
Introduction to Software Engineering!

7. Modeling Behaviour!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.2	



Roadmap!

>  Use Case Diagrams!
>  Sequence Diagrams!
>  Collaboration (Communication) Diagrams!
>  Statechart Diagrams!

—  Nested statecharts!
—  Concurrent substates!

>  Using UML!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.3	



Source!

>  The Unified Modeling Language Reference 
Manual, James Rumbaugh, Ivar Jacobson and 
Grady Booch, Addison Wesley, 1999. !



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.4	



Roadmap!

>  Use Case Diagrams!
>  Sequence Diagrams!
>  Collaboration (Communication) Diagrams!
>  Statechart Diagrams!

—  Nested statecharts!
—  Concurrent substates!

>  Using UML!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.5	



Use Case Diagrams!

A use case is a generic 
description of an entire 
transaction involving several 
actors.!

A use case diagram presents 
a set of use cases (ellipses) 
and the external actors that 
interact with the system.!
Dependencies and 
associations between use 
cases may be indicated.!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.6	



Using Use Case Diagrams!

>  “A use case is a snapshot of one aspect of your system. 
The sum of all use cases is the external picture of your 
system …”!

—  UML Distilled!

>  “As use cases appear, assess their impact on the 
domain model.”!
—  Use cases can drive domain modeling by highlighting the 

important concepts.!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.7	



Roadmap!

>  Use Case Diagrams!
>  Sequence Diagrams!
>  Collaboration (Communication) Diagrams!
>  Statechart Diagrams!

—  Nested statecharts!
—  Concurrent substates!

>  Using UML!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.8	



Scenarios!

A scenario is an instance of a use case showing a typical 
example of its execution.!

Scenarios can be presented in UML using either sequence 
diagrams or collaboration diagrams.!

Note that a scenario only describes an example of a use 
case, so conditionality cannot be expressed!!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.9	



Sequence Diagrams!

A sequence diagram 
depicts a scenario by 
showing the 
interactions among a 
set of objects in 
temporal order.!

Objects (not classes!) 
are shown as vertical 
bars. Events or 
message dispatches 
are shown as horizontal 
(or slanted) arrows 
from the sender to the 
receiver.!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.10	



Activations!

Avoid returns in 
sequence 
diagrams 
unless they add 
clarity.!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.11	



Asynchrony and Constraints!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.12	



Roadmap!

>  Use Case Diagrams!
>  Sequence Diagrams!
>  Collaboration (Communication) Diagrams!
>  Statechart Diagrams!

—  Nested statecharts!
—  Concurrent substates!

>  Using UML!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.13	



Collaboration Diagrams!

Collaboration diagrams (called Communication diagrams in UML 2.0) 
depict scenarios as flows of messages between objects:!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.14	



Message Labels!

Messages from one object to another are labelled with text strings 
showing the direction of message flow and information indicating 
the message sequence.!

1.  Prior messages from other threads (e.g. “[A1.3, B6.7.1]”)!
–  only needed with concurrent flow of control!

2.  Dot-separated list of sequencing elements!
–  sequencing integer (e.g., “3.1.2” is invoked by “3.1” and follows “3.1.1”)!
–  letter indicating concurrent threads (e.g., “1.2a” and “1.2b”)!
–  iteration indicator (e.g., “1.1*[i=1..n]”)!
–  conditional indicator (e.g., “2.3 [#items = 0]”)!

3.  Return value binding (e.g., “status :=”)!
4.  Message name!

–  event or operation name !
5.  Argument list!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.15	



Nested Message Flows!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.16	



Roadmap!

>  Use Case Diagrams!
>  Sequence Diagrams!
>  Collaboration (Communication) Diagrams!
>  Statechart Diagrams!

—  Nested statecharts!
—  Concurrent substates!

>  Using UML!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.17	



Statechart Diagrams!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.18	



Statechart Diagram Notation!

A Statechart Diagram describes the temporal evolution of an object of a 
given class in response to interactions with other objects inside or 
outside the system.!

An event is a one-way (asynchronous) communication from one object 
to another:!
— atomic (non-interruptible)!
—  includes events from hardware and real-world objects e.g., message 

receipt, input event, elapsed time, ...!
— notation: eventName(parameter: type, ...)!
— may cause object to make a transition between states!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.19	



Statechart Diagram Notation ...!

