toolsmith, documentation editor, language/system expert, tester, and support programmers …

> Reportedly successful but problems are:
 > Can be difficult to find talented chief programmers
 > Might disrupt normal organizational structures
 > May be de-motivating for those who are not chief programmers
Appendix – Additional Information

Directing Teams

Managers serve their team
> Managers ensure that team has the necessary information and resources

1. “The manager’s function is not to make people work, it is to make it possible for people to work” — Tom DeMarco

Responsibility demands authority
> Managers must delegate
 – Trust your own people and they will trust you.

Directing Teams ...

Managers manage
> Managers cannot perform tasks on the critical path
 – Especially difficult for technical managers!

Developers control deadlines
> A manager cannot meet a deadline to which the developers have not agreed
Appendix – Additional Information

What you should know!

> How can prototyping help to reduce risk in a project?
> What are milestones, and why are they important?
> What can you learn from an activity network? An activity timeline?
> Why should programming teams have no more than about 8 members?

Can you answer these questions?

> What will happen if the developers, not the customers, set the project priorities?
> What is a good way to measure the size of a project (based on requirements alone)?
> When should you sign a contract with the customer?
> Would you consider bending slip lines as a good sign or a bad sign? Why?
> How would you select and organize the perfect software development team?