
1sit.org © Schaffhausen Institute of Technology 2021

sit.org

Software Testing

Manuel Oriol, Prof of Computer Science

https://www.menti.com/2h1p9xc4ad
Code: 2825 7782

https://www.menti.com/2h1p9xc4ad

2sit.org © Schaffhausen Institute of Technology 2021

Introduction

§Why do we test?

§Did you have to deal with testing in the past?

3sit.org © Schaffhausen Institute of Technology 2021

Ariane 5

https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=PK_yguLapgA

4sit.org © Schaffhausen Institute of Technology 2021

Ariane 5

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=562936

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=562936

5sit.org © Schaffhausen Institute of Technology 2021

Quizz

https://www.menti.com/2h1p9xc4ad
Code: 2825 7782

https://www.menti.com/2h1p9xc4ad

6sit.org © Schaffhausen Institute of Technology 2021

We have been trained to make
assumptions

x*x=x2 ≥ 0

x+1>x

(x * y) / x = y

(y / x) * x = y

false for x= 46341

(and many more int)

false for
x=MAX_INT

false for x=0 or
float x

false for x=0 or int, float x

7sit.org © Schaffhausen Institute of Technology 2021

Typically impossible to…

§Test all values (see model-checking)

§Know what to omit when testing

§Know how to interpret results

8sit.org © Schaffhausen Institute of Technology 2021

An example

/*
* A simple method that increments an integer value
**/

int increment(int i){
return i+1;

}

Testing all values?
What not to test?
How to interpret results?

9sit.org © Schaffhausen Institute of Technology 2021

In this case…

§Test all values? It is possible!

§Know what to omit when testing? e.g.
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

§Know how to interpret results?
increment(Integer.MAX_VALUE) ???

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

10sit.org © Schaffhausen Institute of Technology 2021

Remember this!

Program testing can be used to show
the presence of bugs, but never to
show their absence!

Edsger W. Dijkstra

Turing Award recipient, 1972
http://en.wikiquote.org/wiki/Edsger_W._Dijkstra
Referencing:
Notes On Structured Programming, 1972,
at the end of section 3,
On The Reliability of Mechanisms.

http://en.wikiquote.org/wiki/Edsger_W._Dijkstra

11sit.org © Schaffhausen Institute of Technology 2021

The usual trade-off

Quality &
Test

Deadlines &
Reputation

12sit.org © Schaffhausen Institute of Technology 2021

Natural tendencies

• Testing is in the way to make deadlines

• Testing finds bugs that do not matter

• I have no time planned for the testing

• “Come on, our code is good!”

• “The code I write is throw-away”

13sit.org © Schaffhausen Institute of Technology 2021

So why do we really test?

We try to find bugs…

… to fix them …

… to improve the quality of the code!

14sit.org © Schaffhausen Institute of Technology 2021

Testing saves time and finds bugs early

Gail C. Murphy, Paul Townsend, and Pok Sze Wong. 1994. Experiences with
cluster and class testing. Commun. ACM 37, 9, 39-47

With system-level
testing without unit

testing

With system-level
testing and unit

testing
70 bugs 1 bug

16 weeks debugging
time

50% less overall time

5%-30% of the time
writing tests

5%-20% running tests

15sit.org © Schaffhausen Institute of Technology 2021

So, should we just test, test, test?

§ This would not solve the problem if testing is not planned and
strategically applied!

§ Testing techniques are numerous and give a very large panel of
possibilities

§A software test engineer (or software tester) will know how to apply
most and be able to discover/adapt them to the software at hand.

16sit.org © Schaffhausen Institute of Technology 2021

What makes a good tester?

