
Software Metrics and
Cost Estimation -
an Introduction

Bachelor Studies in Computer Science: UNIBE

2021-12-08 | Dr. Simon Moser | simon.moser@solutionboxx.ch

1. Why measure «things» in Software Engineering?
2. Software Metrics Basics
3. Software Product Metrics – Measuring Code
4. Software Product Metrics – Measuring

Specifications
5. Software Process Metrics
6. Estimation (of Project Effort and Duration)

2021-12-08 UNIBE – Software Metrics and Estimation 2

Topics

- Small sized methods/classes

- Low coupling

- High cohesion

- Enforcing code reviews

- Etc.

You cannot control what you cannot
measure.

Tom DeMarco

As quoted in Software Metrics: A Rigorous and
Practical Approach, page 11.

3

1. Why measure «things» in Software?

To make Software Quality Principles measurable.

n ∈

Examples:

q ∈

2021-12-08 UNIBE – Software Metrics and Estimation

… BUT:

• Measurements just forecast quality or

absence of quality (maintenance cost and

defect rates)

• Warning thresholds must be established.

• No absolute world-wide accepted values for

‘good’ or ‘bad’.

4

1. Why measure «things» in Software?

To make Software Quality Principles measurable ...

2021-12-08 UNIBE – Software Metrics and Estimation

5

- Coding effort

- Also: Specification, Testing, Management effort

- Software development productivity

- Project duration

- Etc.

Control = Loop of Measure, Estimate, Measure, …
(“Learning”).

Imagine weather forecasts
without measurements.

Examples:

1. Why measure «things» in Software?

To allow parametric (=measurement-based) Estimation.

2021-12-08 UNIBE – Software Metrics and Estimation

6

- Response time or other

software performance measurements

- CPU MHz or other

hardware performance measurements

- Algorithmic complexity

This introduction is not about ...

2021-12-08 UNIBE – Software Metrics and Estimation

1. Why measure «things» in Software Engineering?
2. Software Metrics Basics
3. Software Product Metrics – Measuring Code
4. Software Product Metrics – Measuring

Specifications
5. Software Process Metrics
6. Estimation (of Project Effort and Duration)

7

Topics

2021-12-08 UNIBE – Software Metrics and Estimation

8

2. Software Metrics Basics

Definition
Software Metric
:= transforms a (possibly structured and multi-dimensional)

system or management artefact a of artefact type A into a

value v of a defined single-dimensional scale S.

:= triplet of (A, S, measurement procedure P)

:= function P(A) as S and v = P(a)

Software Quality Metric
:= A function whose inputs are software data and whose
output is a single numerical value that can be interpreted as
the degree to which software possesses a given attribute
that affects its quality. IEEE Std. 1061

n ∈

function coupling (Source s) as Integer

[C-style: int coupling (char* source);]

Example:

Source s

2021-12-08 UNIBE – Software Metrics and Estimation

9

2. Software Metrics Basics

Classification
Product Metrics measure
- Code

- (formal or modelled) Specifications/Requirements

- Test Cases, Test Executions

Process Metrics measure

- Effort (of some activity)

- Duration

- Defects, Reviews

- Productivity, and other derived metrics

Attn: other classifications exist

Software
Process

Software
Products

2021-12-08 UNIBE – Software Metrics and Estimation

10

Well-defined: A, S and P are defined

Reliable: repeating the measurement yields the
same result on same input

Person-independent: the result does not depend
on an individual or a group of individuals

Efficient: the measurement takes minimal
amounts of time and money

Purposeful: the measurement is used for the
benefit of a software process stakeholder

2. Software Metrics Basics

What makes a good metric?

2021-12-08 UNIBE – Software Metrics and Estimation

11

Well-defined: A, S and P are defined

Reliable: repeating the measurement yields the
same result on same input

Person-independent: the result does not depend
on an individual or a group of individuals

Efficient: the measurement takes minimal
amounts of time and money

Purposeful: the measurement is used for the
benefit of a software process stakeholder

2. Software Metrics Basics

Rating (also: Estimating)

n ∈

HeightInMeters (Building b) as Integer = Simon
says n

2021-12-08 UNIBE – Software Metrics and Estimation

• Nominal

• Ordinal (ranking)

• Cardinal – relative (correct differences)

• Cardinal – absolute (counting, 0 anchor)

 Statistics only ‘safe’ when a scale is
absolute.

