
8. Software Quality

Introduction to Software Engineering



Roadmap

�2

> What is quality?
> Quality Attributes
> Quality Assurance: Planning and Reviewing
> Quality System and Standards



�3

Sources

> Software Engineering. Ian Sommerville. Addison-Wesley, 
10th edition, 2015

> Software Engineering: A Practitioner's Approach. Roger S. 
Pressman. McGraw Hill; 8th edition, 2003.

> Fundamentals of Software Engineering, C. Ghezzi, M. 
Jazayeri, D. Mandroli, Prentice-Hall; 2nd edition, 2002.



Roadmap

�4

> What is quality?
> Quality Attributes
> Quality Assurance: Planning and Reviewing
> Quality System and Standards



Which one would you choose? (and why?)

�5



What’s the difference between the two?  
Try to enumerate as many differences as you can? 
How do these differences translate to “quality”?



�6

What is Quality?

Software Quality is conformance to:

> explicitly stated functional and performance requirements,
> explicitly documented development standards,
> implicit characteristics that are expected of professionally 

developed software.



�7

Problems with Software Quality

> There is tension between:
—customer quality requirements (efficiency, reliability, etc.)
—developer quality requirements (maintainability, reusability, etc.)
—organisation quality requirements (standard conformance, 

portfolio management)

Quality management is not just about reducing defects!



�8

How can we specify quality?

> Software specifications are usually incomplete and often 
inconsistent

> Some quality requirements are hard to specify in an 
unambiguous way
—directly measurable qualities (e.g., errors/KLOC), 
—indirectly measurable qualities (e.g., usability).



What is Software Quality?

�9

Software Quality

Developer perspective

User perspective

Customer perspective



What attributes do you expect of software of good “quality”? 
Come up with as many attributes as you can. Then try to 
categorize these attributes from the perspectives of various 
stakeholders, such as the developer, the end user, and the 
customer paying for the software. 
A “mind map” can be a good way to structure and organize these 
attributes: 

https://en.wikipedia.org/wiki/Mind_map



Roadmap

�10

> What is quality?
> Quality Attributes
> Quality Assurance: Planning and Reviewing
> Quality System and Standards



Hierarchical Quality Model

�11

Software
Quality

...

Reliability

Efficiency

Usability

Maintainability

Portability

may be refined 
into further 
sub-attributes

Define quality via hierarchical quality model, i.e. a number of quality 
attributes (a.k.a. quality factors, quality aspects, ...)
Choose quality attributes (and weights) depending on the project 
context

Quality attribute



Software quality attributes are sometimes referred to as 
“ilities” (since many end with the suffix “ility”). Notice how 
many of those listed here are related to non-functional 
requirements.



�12

Quality Attributes

Quality attributes apply both to the product and the process.

> product: delivered to the customer
> process: produces the software product
> resources: (both the product and the process require 

resources)
—Underlying assumption: a quality process leads to a quality product 

(cf. metaphor of manufacturing lines)



In the end we are interested in ensuring the quality of the end 
product.  
A reasonable assumption, however, is that we cannot produce a 
product of acceptable quality, unless the process we use to 
develop it as well as the resources used to produce it also are of 
adequate quality. Hence a sound engineering approach to quality 
considers these aspects as well.



�13

Quality Attributes ...

Quality attributes can be external or internal.

> External: Derived from the relationship between the environment and 
the system (or the process). 
—To derive, the system or process must run
—e.g. Reliability, Robustness

> Internal: Derived immediately from the product or process description 
—To derive, it is sufficient to have the description
—Underlying assumption: internal quality leads to external quality
—e.g. Efficiency



The key point is that an internal quality attribute can be checked 
in isolation: Are classes documented with Javadoc? Is the code 
adequately covered by tests? 
An external quality attribute can only be checked in a deployment 
context. Will the system survive invalid inputs? Can users learn to 
use the system effectively without reading a manual?



�14

Correctness, Reliability, Robustness

Correctness
> A system is correct if it behaves according to its specification

—An absolute property (i.e., a system cannot be “almost correct”)
—... in theory and practice undecidable

Reliability
> The user may rely on the system behaving properly
> Reliability is the probability that the system will operate as expected over a 

specified interval
—A relative property (a system has a mean time between failure of 3 weeks)

Robustness
> A system is robust if it behaves reasonably even in circumstances that were 

not specified
> A vague property (once you specify the abnormal circumstances they 

become part of the requirements)



�15

Efficiency, Usability

Efficiency (Performance)
> Use of resources such as computing time, memory

—Affects user-friendliness and scalability
—Hardware technology changes fast!
—First do it, then do it right, then do it fast

> For process, resources are manpower, time and money
—relates to the “productivity” of a process



�16

Efficiency, Usability ...