§The will to spend time crashing
programs

§A strong commitment to drive the
code to the best level of compliance
with specifications

§The will to drive quality of the code up
§The will to understand how a program
works to find its limitations

§The will to use tools and techniques
that test programs

17sit.org © Schaffhausen Institute of Technology 2021

§ IEEE terminology:
• When a program exhibits an unexpected behaviour, it is a FAILURE
• A failure is caused by a FAULT in the program
• A defect is caused by an ERROR or a MISTAKE made by a
programmer

causesERROR causesFAULT FAILURE

Source: IEEE standard 610.1

18sit.org © Schaffhausen Institute of Technology 2021

1. Types of testing
2. Testing scopes
3. Testing Processes
4. Testing Artifacts
5. Testing Metrics

Outline

19sit.org © Schaffhausen Institute of Technology 2021

Part I: Types of Testing

20sit.org © Schaffhausen Institute of Technology 2021

Categories of Testing

§Black-box/white-box/grey-box

§Static/dynamic testing

§ Functional/non-functional

21sit.org © Schaffhausen Institute of Technology 2021

Black-box/White-Box/Grey-Box

§Black-Box testing: does not consider implementation details, only
interfaces

§White-Box testing (glass-box, clear-box, transparent, structural): uses
the actual implementation of the program to devise tests

§Grey-Box: Mixes both of them… If the test engineer know some of the
internal of the program, it uses those to design some of the tests, the
rest uses black-box

22sit.org © Schaffhausen Institute of Technology 2021

Dynamic/Static Testing
• Dynamic testing is when the environment
executes code, for example:

• Automated testing
• Unit tests

• Static testing does not require to execute the
program, for example:

• Walkthrough
• Reviews
• Inspections
• Static analysis

23sit.org © Schaffhausen Institute of Technology 2021

Example of static Analysis tool: findbugs

http://findbugs.sourceforge.net

http://findbugs.sourceforge.net

24sit.org © Schaffhausen Institute of Technology 2021

Other examples: Structure 101, Understand,
Klocwork

Understand

25sit.org © Schaffhausen Institute of Technology 2021

Functional/non-functional Testing

• Functional testing tests that the program
provides a functionality (e.g. calculates a
result, doing something…)

• Non-Functional testing tests non-
functional properties (scalability, security,
“-ilities” in general)

26sit.org © Schaffhausen Institute of Technology 2021

Examples
• Stress-testing the Apache web-server

• Testing code that has been outsourced

• Testing the code of a satellite

• Testing the code running a cell phone

• Testing Microsoft Word

27sit.org © Schaffhausen Institute of Technology 2021

Part II: Testing Scope

28sit.org © Schaffhausen Institute of Technology 2021

Testing Scopes

§Unit Testing
§ Integration Testing
§System Testing
§Acceptance Testing

§Regression Testing

29sit.org © Schaffhausen Institute of Technology 2021

Unit Testing
• Testing small parts of the programs
• Typically the unit tests have an
initialisation part and an assertion for
testing the value that should be returned

Program:

int increment(int i){
return i+1;

}

Test:

@Test
public void test_1(){

int j = 0;

assertTrue(increment(j)==1);
}

Test

30sit.org © Schaffhausen Institute of Technology 2021

Integration Testing

• Typically grouping together all some units and testing them together
using a black-box approach

• Three main approaches:
• Big Bang: Put everything together then test
• Top-down: Modules tested from the entry points and integrated

progressively
• Bottom-up: Modules are progressively integrated and tested from

the most elementary ones.

31sit.org © Schaffhausen Institute of Technology 2021

System Testing

• Tests integrated systems

• Tests functional and non-functional requirements

• Trying to understand even expected non-explicit
requirements

• Typically black-box testing

32sit.org © Schaffhausen Institute of Technology 2021

Acceptance Testing

• Runs based on script

• Designed by domain experts (subject matter expert),
performed by potential users

• Main intent is not to discover failing scenarios, it is to
check that the product will work (and how well) in a
production environment

33sit.org © Schaffhausen Institute of Technology 2021

Example of acceptance testing: A/B
Testing

• To compare two alternatives of a product
and decide on the one to pick using a
metric of success

• 50% of the traffic is version A and 50%
on version B.