12

2. Software Metrics Basics

Scale Types

2021-12-08 UNIBE – Software Metrics and Estimation

1. Why measure «things» in Software Engineering?
2. Software Metrics Basics
3. Software Product Metrics – Measuring Code
4. Software Product Metrics – Measuring

Specifications
5. Software Process Metrics
6. Estimation (of Project Effort and Duration)

2021-12-08 UNIBE – Software Metrics and Estimation 13

Topics

:= (Source-Code, , count LOC)

• Specific per Programming Language

• Variants: including/excluding comments

• Sometimes: sub-expressions counted

• C/C++: counting «;» (but what about
the , operator?)

Recommendation: max 100 per method

Also:
- KLOC = 1’000 LOC
- Delivered Source Instruction (DSI), KDSI

14

3. Software Product Metrics – Measuring Code

Lines of Code (LOC)

Line of Code

Source-Code

1..n

2021-12-08 UNIBE – Software Metrics and Estimation

Positive Aspects

• Simple, automated measurement

• Absolute scale

• Predicts Re-Engineering / Porting effort

15

3. Software Product Metrics – Measuring Code

Lines of Code (LOC)

Negative Aspects

• Too simple

• Available late in the development process

• Dangerous usage:
derived productivity metric LOC/Person Day

2021-12-08 UNIBE – Software Metrics and Estimation

:= (Source-Code, , V (siehe unten))

• N1 = #Operands, N2 = #Operators
≈ the ‘words’ used

• η1 = #Unique operands, η2 = #unique operators
≈ the ‘vocabulary’ used

• Log2 (η1 + η2) // number of binary decisions for
‘which operator/operand to choose?’ answer

• V = (N1 + N2) * Log2 (η1 + η2)

Recommendation: max. 1’000 per method

Also:
- more Halstead metrics: length, difficulty, effort

16

3. Software Product Metrics – Measuring Code

Halstead’s Volume (V)

Operands

Source-Code

1..*

Operators
1..*

Unique
Operands

Unique
Operators

1..*

1..*
1

1

Examples:
https://verifysoft.com/de_cmtpp_mscoder.pdf
X.N.Cullmann, K. Lambertz

2021-12-08 UNIBE – Software Metrics and Estimation

Positive Aspects

• automated measurement

• Absolute scale

• Reflects cognitive effort to understand
(and write) software

• Language-independent

• Better for ‘size’ than LOC

• Predicts Code-Review effort

17

Negative Aspects

• Available late in the development process

• Dangerous usage:
derived productivity metric V/Person Day

• Only usable per function

3. Software Product Metrics – Measuring Code

Halstead’s Volume (V)

2021-12-08 UNIBE – Software Metrics and Estimation

:= (Source-Code of 1 Function, , count paths)

• Each IF creates an additional path

• Each CASE creates an additional path

• Each loop condition (FOR, WHILE) creates an
additional path

• Each CATCH creates an additional path

Recommendation: max. 10 per function
(method)

18

3. Software Product Metrics – Measuring Code

McCabe’s Cyclomatic Complexity

paths

Source-Code
of Function

1..*

Examples:
https://verifysoft.com/de_cmtpp_mscoder.pdf
X.N.Cullmann, K. Lambertz

2021-12-08 UNIBE – Software Metrics and Estimation

Positive Aspects

• automated measurement

• Absolute scale

• Language-independent

• Predicts Test complexity / effort

19

Negative Aspects

• Available late in the development process

• Only covers 1 aspect of complexity

• Only usable per function

3. Software Product Metrics – Measuring Code

McCabe’s Cyclomatic Complexity

2021-12-08 UNIBE – Software Metrics and Estimation

:= (Class (Source-Code), , count used other classes)

• subclassing

• object types (parameters, variables)

• return value types

Recommendation: max. 5 per class

20

3. Software Product Metrics – Measuring Code

Class Coupling

Class

1..* uses

1..*

2021-12-08 UNIBE – Software Metrics and Estimation

Positive Aspects

• automated measurement

• Absolute scale

• Language-independent

• Predicts Test complexity / effort

• Predicts Re-Test maintenance effort

21

Negative Aspects

• Available late in the development process

• Only covers 1 aspect of coupling

• Only usable per class (and in object-oriented
languages)

3. Software Product Metrics – Measuring Code

Class Coupling

2021-12-08 UNIBE – Software Metrics and Estimation

:= (set of methods (Source-Code), , count unlinked sub-
sets)

• 2 methods are linked when 1 invokes the other

• 2 methods are linked when they reference the same
property (variable)

Normally, the set of all methods in a class are attributed
the LCOM value. But the definition is open for any set of
methods.