Usability (User Friendliness, Human Factors)

> The degree to which the human users find the system 
(process) both “easy to use” and useful
—Depends a lot on the target audience (novices vs. experts)
—Often a system has various kinds of users (end-users, operators, 

installers)
—Typically expressed in “amount of time to learn the system”



�17

Maintainability

> External product attributes (evolvability also applies to 
process)

Maintainability
> How easy it is to change a system after its initial release

—software entropy ⇒ maintainability gradually decreases over time



�18

Maintainability is often refined to…

Repairability
> How much work is needed to correct a defect

Evolvability (Adaptability)
> How much work is needed to adapt to changing requirements 

(both system and process)

Portability
> How much work is needed to port to new environment or 

platforms



�19

Verifiability, Understandability

Internal (and external) product attribute

Verifiability
> How easy it is to verify whether desired attributes are there?

—internally: e.g., verify requirements, code inspections
—externally: e.g., testing, efficiency

Understandability
> How easy it is to understand the system

—internally: contributes to maintainability
—externally: contributes to usability



�20

Productivity, Timeliness, Visibility

External process attribute (visibility also internal)

Productivity
> Amount of product produced by a process for a given 

number of resources
—productivity among individuals varies a lot
—often:

productivity (∑ individuals) < ∑ productivity (individuals)



�21

Productivity, Timeliness, Visibility ...

Timeliness
> Ability to deliver the product 

on time
—important for marketing (“short 

time to market”)
—often a reason to sacrifice other 

quality attributes
—incremental development may 

provide an answer Time

Function
User needs

System 
capability

t0 t1 t2 t3 t4
initial 
delivery

redesign



�22

Productivity, Timeliness, Visibility ...

Visibility (Transparency)
> Current process steps and project status are accessible

— important for management
—also deal with staff turn-over



Roadmap

�23

> What is quality?
> Quality Attributes
> Quality Assurance: Planning and Reviewing
> Quality System and Standards



Quality Control Assumption

�24

Project Concern = Deliver on time and within budget

Assumptions:

External (and Internal) 
Product Attributes Process Attributes

Internal quality 
Process quality

External quality 
Product quality

Control during project Obtain after project

Otherwise, quality is 
mere coincidence!



Quality assurance in engineering is concerned with delivering a 
product of a given quality (to be defined) within given time and 
budget constraints. 
The delivery time clearly depends on the availability of the 
product as well as on the production process. The budget is 
clearly a process attribute. 
How do you ensure quality? The assumption is that quality 
depends on the process. We can monitor both the product and the 
process quality internally during development. This (we hope) 
will give us the desired product quality upon delivery and 
deployment.



The Quality Plan

> A quality plan should:
—set out desired product qualities and how these are assessed 

– define the most significant quality attributes
—define the quality assessment process

– i.e., the controls used to ensure quality
—set out which organisational standards should be applied

– may define new standards, i.e., if new tools or methods are used

�25

NB: Quality Management should be 
separate from project management to 
ensure independence



The desired quality attributes always depend on the given project. 
These must be defined as part of the quality plan. (NB: like any 
aspect of a project, they may change, but they still need to be 
defined.) 
Quality attributes are useless if they cannot be checked. The 
quality plan must define the process by which quality is checked 
and controlled. 
Another important aspect concerns standards to be adopted. 
Standard may cover any aspect of the process, from coding and 
testing standards to privacy.



�26

Software Quality Controls

1. Reviews
—Inspections for defect removal (product)
—Progress Assessment Reviews (product and process)
—Quality reviews (product and standards)

2. Automated Software Assessment
—Measure software attributes and compare to standards (e.g., defect 

rate, cohesion, etc.)



Reviews are widely understood to be the most effective way to 
detect problems early in software projects. Reviews are typically 
carried out to assess the quality of any deliverable (i.e., a design 
document, a piece of code), but may also be carried out to assess 
the process itself.



�27

Types of Quality Reviews

A quality review is carried out by a group of people who 
carefully examine part or all of a software system and its 
associated documentation.

> Reviews should be recorded and records maintained
—Software or documents may be “signed off” at a review
—Progress to the next development stage is thereby approved



Types of Quality Reviews …

�28

Review type Principal purpose
Formal Technical 

Reviews
(a.k.a. design or 

program inspections)

Driven by checklist
>detect detailed errors in any product
>mismatches between requirements and product
>check whether standards have been followed.

