
Introduction to Software Engineering!

5. Software Validation!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.2	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.3	

Source!

>  Software Engineering, I. Sommerville, 7th Edn., 2004.!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.4	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.5	

Software Reliability, Failures and Faults!

The reliability of a software system is a measure of how
well it provides the services expected by its users,
expressed in terms of software failures.!

>  A software failure is an execution event where the
software behaves in an unexpected or undesirable way.!

>  A software fault is an erroneous portion of a software
system which may cause failures to occur if it is run in a
particular state, or with particular inputs.!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.6	

Kinds of failures!

Failure class! Description!
Transient! Occurs only with certain inputs!

Permanent! Occurs with all inputs!

Recoverable! System can recover without operator
intervention!

Unrecoverable! Operator intervention is needed to
recover from failure!

Non-corrupting! Failure does not corrupt data!
Corrupting! Failure corrupts system data!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.7	

Programming for Reliability!

Fault avoidance:!
>  development techniques to reduce the number of faults

in a system!

Fault tolerance:!
>  developing programs that will operate despite the

presence of faults!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.8	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.9	

Fault Avoidance!

Fault avoidance depends on:!
1.  A precise system specification (preferably formal)!
2.  Software design based on information hiding and encapsulation!
3.  Extensive validation reviews during the development process!
4.  An organizational quality philosophy to drive the software

process!
5.  Planned system testing to expose faults and assess reliability!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.10	

Common Sources of Software Faults!

Several features of programming languages and systems are common
sources of faults in software systems:!

>  Goto statements and other unstructured programming constructs make
programs hard to understand, reason about and modify.!

—  Use structured programming constructs!

>  Floating point numbers are inherently imprecise and may lead to invalid
comparisons.!

—  Fixed point numbers are safer for exact comparisons !

>  Pointers are dangerous because of aliasing, and the risk of corrupting
memory!

—  Pointer usage should be confined to abstract data type implementations!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.11	

Common Sources of Software Faults ...!

>  Parallelism is dangerous because timing differences can affect overall
program behaviour in hard-to-predict ways.!

—  Minimize inter-process dependencies!

>  Recursion can lead to convoluted logic, and may exhaust (stack) memory.!
—  Use recursion in a disciplined way, within a controlled scope!

>  Interrupts force transfer of control independent of the current context, and
may cause a critical operation to be terminated.!

—  Minimize the use of interrupts; prefer disciplined exceptions!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.12	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.13	

Fault Tolerance!

A fault-tolerant system must carry out four activities:!

1.  Failure detection: detect that the system has reached a
particular state or will result in a system failure!

2.  Damage assessment: detect which parts of the system state
have been affected by the failure!

3.  Fault recovery: restore the state to a known, “safe” state (either
by correcting the damaged state, or backing up to a previous,
safe state)!

4.  Fault repair: modify the system so the fault does not recur (!)!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.14	

Approaches to Fault Tolerance!

N-version Programming:!
Multiple versions of the software system are implemented

independently by different teams. !

The final system:!
>  runs all the versions in parallel,!
>  compares their results using a voting system, and!
>  rejects inconsistent outputs.  

(At least three versions should be available!)!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.15	

Approaches to Fault Tolerance ...!

Recovery Blocks:!

A finer-grained approach in which a program unit contains a
test to check for failure, and alternative code to back up
and try in case of failure.!

>  alternatives are executed in sequence, not in parallel!
>  the failure test is independent (not by voting)!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.16	

Defensive Programming!

Failure detection:!
>  Use the type system to ensure that variables do not get assigned invalid

values.!
>  Use assertions to detect failures and raise exceptions. Explicitly state and

check all invariants for abstract data types, and pre- and post-conditions of
procedures as assertions. Use exception handlers to recover from failures.!

>  Use damage assessment procedures, where appropriate, to assess what
parts of the state have been affected, before attempting to fix the damage.!

Fault recovery:!
>  Backward recovery: backup to a previous, consistent state!
>  Forward recovery: make use of redundant information to reconstruct a

consistent state from corrupted data!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.17	

Examples!