Recommendation: max. 1 per class, i.e.
all methods should be linked

Note that high values for LCOM are bad.
22

3. Software Product Metrics – Measuring Code

Lack of Cohesion of Methods (LCOM)

Method

0..* invokes

0..*

property (variable)
0..* references 0..*

2021-12-08 UNIBE – Software Metrics and Estimation

Positive Aspects

• automated measurement

• Absolute scale

• Language-independent

• Predicts Re-Test maintenance effort

23

Negative Aspects

• Available late in the development process

• Does not look at method usage outside
the given set of methods

• Needs ‘exception case’ handling e.g. when 2 is
used as the warning threshold:

e.g. a persistence class (‘entity’) typically
has unlinked methods per property

3. Software Product Metrics – Measuring Code

Lack of Cohesion of Methods (LCOM)

2021-12-08 UNIBE – Software Metrics and Estimation

1. Why measure «things» in Software Engineering?
2. Software Metrics Basics
3. Software Product Metrics – Measuring Code
4. Software Product Metrics – Measuring

Specifications
5. Software Process Metrics
6. Estimation (of Project Effort and Duration)

2021-12-08 UNIBE – Software Metrics and Estimation 24

Topics

25

4. Software Product Metrics – Measuring Specifications

What is a Specification?
Dynamic Model + Structural Model

2021-12-08 UNIBE – Software Metrics and Estimation

26

4. Software Product Metrics – Measuring Specifications

Function Points (FP)

Background Information:

• The original function points were developed and
published in 1979 by Allan J. Albrecht (IBM). Originally,
these were direct person-days of coding. Then they
wanted to prove productivity progress and "froze" the
person-days to points.

• The original function points still had an 'adjustment
factor' of 70%-130%. But this was removed in 2003,
mainly because it made something mathematically
'undefined' out of an absolute scale..

• There is a standard (ISO standard ISO/IEC 20926) and a
user group (www.ifpug.org).

:= (Specification, , count FP of Use Cases and
Business Objects)

«Old-fashioned» terminology:

• Just 3 Basic functionalities allowed:
– Input = create, update or delete information

– Query = output information without ‘much’ logic

– Output = output information with transformation logic

• Use Cases are typed as Input, Output or Query

• Business Objects are called
– Internal Logical Files (ILF), if Input-ed in 1..* Use Case

– External Logical Files (ELF), else

2021-12-08 UNIBE – Software Metrics and Estimation

27

4. Software Product Metrics – Measuring Specifications

Function Points (FP)

Classification ILF
Business Object (BO)

ELF
read-only Business Object(BO)

Input-Use Case
UseCase with Persistence

Output-Use Case
Search/Display with Logic

Query-Use Case
1:1 Business Object Display

EASY

7 FP
#Attributes <= 4 and
#Associations <= 1

5 FP
#Attributes <= 4 and
#Associations <= 1

3 FP
#Input-BO = 1 and
(#Input-BO + #Output-
BO + #Query-BO) <= 2

4 FP
#Output-BO = 1 and
(#Output-BO + #Query-
BO) <= 2

3 FP
#Query-BO <= 2

MEDIUM
10 FP
not EASY and not
COMPLEX

7 FP
not EASY and not
COMPLEX

4 FP
not EASY and not
COMPLEX

5 FP
not EASY and not
COMPLEX

4 FP
not EASY and not
COMPLEX

COMPLEX

15 FP
#Attributes >= 10 and
#Associations >= 3
or
#Attributes >= 30 and
#Associations >= 1
or
#Attributes >= 4 and
#Associations >= 5

10 FP
#Attributes >= 10 and
#Associations >= 3
or
#Attributes >= 30 and
#Associations >= 1
or
#Attributes >= 4 and
#Associations >= 5