Progress reviews

Driven by budgets, plans and schedules
>check whether project runs according to plan
>requires precise milestones
>both a process and a product review



�29

Review Meetings 

Review meetings should:
> typically involve 3-5 people
> require a maximum of 2 hours advance preparation
> last less than 2 hours



�30

Review Minutes

The review report should summarize:
1. What was reviewed
2. Who reviewed it?
3. What were the findings and conclusions?

The review should conclude whether the product is:
1. Accepted without modification
2. Provisionally accepted, subject to corrections (no follow-up review)
3. Rejected, subject to corrections and follow-up review



�31

Review Guidelines

1. Review the product, not the producer
2. Set an agenda and maintain it
3. Limit debate and rebuttal
4. Identify problem areas, but don’t attempt to solve every 

problem noted
5. Take written notes
6. Limit the number of participants and insist upon advance 

preparation
7. Develop a checklist for each product that is likely to be 

reviewed
8. Allocate resources and time schedule for reviews
9. Conduct meaningful training for all reviewers
10. Review your early reviews



�32

Sample Review Checklists (I)

Software Project Planning
1. Is software scope unambiguously defined and bounded?
2. Are resources adequate for scope?
3. Have risks in all important categories been defined?
4. Are tasks properly defined and sequenced?
5. Is the basis for cost estimation reasonable?
6. Have historical productivity and quality data been used?
7. Is the schedule consistent?
...



Take care that such checklists must be tailored to the quality goals 
of a specific project. The sample questions listed here are fairly 
general and generic, but this need not always be the case.



�33

Sample Review Checklists (II)

Requirements Analysis
1. Is information domain analysis complete, consistent and 

accurate?
2. Does the data model properly reflect data objects, attributes 

and relationships?
3. Are all requirements traceable to system level?
4. Has prototyping been conducted for the user/customer?
5. Are requirements consistent with schedule, resources and 

budget?
...



�34

Sample Review Checklists (III)

Design
1. Has modularity been achieved?
2. Are interfaces defined for modules and external system 

elements?
3. Are the data structures consistent with the information 

domain?
4. Are the data structures consistent with the requirements?
5. Has maintainability been considered?

...



�35

Sample Review Checklists (IV)

Code
1. Does the code reflect the design documentation?
2. Has proper use of language conventions been made?
3. Have coding standards been observed?
4. Are there incorrect or ambiguous comments?
5. Are all public interfaces tested?
6. Is test coverage at least 90%?

...



Sample coding standards

�36

6.1 @Override : always used
A method is marked with the @Override 
annotation whenever it is legal. This 
includes a class method overriding a 
superclass method, a class method 
implementing an interface method, and an 
interface method respecifying a 
superinterface method.

Exception: @Override may be omitted 
when the parent method is @Deprecated.

From the Google Java Style Guide
https://google.github.io/styleguide/javaguide.html

https://google.github.io/styleguide/javaguide.html


�37

Sample Review Checklists (V)

Testing
1. Have test resources and tools been identified and acquired?
2. Have both white and black box tests been specified?
3. Have all the independent logic paths been tested?
4. Have test cases been identified and listed with expected 

results?
5. Are timing and performance to be tested?



Review Results

> Comments made during the review should be classified:
—No action.

– No change to the software or documentation is required.
—Refer for repair.

– Designer or programmer should correct an identified fault.
—Reconsider overall design.

– The problem identified in the review impacts other parts of the design.

�38

Requirements and 
specification errors may have 
to be referred to the client.



Roadmap

�39

> What is quality?
> Quality Attributes
> Quality Assurance: Planning and Reviewing
> Quality System and Standards



�40

Product and Process Standards

Product standards define characteristics that all components 
should exhibit.
Process standards define how the software process should be 
enacted.

Product standards Process standards
Design review form Design review conduct
Document naming standards Submission of documents
Procedure header format Version release process
Java conventions Project plan approval process
Project plan format Change control process
Change request form Test recording process



�41

Potential Problems with Standards

> Not always seen as relevant and up-to-date by software 
engineers

> May involve too much bureaucratic form filling
> May require tedious manual work if unsupported by 

software tools
—Limit overhead to effectively apply standards



Quality System

�42

Quality Assurance

Quality System

Quality Manual

Standards & Procedures

Project plan X
Quality plan X

Instantiates

Certification

Quality Standards 
(ISO 9001, CMM) 

External body

Accreditation 
body

Feedback & Improve

Influences

Audit

Certification request

Customers may require an externally reviewed quality system



Quality Assurance in an organisation is formalized as a “Quality 
System”, which includes a “Quality Manual” as well as numerous 
Standards and Procedures. The quality system must be 
instantiated individually for a given project X. The quality system 
will typically be influenced by existing external standards. 
Customers increasingly require that the quality system of an 
organisation providing some service be formally audited and 
accredited by external bodies. 
This scheme holds not only for software engineering or even just 
for engineering, but for many different kinds of organisations 
(such as universities).