• Example:

https://vwo.com/ab-testing/

https://vwo.com/ab-testing/

34sit.org © Schaffhausen Institute of Technology 2021

Regression Testing

• The goal is to check that what used to work still does

• For example, test suites will be automatically executed
to check that scenarios are working

• The scope itself can vary

35sit.org © Schaffhausen Institute of Technology 2021

Example (1/2)

//Version 0
int increment(int i){

return i+1;
}

@Test
public void test_1(){

int j = 0;

assertTrue(increment(j)==1);
}

Test

36sit.org © Schaffhausen Institute of Technology 2021

Example (2/2)

@Test
public void test_1(){

int j = 0;

assertTrue(increment(j)==1);
}

//Version 1
int increment(int i) throws Exception{

if (i<Integer.MAX_VALUE)
return i+1;

else
throw new ArithmeticException();

}

Test

37sit.org © Schaffhausen Institute of Technology 2021

Regression Testing Tool: Junit (from
Eclipse)

38sit.org © Schaffhausen Institute of Technology 2021

Part III: Testing Processes

39sit.org © Schaffhausen Institute of Technology 2021

Original waterfall model

Winston Royce, 1970, source: wikipedia, waterfall model

Testing?

40sit.org © Schaffhausen Institute of Technology 2021

V-Model

Source: V-model, wikipedia

Testing

41sit.org © Schaffhausen Institute of Technology 2021

Test-Driven Development

K. Beck (2003),
Source: Test-driven_development, wikipedia

42sit.org © Schaffhausen Institute of Technology 2021

Extreme Programming

http://www.extremeprogramming.org/introduction.html

43sit.org © Schaffhausen Institute of Technology 2021

Integration testing or how to “trust but verify”

Tests are going to be run on each commit (preferred) or nightly and reported to
users

44sit.org © Schaffhausen Institute of Technology 2021

Artifacts
• RequirementsRequirements Analysis

• Test Strategy
• Testbed

Test Planning

• Test procedures
• Test cases

Test development

• Bug reportsTest execution

• Test reportTest reporting

• Faults prioritizationTest Result Analysis

Test Plan/Procedures
Traceability Matrix

Test scenarios

45sit.org © Schaffhausen Institute of Technology 2021

Part IV: Testing Artifacts

46sit.org © Schaffhausen Institute of Technology 2021

Test Case

• A test script that generally consists of a single
step to test a program.

• Typically a test case will have a test oracle to
decide whether is passes or fails

• Test cases generally include the following
indications:

• Id
• Description
• Related requirements
• Category
• Author
• Status (pass/fail)

47sit.org © Schaffhausen Institute of Technology 2021

Example

§ Id: test_1
§Description: a test to decide that checks “increment” with “0”
§Related Requirement: “increment” documentation
§Category: Functional, Unit
§Author: Manuel
§Status: Pass @Test

public void test_1(){
int j = 0;

assertTrue(increment(j)==1);
}

48sit.org © Schaffhausen Institute of Technology 2021

Test Oracle
• Typically a way of deciding whether a test case

passes or fail

• Includes:
• Documentation
• Requirements
• Assertions
• Other means of calculating the result

49sit.org © Schaffhausen Institute of Technology 2021

Test Suite
• A test suite is a (potentially large) collection of test

cases
• Typically test cases can be grouped in categories
• The goal of a test suite is to permit be used for

checking that a new functionality does not break the
code, or that it provides what is needed

• Large test suites might not be testable all the time
(needed to test only a subset)

• Test suites quality is difficult to define (e.g. see
mutation testing)

50sit.org © Schaffhausen Institute of Technology 2021

Test Data

§Values used during testing to test some functionality

§ Typically stored in separate files

§Difficult to generate a good set of test data: it is often reused

51sit.org © Schaffhausen Institute of Technology 2021

Part V: Testing Metrics

52sit.org © Schaffhausen Institute of Technology 2021

Coverage

The coverage is a measure of a percentage of a structure or a domain
that a program, a test case, a test suite exercises

53sit.org © Schaffhausen Institute of Technology 2021

Coverages

• Function coverage
• Statement coverage
• Branch coverage
(also known as: Decision
coverage)

• Path coverage
• Condition coverage
• MCDC

54sit.org © Schaffhausen Institute of Technology 2021

Function Coverage

§ The percentage of functions that were called by the test case

Typically function coverage should be 100%

55sit.org © Schaffhausen Institute of Technology 2021

Statement coverage

Percentage of statements that were executed

56sit.org © Schaffhausen Institute of Technology 2021

Example

a:=1

b>3

Result:=b Result:=a

b:=a

b:=a+2

b:=a

Coverage of the red path:
86%

(6/7 statements)

true false

57sit.org © Schaffhausen Institute of Technology 2021

Decision coverage

§Each time a program has a branching instruction (if, for, while…) this
create two branches.