6 FP
#Input-BO >= 3 and
(#Input-BO + #Output-
BO + #Query-BO) >= 6

7 FP
#Output-BO >= 3 and
(#Output-BO + #Query-
BO) >= 6

6 FP
Query-BO >= 6

2021-12-08 UNIBE – Software Metrics and Estimation

Positive Aspects

• automated measurement (when the
modelling is done)

• Absolute scale

• Available early (as soon as the
specification is modelled)

• Predicts subsequent efforts (detailed
design, development, testing, …)

28

Negative Aspects

• Needs a modelled specification according to
the Function Points conventions

• Limited modelling (e.g. no business objects
subtyping)

• The ‘same’ system can be modelled differently
by different persons

2021-12-08 UNIBE – Software Metrics and Estimation

4. Software Product Metrics – Measuring Specifications

Function Points (FP)

29

4. Software Product Metrics – Measuring Specifications

System Meter (factually ‘System Description’ Meter)

2021-12-08 UNIBE – Software Metrics and Estimation

Name Definition
N

ew

xxxxx yyyyy aaaa bb cccccc
ddd e ffff gggggg

Y

yyyyy xx zzzzz xxx vvvv bb
gbb cccccc ddd e ffff g

N

zzzzzz yyyy cccccc ddd e xxx
zzzzz cccccc ddd e ffff
cccccc ddd e ffff
cccccc ddd e ffff

N

xxx vvvv xxx zzzzz xxx vvvvbb
cccccc ddd e ffff g

Y

xxx zzzzz yyyy xxxxx zzzzz xxx
vvvvbb cccccc

Y

Meta-Model
System Meter :=

Σall token (Name)

+

Σnew #Links (Definition)

// external System Meter

// internal System Meter

External
System Meter

Internal
System Meter

System
Meter

1 1 2

1 2 1

1 1 1

2 1 3

2 2 4

TOTAL
11 System Meter

Positive Aspects

• automated measurement (when the
modelling is done)

• Absolute scale

• Available very early (minimal modelling
effort)

• Takes reuse into account

• Predicts subsequent efforts (detailed
design, development, testing, …)

• Can be applied to all levels of system
descriptions (from overview models to
code)

30

Negative Aspects

• Needs a modelled specification / formal
system description

• The ‘same’ system can be modelled differently
by different persons

• Not well known

2021-12-08 UNIBE – Software Metrics and Estimation

4. Software Product Metrics – Measuring Specifications

System Meter

31

4. Software Product Metrics – Measuring Specifications

About Levels of System Specification Descriptions

2021-12-08 UNIBE – Software Metrics and Estimation

Overview
Specification

Business
Specification

Application
Specifiction (UI)

32

4. Software Product Metrics – Measuring Specifications

An Overview specification

2021-12-08 UNIBE – Software Metrics and Estimation

Dynamic Model + Structural Model

33

4. Software Product Metrics – Measuring Specifications

An Overview specification Example (1/3)

2021-12-08 UNIBE – Software Metrics and Estimation

Geschäftsdatenbereich (*)
Anzahl Business
Objects (*)

Produkte 5
Kunden 3
Bestellungen 4

geschäftliche
Grundfunktion (*)

Anzahl geschäftl.
Operationen (*)

erstellen 1
suchen/anzeigen 1
ändern 1
löschen 1

Geschäftsdatenbereich (*) geschäftliche Grundfunktion (*)

01 - Produkte suchen/anzeigen (R)
02 - Kunden suchen/anzeigen (R)
03 - Bestellungen erstellen (C)
03 - Bestellungen suchen/anzeigen (R)
03 - Bestellungen ändern (U)

Business Domain #Business
Objects

Basic
Functionality

#Business
Operations

Business Domain Basic
Functionality

34

4. Software Product Metrics – Measuring Specifications

An Overview specification Example (2/3) – Reuse Analysis

2021-12-08 UNIBE – Software Metrics and Estimation

Geschäftsdatenbereich (*)
Anzahl Business
Objects (*)

Produkte 5
Kunden 3
Bestellungen 4

geschäftliche
Grundfunktion (*)