>  Concurrency control!
—  Pessimistic (locking)!

–  Java synchronization; rcs!
—  Optimistic (check for conflict before commit)!

–  Cvs, Subversion!
—  Distributed!

–  Git, Monticello!
>  Fault recovery!

—  Change logs (rollback and replay)!
–  Smalltalk image and changes!

—  Transactional Memory (software and hardware)!
–  ACID (Atomicy, Consistency, Isolation, Durability)!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.18	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.19	

Verification and Validation!

Verification:!
>  Are we building the product right? !

—  i.e., does it conform to specs?!

Validation:!
>  Are we building the right product? !

—  i.e., does it meet expectations?!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.20	

Verification and Validation ...!

Static techniques include program inspection, analysis and
formal verification.!
Dynamic techniques include statistical testing and defect
testing ...!

© Ian Sommerville 2000!

Dynamic
Validation!

Static
verification!

Requirements
specification!

High-level
design!

Formal
specification!

Detailed
design! Program!

Prototype!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.21	

Static Verification!

Program Inspections:!
>  Small team systematically checks program code!
>  Inspection checklist often drives this activity!

—  e.g., “Are all invariants, pre- and post-conditions checked?” ...!

Static Program Analysers:!
>  Complements compiler to check for common errors!

—  e.g., variable use before initialization!

Mathematically-based Verification:!
>  Use mathematical reasoning to demonstrate that program meets

specification!
—  e.g., that invariants are not violated, that loops terminate, etc.!
—  e.g., model-checking tools!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.22	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.23	

The Testing Process!

1.  Unit testing: !
—  Individual (stand-alone) components are tested to ensure that they

operate correctly.!
2.  Module testing:!

—  A collection of related components (a module) is tested as a group.!
3.  Sub-system testing:!

—  The phase tests a set of modules integrated as a sub-system. Since
the most common problems in large systems arise from sub-system
interface mismatches, this phase focuses on testing these interfaces.!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.24	

The Testing Process ...!

4.  System testing:!
—  This phase concentrates on (i) detecting errors resulting from

unexpected interactions between sub-systems, and (ii) validating that
the complete systems fulfils functional and non-functional
requirements.!

5.  Acceptance testing (alpha/beta testing): ! !!
—  The system is tested with real rather than simulated data.!

Testing is iterative! Regression testing is performed when defects are
repaired.!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.25	

Regression testing!

Regression testing means testing that everything that used to work still
works after changes are made to the system!!

>  tests must be deterministic and repeatable!

>  should test “all” functionality!
—  every interface!
—  all boundary situations!
—  every feature!
—  every line of code!
—  everything that can conceivably go wrong!!

It costs extra work
to define tests up
front, but they pay
off in debugging &

maintenance!!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.26	

Test Planning!

The preparation of the test plan should begin when the system
requirements are formulated, and the plan should be developed in
detail as the software is designed.!

The plan should be revised regularly, and tests should be repeated
and extended where the software process iterates.!

© Ian Sommerville 2000!

Requirements
specification!

System
specification!

System
design!

Detailed
design!

Module and
unit code
and test!

Sub-system
integration test!

System
integration test!

Acceptance
test!Service!

Acceptance
test plan!

System
integration

test plan!

Sub-system
integration

test plan!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.27	

Top-down Testing!

>  Start with sub-systems, where modules are represented by “stubs”!
>  Similarly test modules, representing functions as stubs!
>  Coding and testing are carried out as a single activity!
>  Design errors can be detected early on, avoiding expensive redesign!
>  Always have a running (if limited) system!!

BUT: may be impractical for stubs to simulate complex components!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.28	

Bottom-up Testing!

>  Start by testing units and modules!
>  Test drivers must be written to exercise lower-level components!
>  Works well for reusable components to be shared with other projects!

BUT: pure bottom-up testing will not uncover architectural faults till late
in the software process!

Typically a combination of
top-down and bottom-up

testing is best.!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.29	

Testing vs Correctness!

>  “Program testing can be a very effective way to show
the presence of bugs, but is hopelessly inadequate for
showing their absence.”