�43

ISO 9000

ISO 9000 is an international set of standards for quality 
management applicable to a range of organisations from 
manufacturing to service industries.

ISO 9001 is a generic model of the quality process, applicable to 
organisations whose business processes range all the way from 
design and development, to production, installation and 
servicing;

> ISO 9001 must be instantiated for each organisation 
> ISO 9000-3 interprets ISO 9001 for the software developer

ISO = International Organisation for Standardization
> ISO main site: http://www.iso.ch/
> ISO 9000 main site: http://www.tc176.org/



ISO 90003 (a few of the points)

> The quality policy is a formal statement from management
> The business makes decisions about the quality system based on recorded 

data.
> The quality system is regularly audited and evaluated for conformance and 

effectiveness.
> The business has created systems for communicating with customers about 

product information, inquiries, contracts, orders, feedback, and complaints.
> The business regularly reviews performance through internal audits and 

meetings. The business determines whether the quality system is working and 
what improvements can be made. It has a documented procedure for internal 
audits.

> The business deals with past problems and potential problems. It keeps 
records of these activities and the resulting decisions, and monitors their 
effectiveness.

> The business has documented procedures for dealing with actual and 
potential non-conformances (problems involving suppliers, customers, or 
internal problems).

�44



�45

Capability Maturity Model (CMM)

The SEI process maturity model classifies how 
well contractors manage software processes

Level 5: Optimizing
Improvement is fed back into QA process

Level 4: Managed
QA Process + quantitative data collection

Level 3: Defined
QA process is defined and institutionalized

Level 2: Repeatable
Formal QA procedures in place

Level 1: Initial (ad hoc)
No effective QA procedures, quality is “luck” Quality depends 

on individuals!

Quality depends on 
individual project managers!



The Capability Maturity Model (CMM) categorizes the 
“maturity” of software development contractors. The model was 
developed at the Software Engineering Institute (SEI) in the late 
80s and early 90s by Watts Humphrey. 
Any software development team gets level 1 “for free”. Here 
quality is achieved purely through the skill and “luck” of 
individual developers. At level 2, individual managers help to 
ensure quality. 
At the highest level, not only are QA processes defined, but data 
are gathered and used to optimize and improve the process. 
Beware that there is no guarantee that a contractor at CMM level 
5 will necessarily deliver better quality than another at level 1. 

https://en.wikipedia.org/wiki/Capability_Maturity_Model



How to evaluate your process?

�46

The Joel Test 
1. Do you use source control? 
2.Can you make a build in one step? 
3.Do you make daily builds? 
4.Do you have a bug database? 
5.Do you fix bugs before writing new code? 
6.Do you have an up-to-date schedule? 
7.Do you have a spec? 
8.Do programmers have quiet working conditions? 
9.Do you use the best tools money can buy? 
10.Do you have testers? 
11.Do new candidates write code during their interview? 
12.Do you do hallway usability testing?



This refreshing blog post from 2000 (but still very relevant) 
summarizes some very down-to-earth ways to assess the maturity 
of your own software development processes. 

http://www.joelonsoftware.com/articles/fog0000000043.html



�47

What you should know!

> Can a correctly functioning piece of software still have 
poor quality?

> What’s the difference between an external and an internal 
quality attribute?

> And between a product and a process attribute?
> Why should quality management be separate from 

project management?
> How should you organize and run a review meeting?
> What information should be recorded in the review 

minutes?



�48

Can you answer the following questions?

> Why does a project need a quality plan?
> Why are coding standards important?
> What would you include in a documentation review 

checklist?
> How often should reviews be scheduled?
> Would you trust software developed by an ISO 9000 

certified company?
> And if it were CMM level 5?



http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if 
changes were made. You may do so in any reasonable manner, but not in any way that 
suggests the licensor endorses you or your use. 

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your 
contributions under the same license as the original. 

No additional restrictions — You may not apply legal terms or technological measures that legally 
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