Anzahl geschäftl.
Operationen (*)

erstellen 1
suchen/anzeigen 1
ändern 1
löschen 1

Geschäftsdatenbereich (*) geschäftliche Grundfunktion (*)

01 - Produkte suchen/anzeigen (R)
02 - Kunden suchen/anzeigen (R)
03 - Bestellungen erstellen (C)
03 - Bestellungen suchen/anzeigen (R)
03 - Bestellungen ändern (U)

Business Domain #Business
Objects

Basic
Functionality

#Business
Operations

Business Domain Basic
Functionality

reused

reused

new

reused

reused

reused

reused

reused

reused

new

new

new

external
SM

internal
SM

PRE System Meter
Total = 21

Anteil%
Total = 58.3%

1 10 1 2.78%
1 6 1 2.78%
1 4 5 13.89%
1 8 9 25.00%
1 4 5 13.89%

external
SM

internal
SM

PRE System Meter
Total = 5

Anteil%
Total = 13.9%

1 2 1 2.8%
2 5 2 5.6%
1 2 1 2.8%
1 1 1 2.8%

external
SM

internal
SM

PRE System Meter
Total = 10

Anteil%
Total = 27.8%

1 6 1 2.78%
1 4 1 2.78%
1 7 8 22.22%

35

4. Software Product Metrics – Measuring Specifications

An Overview specification Example (3/3) – PRE System Meters

2021-12-08 UNIBE – Software Metrics and Estimation

Geschäftsdatenbereich (*)
Anzahl Business
Objects (*)

Produkte 5
Kunden 3
Bestellungen 4

geschäftliche
Grundfunktion (*)

Anzahl geschäftl.
Operationen (*)

erstellen 1
suchen/anzeigen 1
ändern 1
löschen 1

Geschäftsdatenbereich (*) geschäftliche Grundfunktion (*)

01 - Produkte suchen/anzeigen (R)
02 - Kunden suchen/anzeigen (R)
03 - Bestellungen erstellen (C)
03 - Bestellungen suchen/anzeigen (R)
03 - Bestellungen ändern (U)

Business Domain #Business
Objects

Basic
Functionality

#Business
Operations

Business Domain Basic
Functionality

reused

reused

new

reused

reused

reused

reused

reused

reused

new

new

new

Total
36 PRE System Meter

1. Why measure «things» in Software Engineering?
2. Software Metrics Basics
3. Software Product Metrics – Measuring Code
4. Software Product Metrics – Measuring

Specifications
5. Software Process Metrics
6. Estimation (of Project Effort and Duration)

2021-12-08 UNIBE – Software Metrics and Estimation 36

Topics

:= (Project Records, , count hours/elapsed days)
• 1 Person Day (PD) = 8 Person Hours

1 Person Month = 20 Person Days
1 Person Year = 10 Person Months = 200 PD

• 1 Calendar Day (CD)
1 Calendar Month = 20 Calendar (Work) Days
1 Calendar Year = 10 Calendar Months = 200 CD

But of what work?

37

5. Software Process Metrics

Effort and Duration

2021-12-08 UNIBE – Software Metrics and Estimation

Software
Process

Duration

38

5. Software Process Metrics

Normed Software Work Breakdown Structure – Effort to
create …

2021-12-08 UNIBE – Software Metrics and Estimation

S1 Overview

S2 KPI

S3 Business Spec.

S4 IT Architecture

S5 Detailed Spec. (UI)

S6 Design and Code

S7 Test + Testdocument

S8 Operations + Operations Manual

M1 Contract

M2 Plan

M3 Report

M4 Acceptance/Closing

Sy
st

em
-D

ev
el

op
m

en
t

Ar
te

fa
ct

s
M

an
ag

em
en

t
Ar

te
fa

ct
s

Changes

Changes

Changes

Changes

Changes

Changes

Changes

Changes

:= (Project Records, , count production defects/size)

Naturally, bigger systems have a higher probability for more
defects, therefore:

• Defect density := #Defects/LOC ??

• Defect density := #Defects/FP (or SM) ??

• Defect Fixing Effort Ratio :=

(Production) Defect Fixing Effort (of a period, e.g. 1 year)

/

Development Effort

39

5. Software Process Metrics

Defects, Defect Density, Defect Fixing Effort Ratio

2021-12-08 UNIBE – Software Metrics and Estimation

:= (Story (and Tasks), , team-expected difficulty/complexity)

• 1 Story Point equals n (team-defined) estimated Person Hours

• Assigned at task level, then summed up.