—  Edsger Dijkstra, The Humble Programmer, ACM Turing lecture, 1972

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.30	

Defect Testing!

Tests are designed to reveal the presence of defects in the system.!

Testing should, in principle, be exhaustive, but in practice can only be
representative.!

Test data are inputs devised to test the system.!

Test cases are input/output specifications for a particular function being
tested.!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.31	

Defect Testing ...!

Petschenik (1985) proposes:!

1.  “Testing a systemʼs capabilities is more important than testing its
components.”!

—  Choose test cases that will identify situations that may prevent users
from doing their job.!

2.  “Testing old capabilities is more important than testing new
capabilities.”!

—  Always perform regression tests when the system is modified.!

3.  “Testing typical situations is more important than testing boundary
value cases.”!

—  If resources are limited, focus on typical usage patterns.!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.32	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.33	

Functional (black box) testing!

© Ian Sommerville 2000!

Functional testing treats
a component as a “black
box” whose behaviour
can be determined only
by studying its inputs and
outputs.!

Inputs causing
anomalous
behaviour!

Outputs which
reveal the
presence of
defects!

Input test data! I	

Output test results! Oe	

System!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.34	

Coverage Criteria!

Test cases are derived from the external specification of the component
and should cover:!

>  all exceptions!
>  all data ranges (incl. invalid) generating different classes of output !
>  all boundary values!

Test cases can be derived from a componentʼs interface, by assuming
that the component will behave similarly for all members of an
equivalence partition ...!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.35	

Equivalence partitioning!

public static void search(int key, int [] elemArray, Result r)!
!{ … }!

Check input partitions:!
>  Do the inputs fulfil the pre-conditions?!

—  is the array sorted, non-empty ...!
>  Is the key in the array?!

—  leads to (at least) 2x2 equivalence classes!

Check boundary conditions:!
>  Is the array of length 1?!
>  Is the key at the start or end of the array?!

—  leads to further subdivisions (not all combinations make sense)!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.36	

Test Cases and Test Data!

Generate test data that cover all meaningful equivalence partitions.!

Test Cases! Test Data!
Array length 0! key = 17, elements = { }!
Array not sorted! key = 17, elements = { 33, 20, 17, 18 }!
Array size 1, key in array! key = 17, elements = { 17 }!
Array size 1, key not in array! key = 0, elements = { 17 }!
Array size > 1, key is first element! key = 17, elements = { 17, 18, 20, 33 }!
Array size > 1, key is last element! key = 33, elements = { 17, 18, 20, 33 }!
Array size > 1, key is in middle! key = 20, elements = { 17, 18, 20, 33 }!
Array size > 1, key not in array! key = 50, elements = { 17, 18, 20, 33 }!
...!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.37	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.38	

Structural (white box) Testing!

Structural testing treats a component as a “white box” or “glass box”
whose structure can be examined to generate test cases.!
Derive test cases to maximize coverage of that structure, yet
minimize the number of test cases.!

© Ian Sommerville 2000!

Test data!

Test outputs!Component
code!

Tests! Derives!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.39	

Coverage criteria!

>  every statement at least once!
>  all portions of control flow at least once!
>  all possible values of compound conditions at least once!
>  all portions of data flow at least once!
>  for all loops L, with n allowable passes:!

I.  skip the loop;!
II.  1 pass through the loop!
III.  2 passes!
IV. m passes where 2 < m < n!
V.  n-1, n, n+1 passes!

Path testing is a white-box strategy which exercises every independent
execution path through a component.!

class BinSearch {!
// This is an encapsulation of a binary search function that takes an array of!
// ordered objects and a key and returns an object with 2 attributes namely!
// index - the value of the array index!
// found - a boolean indicating whether or not the key is in the array !
// An object is returned because it is not possible in Java to pass basic types by!
// reference to a function and so return two values !
// the key is -1 if the element is not found!

