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Introduction

§Why do we test?

§Did you have to deal with testing in the past?
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Ariane 5

https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=PK_yguLapgA
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Ariane 5

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=562936

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=562936
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Quizz

https://www.menti.com/2h1p9xc4ad
Code: 2825 7782

https://www.menti.com/2h1p9xc4ad
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We have been trained to make 
assumptions

x*x=x2 ≥ 0

x+1>x

(x * y) / x = y

(y / x) * x = y

false for x= 46341

(and many more int)

false for 
x=MAX_INT 

false for x=0 or 
float x 

false for x=0 or int, float x 
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Typically impossible to…

§Test all values (see model-checking)

§Know what to omit when testing

§Know how to interpret results
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An example

/*
* A simple method that increments an integer value 
**/

int increment(int i){
return i+1;

}

Testing all values?
What not to test?
How to interpret results?
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In this case…

§Test all values? It is possible!

§Know what to omit when testing? e.g.
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

§Know how to interpret results?
increment(Integer.MAX_VALUE) ???

http://en.wikipedia.org/wiki/Pentium_FDIV_bug
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Remember this!

Program testing can be used to show 
the presence of bugs, but never to 
show their absence!

Edsger W. Dijkstra

Turing Award recipient, 1972
http://en.wikiquote.org/wiki/Edsger_W._Dijkstra
Referencing: 
Notes On Structured Programming, 1972, 
at the end of section 3, 
On The Reliability of Mechanisms.

http://en.wikiquote.org/wiki/Edsger_W._Dijkstra
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The usual trade-off

Quality & 
Test

Deadlines & 
Reputation
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Natural tendencies

• Testing is in the way to make deadlines

• Testing finds bugs that do not matter

• I have no time planned for the testing

• “Come on, our code is good!”

• “The code I write is throw-away”
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So why do we really test?

We try to find bugs… 

… to fix them …

… to improve the quality of the code!
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Testing saves time and finds bugs early

Gail C. Murphy, Paul Townsend, and Pok Sze Wong. 1994. Experiences with 
cluster and class testing. Commun. ACM 37, 9, 39-47

With system-level 
testing without unit 

testing

With system-level 
testing and unit 

testing
70 bugs 1 bug

16 weeks debugging
time

50% less overall time

5%-30% of the time 
writing tests

5%-20% running tests 
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So, should we just test, test, test?

§ This would not solve the problem if testing is not planned and 
strategically applied!

§ Testing techniques are numerous and give a very large panel of 
possibilities

§A software test engineer (or software tester) will know how to apply 
most and be able to discover/adapt them to the software at hand.
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What makes a good tester?

§The will to spend time crashing 
programs

§A strong commitment to drive the 
code to the best level of compliance 
with  specifications

§The will to drive quality of the code up
§The will to understand how a program 
works to find its limitations

§The will to use tools and techniques 
that test programs
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§ IEEE terminology:
• When a program exhibits an unexpected behaviour, it is a FAILURE
• A failure is caused by a FAULT in the program
• A defect is caused by an ERROR or a MISTAKE made by a 
programmer

causesERROR causesFAULT FAILURE

Source: IEEE standard 610.1
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1. Types of testing
2. Testing scopes
3. Testing Processes
4. Testing Artifacts
5. Testing Metrics

Outline
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Part I: Types of Testing
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Categories of Testing

§Black-box/white-box/grey-box

§Static/dynamic testing

§ Functional/non-functional
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Black-box/White-Box/Grey-Box

§Black-Box testing: does not consider implementation details, only 
interfaces

§White-Box testing (glass-box, clear-box, transparent, structural): uses 
the actual implementation of the program to devise tests

§Grey-Box: Mixes both of them… If the test engineer know some of the 
internal of the program, it uses those to design some of the tests, the 
rest uses black-box
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Dynamic/Static Testing
• Dynamic testing is when the environment 
executes code, for example:

• Automated testing
• Unit tests

• Static testing does not require to execute the 
program, for example:

• Walkthrough
• Reviews
• Inspections
• Static analysis
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Example of static Analysis tool: findbugs

http://findbugs.sourceforge.net

http://findbugs.sourceforge.net
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Other examples: Structure 101, Understand, 
Klocwork

Understand
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Functional/non-functional Testing

• Functional testing tests that the program 
provides a functionality (e.g. calculates a 
result, doing something…)

• Non-Functional testing tests non-
functional properties (scalability, security, 
“-ilities” in general)
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Examples
• Stress-testing the Apache web-server

• Testing code that has been outsourced

• Testing the code of a satellite 

• Testing the code running a cell phone

• Testing Microsoft Word
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Part II: Testing Scope
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Testing Scopes

§Unit Testing
§ Integration Testing
§System Testing
§Acceptance Testing

§Regression Testing
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Unit Testing
• Testing small parts of the programs
• Typically the unit tests have an 
initialisation part and an assertion for 
testing the value that should be returned

Program:

int increment(int i){
return i+1;

}

Test:

@Test
public void test_1(){

int j = 0;

assertTrue(increment(j)==1);
}

Test
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Integration Testing

• Typically grouping together all some units and testing them together 
using a black-box approach

• Three main approaches:
• Big Bang: Put everything together then test
• Top-down: Modules tested from the entry points and integrated 

progressively
• Bottom-up: Modules are progressively integrated and tested from 

the most elementary ones.
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System Testing

• Tests integrated systems

• Tests functional and non-functional requirements

• Trying to understand even expected non-explicit 
requirements

• Typically black-box testing
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Acceptance Testing

• Runs based on script

• Designed by domain experts (subject matter expert), 
performed by potential users

• Main intent is not to discover failing scenarios, it is to 
check that the product will work (and how well) in a 
production environment
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Example of acceptance testing: A/B 
Testing

• To compare two alternatives of a product 
and decide on the one to pick using a 
metric of success

• 50% of the traffic is version A and 50% 
on version B.

• Example:

https://vwo.com/ab-testing/

https://vwo.com/ab-testing/
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Regression Testing

• The goal is to check that what used to work still does

• For example, test suites will be automatically executed 
to check that scenarios are working

• The scope itself can vary
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Example (1/2)

//Version 0
int increment(int i){

return i+1;
}

@Test
public void test_1(){

int j = 0;

assertTrue(increment(j)==1);
}

Test
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Example (2/2)

@Test
public void test_1(){

int j = 0;

assertTrue(increment(j)==1);
}

//Version 1
int increment(int i) throws Exception{

if (i<Integer.MAX_VALUE)
return i+1;

else
throw new ArithmeticException();     

}

Test
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Regression Testing Tool: Junit (from 
Eclipse)
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Part III: Testing Processes
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Original waterfall model

Winston Royce, 1970, source: wikipedia, waterfall model

Testing?
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V-Model

Source: V-model, wikipedia

Testing
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Test-Driven Development

K. Beck (2003), 
Source: Test-driven_development, wikipedia
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Extreme Programming

http://www.extremeprogramming.org/introduction.html
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Integration testing or how to “trust but verify”

Tests are going to be run on each commit (preferred) or nightly and reported to 
users
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Artifacts
• RequirementsRequirements Analysis

• Test Strategy
• Testbed

Test Planning

• Test procedures
• Test cases

Test development

• Bug reportsTest execution

• Test reportTest reporting

• Faults prioritizationTest Result Analysis

Test Plan/Procedures
Traceability Matrix

Test scenarios
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Part IV: Testing Artifacts
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Test Case

• A test script that generally consists of a single 
step to test a program.