• This assigned difficulty/complexity of a story remains

– If the effective person hours are more

– If the effective person hours are less

– Or the team hit it exactly

• For a set of stories for a team in a sprint, it is a goal that the
sum of estimated person hours equals the effective person
hours! Over und under estimates shall balance out.

• Often rated/estimated at Fibonacci sequence.

40

5. Software Process Metrics

Story Points

2021-12-08 UNIBE – Software Metrics and Estimation

:= (Story/KPI forecasts, , sum of monetary benefits)

• The net benefit a business receives per period from
operating a software system

• Apart from monetary benefits, also
– Regulatory obligations

– Reputation or customer satisfaction benefits

– Etc.

• May increase/decrease over time Time Criticality

• Story may also reduce risks and/or
open opportunities (‘enabler’)

41

5. Software Process Metrics

Business Value (and risk reduction/opportunities, time criticality)

2021-12-08 UNIBE – Software Metrics and Estimation

42

5. Software Process Metrics

%completed (or Burndown chart)

2021-12-08 UNIBE – Software Metrics and Estimation

0% 0%

10% 10%

16%

33%

39% 39%

55%

61%

%completed

Same displayed as Burndown Chart

43

5. Software Process Metrics

Development Productivity

2021-12-08 UNIBE – Software Metrics and Estimation

NOT: «Code size» per Effort unit

BUT: «Functionality» per Effort unit

Functionality = size of bug-free implemented
specifications

Observation: Increasing code size means decreasing
development productivity

Code size

De
ve

lo
pm

en
t

pr
od

uc
tiv

ity

1. Why measure «things» in Software Engineering?
2. Software Metrics Basics
3. Software Product Metrics – Measuring Code
4. Software Product Metrics – Measuring

Specifications
5. Software Process Metrics
6. Estimation (of Project Effort and Duration)

2021-12-08 UNIBE – Software Metrics and Estimation 44

Topics

45

6. Estimation

Why is the Estimation of Effort and Duration important?

2021-12-08 UNIBE – Software Metrics and Estimation

• Drives Project Expectations
– of the customers

– of the team and management

• Defines Success

• Needed for Planning (Team Sizing)

• Needed for Prioritization

• Shapes the Reputation of IT Professionals

Annual Budget

Cost Business Value

% = 1 year ROIKCHF

Change 1 Change 2 Change 3 Change 4 Change 5 Change 6

46

6. Estimation

Estimation Challenges

2021-12-08 UNIBE – Software Metrics and Estimation

„Forecasts are difficult, especially when
they concern the future“

attributed to Niels Bohr

• Not relevant – the customer pays anyway.
• Managers expect low estimates.
• No time to analyse/model.
• No past records.
• No estimation expertise.

47

6. Estimation

The pure expert ‘divide and impera’ approach

2021-12-08 UNIBE – Software Metrics and Estimation

Is the task to estimate „complex“?
YES:

1. Divide the task into sub-tasks
2. Apply this approach for the sub-tasks
3. Estimate = Sum of the estimates of the sub-tasks

NEIN: Directly rate/estimate the task.

Aka Bottom-Up Approach

Advantges:
- efficient

Drawbacks:
- random quality
- depending on the expert
- exposed to the risk of fulfilling

low estimates expectations

48

6. Estimation

The Delphi approach

2021-12-08 UNIBE – Software Metrics and Estimation

Many experts:
(A) Discuss/understand the task to estimate
(B) Do simultaneous estimation
(C) On divergence:

- challene/defend the estimates
- then go back to (B) or (A)

(D) Else: Consensus on 1 estimate (or ‘cannot estimate’)

Aka Wideband Delphi

Original Delphi: without step (A)

Advantges:
- promotes discussion

and understanding
- only agreed values are

used

Drawbacks:
- needs n equal experts
- difficult to reproduce
- democracy on ‘scientific’

issues can fail badly
- ‘the team agreed’

49

6. Estimation

The Delphi approach – WSJF Prioritization as an example

2021-12-08 UNIBE – Software Metrics and Estimation

4 Parameters of a Feature are estimated using
‘Planning Poker’ on Fibonacci scale:

1. BV = Business Value
2. RO = Risk Reduction and/or Opportunities
3. TC = Time Criticality
4. Complexity (Story Points)

WSJF := Weighted Shortest Job First

:= (BV + RO + TC) / Complexity

The resulting WSJF values are used to prioritize
business features.