!public static void search (int key, int [] elemArray, Result r)!
!{!
! !int bottom = 0;!
! !int top = elemArray.length - 1;!
! !int mid;!
! !r.found = false; r.index = -1; ! ! ! !(1)!
! !while (bottom <= top)! ! ! ! !(2)!
! !{!
! ! !mid = (top + bottom) / 2;!
! ! !if (elemArray [mid] == key) ! ! ! !(3)!
! ! !{!
! ! ! !r.index = mid;! ! ! ! !(8)!
! ! ! !r.found = true;!
! ! ! !return ; ! ! ! ! !-> (9)!
! ! !} // if part!
! ! !else!
! ! !{!
! ! ! !if (elemArray [mid] < key) ! ! !(4)!
! ! ! ! !bottom = mid + 1; ! ! ! !(5)!
! ! ! !else!
! ! ! ! !top = mid -i; ! ! ! !(6)!
! ! !} ! ! ! ! ! ! !(7)!
! !} //while loop!
!} //search ! ! ! ! ! ! !(9)!

} //BinSearch!

© Ian Sommerville 2000!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.41	

Program flow graphs!

>  Each branch is shown as a separate path and loops are
shown by arrows looping back to the loop condition
node!

>  The number of tests to test all control  
statements equals the cyclomatic complexity!

Cyclomatic complexity = Number of edges - Number of nodes +2!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.42	

Path Testing!

Test cases should be
chosen to cover all
independent paths through
a routine:!

— 1, 2, 9!
— 1, 2, 3, 8, 9!
— 1, 2, 3, 4, 5, 7, 2, 9!
— 1, 2, 3, 4, 6, 7, 2, 9!

(Each path traverses at
least one new edge)!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.43	

Roadmap!

>  Reliability, Failures and Faults!
>  Fault Avoidance !
>  Fault Tolerance!
>  Verification and Validation!
>  The Testing process!

—  Black box testing!
—  White box testing!
—  Statistical testing!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.44	

Statistical Testing!

The objective of statistical testing is to determine the reliability of the
software, rather than to discover faults.!

Reliability may be expressed as:!
>  probability of failure on demand!

—  i.e., for safety-critical systems!
>  rate of failure occurrence!

—  i.e., #failures/time unit!
>  mean time to failure!

—  i.e., for a stable system!
>  availability !

—  i.e., fraction of time, for e.g. telecom systems!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.45	

Statistical Testing ...!

Tests are designed to reflect the frequency of actual user inputs and,
after running the tests, an estimate of the operational reliability of
the system can be made:!

1.  Determine usage patterns of the system (classes of input and
probabilities)!

2.  Select or generate test data corresponding to these patterns!
3.  Apply the test cases, recording execution time to failure!
4.  Based on a statistically significant number of test runs, compute

reliability!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.46	

When to Stop?!

When are we done testing? When do we have enough tests?!

Cynical Answers (sad but true)!
>  Youʼre never done: each run of the system is a new test!

— Each bug-fix should be accompanied by a new regression test!
>  Youʼre done when you are out of time/money!

—  Include testing in the project plan and do not give in to pressure!
—  ... in the long run, tests save time!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.47	

When to Stop? ...!

Statistical Testing!
>  Test until youʼve reduced the failure rate to fall below the

risk threshold!
—  Testing is like an insurance company calculating risks!

Errors per !
test hour!

Execution Time!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.48	

What you should know!!

>  What is the difference between a failure and a fault?!
>  What kinds of failure classes are important?!
>  How can a software system be made fault-tolerant?!
>  How do assertions help to make software more reliable?!
>  What are the goals of software validation and

verification?!
>  What is the difference between test cases and test

data?!
>  How can you develop test cases for your programs?!
>  What is the goal of path testing?!

© Oscar Nierstrasz!

ESE — Software Validation!

ESE 5.49	

Can you answer the following questions?!

>  When would you combine top-down testing with bottom-
up testing?!

>  When would you combine black-box testing with white-
box testing?!

>  Is it acceptable to deliver a system that is not 100%
reliable?!

License!

© Oscar Nierstrasz!

ESE — Introduction!

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

http://creativecommons.org/licenses/by-sa/3.0/