• Typically a test case will have a test oracle to 
decide whether is passes or fails

• Test cases generally include the following 
indications:

• Id
• Description
• Related requirements
• Category
• Author
• Status (pass/fail)
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Example

§ Id: test_1
§Description: a test to decide that checks “increment” with “0”
§Related Requirement: “increment” documentation
§Category: Functional, Unit
§Author: Manuel
§Status: Pass @Test

public void test_1(){
int j = 0;

assertTrue(increment(j)==1);
}
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Test Oracle
• Typically a way of deciding whether a test case 

passes or fail

• Includes:
• Documentation
• Requirements
• Assertions
• Other means of calculating the result
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Test Suite
• A test suite is a (potentially large) collection of test 

cases
• Typically test cases can be grouped in categories
• The goal of a test suite is to permit be used for 

checking that a new functionality does not break the 
code, or that it provides what is needed

• Large test suites might not be testable all the time 
(needed to test only a subset)

• Test suites quality is difficult to define (e.g. see 
mutation testing)
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Test Data

§Values used during testing to test some functionality

§ Typically stored in separate files

§Difficult to generate a good set of test data: it is often reused
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Part V: Testing Metrics
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Coverage

The coverage is a measure of a percentage of a structure or a domain 
that a program, a test case, a test suite exercises 
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Coverages

• Function coverage
• Statement coverage
• Branch coverage 
(also known as: Decision 
coverage)

• Path coverage
• Condition coverage
• MCDC



54sit.org     © Schaffhausen Institute of Technology 2021

Function Coverage

§ The percentage of functions that were called by the test case 

Typically function coverage should be 100%
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Statement coverage

Percentage of statements that were executed
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Example

a:=1

b>3

Result:=b Result:=a

b:=a

b:=a+2

b:=a

Coverage of the red path:
86% 

(6/7 statements)

true false
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Decision coverage

§Each time a program has a branching instruction (if, for, while…) this 
create two branches.

§Decision coverage is the percentage of these branches that were 
executed by a test suite.

if
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Example

a:=1
b:=a+2
If (b>3)

Result:=b Result:=a
b:=a

b:=a

Decision Coverage 
of the red branches:

50%

true false
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Branch coverage

§Each time one has a branching instruction (if, for, while…) this create 
two branches.

§Branch coverage is the percentage of the branches that were executed 
by a test suite.

if
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Example

a:=1
b:=a+2
If (b>3)

Result:=b Result:=a
b:=a

b:=a

Coverage of the red branches:
75% 

(3/4 branches)

true false
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Path Coverage
The percentage of different paths exercised by the 
tests (put in relation with cyclomatic complexity)

if
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Example

a:=1
b:=a+2
If (b>3)

Result:=b Result:=a
b:=a

b:=a

true false

Coverage of the red red path:
50% 

(1/2 paths)
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Condition coverage

§Each time one has a branching instruction (if, for, while…) that 
contains one or several conditions, each condition’s outcome (True or 
False) is a possibility

§Condition coverage is the percentage of these possibilities that were 
executed by a test suite.

if (a || b)

100% obtained with (a,b) = (true, false) and (false,true)
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Modified Condition/Decision Coverage (MCDC)
§Consists of:

• 100% branch coverage
• 100% condition coverage
• Each entry/exit point is exercised
• Each condition affects the behaviour independently

if (a || b)

DO-178B, Software Considerations in Airborne Systems and Equipment 
Certification
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Tools to calculate the coverage: 
Cobertura

http://cobertura.sourceforge.net/

http://cobertura.sourceforge.net/
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My recommendations

§Write tests as a part of the coding activity
• Not at the end, not at the beginning, rather per unit

§Write unit tests
• Use unit testing frameworks like JUnit
• Monitor decision coverage and try to get it close to 100%

§Write integration tests
• use scripts and specific tools like Selenium

§Run your tests continuously
• Use a continuous integration server like Jenkins

§ Fix the bugs you find
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Conclusions

• Software testing is at the core of any quality 
assurance mechanism currently used

• This presentation only gives a high level 
understanding of the techniques used in testing 
there is far more to learn
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Some terms used in software testing
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sit.org

Thank you!
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