Leonardo Fibonacci (1170 – ca. 1240) in Pisa

50

6. Estimation

The Delphi approach – WSJF as an example

2021-12-08 UNIBE – Software Metrics and Estimation

Sample Feature:
“An association has online registration forms for
new members and event participations that send
mail to the secretary (a board member). The
secretary then manually enters the data into lists
(Excel).
A script shall be programmed that catches those
mails (by subject), reads the data and adds it to the
Excels.”

WSJF := Weighted Shortest Job First

:= (BV + RO + TC) / Complexity

LINK to Voting Poker

51

6. Estimation

The parametric approach

2021-12-08 UNIBE – Software Metrics and Estimation

A Preparation:
Get the relevant facts

E.g. buy a map of Switzerland
and draw the planned bicycle tour

B measure the predictor metric p

E.g. the tour distance: 150 km

C The estimated metric is then
caclulated using an estimation
function S(p) with uncertainty dS
E.g. know from experience (Empirical Database)
the velocity (and uncertainty)
and apply the estimation function

p

S(p)dS

s

150km

6h

S(p) = 1/25 x p
(linear)

dS = +/-20% (+/-2σ)

1/(25km/h)

52

6. Estimation

Interpreting the uncertainty dS (parametric approach)

2021-12-08 UNIBE – Software Metrics and Estimation

Example (without units):
S(p) = 296
dSrelative = +/-12% dSabsolute = +/-34

- σ

- 2σ

+ σ

+ 2σ

Probability density

S(p), the median
% = risk of underestimation when using value for planning

53

6. Estimation

COCOMO (a parametric approach)

2021-12-08 UNIBE – Software Metrics and Estimation

Fact: The Lines of Code to be programmed are
estimated (!!)

predictor metric: KLOC

estimated metric: Effort (in Person Days) ED/C to
create Design and Code

Constructive Cost Model
Estimation Function (COBOL):

E = 48.0 x KLOC1.05

dS = +/-??%

Example:
KLOC = 20
ED/C = 48.0 x 23.23 = 1’115 PD

Developed by: Barry Boehm (Boeing), 1979, https://en.wikipedia.org/wiki/COCOMO

notes:
- the complete model is more complex
- if used on measured KLOC for estimating technology porting effort,
then divide ED/C by 4.

- there exist conversion factors for KLOC of other programming languages
- not simply linear !!

54

6. Estimation

Brooke’s Law – Mythical Man Month

2021-12-08 UNIBE – Software Metrics and Estimation

“Adding manpower to a late software project
makes it later.“

attributed to Fred Brooks, 1975 (book The Mythical Man-Month)

55

6. Estimation

Function Point Method (a parametric approach)

2021-12-08 UNIBE – Software Metrics and Estimation

Estimation Function:
E = 0.655 x FP + 0.02799 x FP2

dS = +/-20.3%

Example:
FP = 200
E = 132 Person Days +/- 27

Fact: A specified system according to FP modelling

predictor metric: FP (Function Points)

estimated metric: Effort E (in Person Days) to create
the normed deliverables

FP (Function Points)

E
(P

er
so

n
Da

ys
)

56

6. Estimation

System Meter Method (a parametric approach)

2021-12-08 UNIBE – Software Metrics and Estimation

Estimation Function:
E = 1.67 x PRE-SM + 0.0008 x PRE-SM2

dS = +/-34.0%
E = 0.3818 x DOME-SM + 0.00009 x DOME-SM2

dS = +/-10.2%

Example:
PRE-SM = 36
E = 61 Person Days +/- 21

Fact: A specified system according to Overview modelling
or to Business Specification

predictor metric: PRE-SM (PRE System Meter)
or DOME System Meter

estimated metric: Effort E (in Person Days) to create the
normed deliverables

57

5. Software Process Metrics

Effort per Deliverable (a parametric approach, linear % of total effort)

2021-12-08 UNIBE – Software Metrics and Estimation

S1 Overview

S2 KPI

S3 Business Spec.