§Decision coverage is the percentage of these branches that were
executed by a test suite.

if

58sit.org © Schaffhausen Institute of Technology 2021

Example

a:=1
b:=a+2
If (b>3)

Result:=b Result:=a
b:=a

b:=a

Decision Coverage
of the red branches:

50%

true false

59sit.org © Schaffhausen Institute of Technology 2021

Branch coverage

§Each time one has a branching instruction (if, for, while…) this create
two branches.

§Branch coverage is the percentage of the branches that were executed
by a test suite.

if

60sit.org © Schaffhausen Institute of Technology 2021

Example

a:=1
b:=a+2
If (b>3)

Result:=b Result:=a
b:=a

b:=a

Coverage of the red branches:
75%

(3/4 branches)

true false

61sit.org © Schaffhausen Institute of Technology 2021

Path Coverage
The percentage of different paths exercised by the
tests (put in relation with cyclomatic complexity)

if

62sit.org © Schaffhausen Institute of Technology 2021

Example

a:=1
b:=a+2
If (b>3)

Result:=b Result:=a
b:=a

b:=a

true false

Coverage of the red red path:
50%

(1/2 paths)

63sit.org © Schaffhausen Institute of Technology 2021

Condition coverage

§Each time one has a branching instruction (if, for, while…) that
contains one or several conditions, each condition’s outcome (True or
False) is a possibility

§Condition coverage is the percentage of these possibilities that were
executed by a test suite.

if (a || b)

100% obtained with (a,b) = (true, false) and (false,true)

64sit.org © Schaffhausen Institute of Technology 2021

Modified Condition/Decision Coverage (MCDC)
§Consists of:

• 100% branch coverage
• 100% condition coverage
• Each entry/exit point is exercised
• Each condition affects the behaviour independently

if (a || b)

DO-178B, Software Considerations in Airborne Systems and Equipment
Certification

65sit.org © Schaffhausen Institute of Technology 2021

Tools to calculate the coverage:
Cobertura

http://cobertura.sourceforge.net/

http://cobertura.sourceforge.net/

66sit.org © Schaffhausen Institute of Technology 2021

My recommendations

§Write tests as a part of the coding activity
• Not at the end, not at the beginning, rather per unit

§Write unit tests
• Use unit testing frameworks like JUnit
• Monitor decision coverage and try to get it close to 100%

§Write integration tests
• use scripts and specific tools like Selenium

§Run your tests continuously
• Use a continuous integration server like Jenkins

§ Fix the bugs you find

67sit.org © Schaffhausen Institute of Technology 2021

Conclusions

• Software testing is at the core of any quality
assurance mechanism currently used

• This presentation only gives a high level
understanding of the techniques used in testing
there is far more to learn

68sit.org © Schaffhausen Institute of Technology 2021

Some terms used in software testing

69sit.org © Schaffhausen Institute of Technology 2021

sit.org

Thank you!

70sit.org © Schaffhausen Institute of Technology 2021

71sit.org © Schaffhausen Institute of Technology 2021

sit.org

72sit.org © Schaffhausen Institute of Technology 2021

73sit.org © Schaffhausen Institute of Technology 2021

74sit.org © Schaffhausen Institute of Technology 2021

75sit.org © Schaffhausen Institute of Technology 2021

76sit.org © Schaffhausen Institute of Technology 2021

77sit.org © Schaffhausen Institute of Technology 2021

78sit.org © Schaffhausen Institute of Technology 2021

79sit.org © Schaffhausen Institute of Technology 2021

80sit.org © Schaffhausen Institute of Technology 2021