S4 IT Architecture

S5 Detailed Spec. (UI)

S6 Design and Code

S7 Test + Testdocument

S8 Operations + Operations Manual

M1 Contract

M2 Plan

M3 Report

M4 Acceptance/Closing

Sy
st

em
-D

ev
el

op
m

en
t

Ar
te

fa
ct

s
M

an
ag

em
en

t
Ar

te
fa

ct
s

Changes

Changes

Changes

Changes

Changes

Changes

Changes

Changes

3.65%

1.70%

8.25%

5.45%

17.15%

37.40%

12.00%

6.85%

4.75%

1.05%

1.75%

+12.95%*

+1.90%*

+6.40%*

+0.85%*

* tailored effort := +span activity %
come on top of tailored core effort

tailored core effort :=
calculate with % just the deliverables needed

58

6. Estimation

Estimating Duration (a parametric approach)

2021-12-08 UNIBE – Software Metrics and Estimation

Estimation Function:
D = -185 + √ (34’339 + Et x 231)
dS = +/-40%

Example:
Et = 600 Person Days
D = 231 Calendar Days +/- 92

Fact: The tailored total effort Et is estimated

predictor metric: Et (in Person Days)

estimated metric: Duration D (in Calendar Days)

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000

x = Aufwand (PT)

Et (Person Days)

D
 (C

al
en

da
r D

ay
s)

consequence:
For a given project effort, there is an
ideal team size.
Ca. 600 / 200 = 3 Persons in the
example.

59

6. Estimation

The Effect of Project Acceleration (a parametric approach)

2021-12-08 UNIBE – Software Metrics and Estimation

Estimation function:
m = 0.21 x a + 0.792 x a2

dS = +/-52%

Example:
a = 1.5 (3 years / 2 years)
m ≈ 2.1 (5’500 PD / 2’500 PD)

Fact: A project acceleration is given
acceleration a := estimated duration / required duration

predictor metric: acceleration a

estimated metric: effort mutliplicator m
m := effort of accelerated project / estimated effort

Rule of thumb 1:
The estimated duration shall be reduced by -20% from the parametrically
estimated duration because it has a large uncertainty (of +/-40%).

Rule of thumb 2:
Accelerations above 1.6 must be refused as impossible (so called ‘death
march’ projects)!

1. Why measure «things» in Software Engineering?
a. Assess (forecast) quality
b. Estimate project effort and duration

2. Software Metrics Basics
a. A classification scheme
b. Basics about measurements and scales

3. Software Product Metrics – Measuring Code
a. Lines of Code (LOC)
b. Halstead’s Volume Metric
c. McCabe’s Cyclomatic Complexity
d. Class Coupling
e. LCOM – Lack of Cohesion of Methods

4. Software Product Metrics – Measuring Specifications
a. Function Points (FP)
b. System Meter

5. Software Process Metrics
a. Effort (Cost) and Duration of «What?»
b. Number of Defects – Defect Density – Effort to remove defects
c. Business Value
d. Story Points
e. Earned Value – Completion% - Burndown
f. Software Development Productivity

6. Estimation (of Project Effort and Duration)
a. Why is it important?
b. Challenges
c. The pure expert ‘divide et impera’ approach
d. The Delphi approach – Example WSJF/Voting Poker
e. The parametric approach

- Example: COCOMO
- Example: Function Point Method
- Example: System Meter Method
- Example: Phase% calculations
- Example: The Mythical Man Month - project acceleration

60

What You should know

2021-12-08 UNIBE – Software Metrics and Estimation

61

Recommended Reading (optional) …

1986. Controlling Software Projects: Management,
Measurement, and Estimates. Tom DeMarco. Prentice Hall, ISBN
0-13-171711-1

2004. Aufwandschätzung von IT-Projekten. Manfred Bundschuh,
Axel Fabry. Verlag MITP-Verlag ISBN 382660864X

1977. Elements of Software Science. Halstead, Maurice H.
Amsterdam: Elsevier North-Holland, Inc. ISBN 0-444-00205-7.

2021-12-08 UNIBE – Software Metrics and Estimation