A state is a period of time during which an object is waiting 
for an event to occur:!
—  depicted as rounded box with (up to) three sections:!

–  name — optional!
–  state variables — name: type = value (valid only for that state)!
–  triggered operations — internal transitions and ongoing operations!

—  may be nested!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.20	



State Box with Regions!

The entry event occurs whenever a transition is made into this state, and the 
exit operation is triggered when a transition is made out of this state.!
The help and character events cause internal transitions with no change of 
state, so the entry and exit operations are not performed.!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.21	



Transitions!

A transition is an response to an external event received by 
an object in a given state!
— May invoke an operation, and cause the object to change state!
— May send an event to an external object!
— Transition syntax (each part is optional): 

!event(arguments) [condition] 
"/ ^target.sendEvent operation(arguments)!

— External transitions label arcs between states!
—  Internal transitions are part of the triggered operations of a state!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.22	



Operations and Activities!

An operation is an atomic action invoked by a transition!
—  Entry and exit operations can be associated with states!

An activity is an ongoing operation that takes place while 
object is in a given state!
—  Modelled as “internal transitions” labelled with the pseudo-event 

do!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.23	



Roadmap!

>  Use Case Diagrams!
>  Sequence Diagrams!
>  Collaboration (Communication) Diagrams!
>  Statechart Diagrams!

—  Nested statecharts!
—  Concurrent substates!

>  Using UML!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.24	



Nested Statecharts!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.25	



Composite States!

Composite states may 
depicted either as high-level 
or low-level views.!

“Stubbed transitions” 
indicate the presence of 
internal states:!

Initial and terminal substates 
are shown as black spots 
and “bulls-eyes”!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.26	



Sending Events between Objects!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.27	



Roadmap!

>  Use Case Diagrams!
>  Sequence Diagrams!
>  Collaboration (Communication) Diagrams!
>  Statechart Diagrams!

—  Nested statecharts!
—  Concurrent substates!

>  Using UML!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.28	



Concurrent Substates!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.29	



Branching and Merging!

Entering concurrent states:"
Entering a state with concurrent substates means that each of the 
substates is entered concurrently (one logical thread per substate).!

Leaving concurrent states:!
A labelled transition out of any of the substates terminates all of the 
substates.!
An unlabelled transition out of the overall state waits for all substates to 
terminate.!



Is it correct?!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.31	



Roadmap!

>  Use Case Diagrams!
>  Sequence Diagrams!
>  Collaboration (Communication) Diagrams!
>  Statechart Diagrams!

—  Nested statecharts!
—  Concurrent substates!

>  Using UML!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.32	



Perspectives!

Three perspectives in drawing UML diagrams:!

1.  Conceptual!
—  Represent domain concepts!

–  Ignore software issues!
2.  Specification!

—  Focus on visible interfaces and behaviour!
–  Ignore internal implementation!

3.  Implementation!
—  Document implementation choices!

–  Most common, but least useful perspective(!)!
—  UML Distilled!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.33	



Using the Notations!

The diagrams introduced here complement class and object diagrams.!

During Analysis:!
— Use case, sequence and collaboration diagrams document use cases 

and their scenarios during requirements specification!

During Design:!
— Sequence and collaboration diagrams can be used to document 

implementation scenarios or refine use case scenarios!
— State diagrams document internal behaviour of classes and must be 

validated against the specified use cases!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.34	



What you should know!!

>  What is the purpose of a use case diagram?!
>  Why do scenarios depict objects but not classes?!
>  How can timing constraints be expressed in scenarios?!
>  How do you specify and interpret message labels in a 

scenario?!
>  How do you use nested state diagrams to model object 

behaviour?!
>  What is the difference between “external” and “internal” 

transitions?!
>  How can you model interaction between state diagrams 

for several classes?!



© Oscar Nierstrasz!

ESE — Modeling Behaviour!

ESE 7.35	



Can you answer the following questions?!

>  Can a sequence diagram always be translated to an 
collaboration diagram?!

>  Or vice versa?!
>  Why are arrows depicted with the message labels rather 

than with links?!
>  When should you use concurrent substates?!



License!

© Oscar Nierstrasz!

ESE — Introduction!

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or 
licensor (but not in any way that suggests that they endorse you or your use of the 
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the 
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The 
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

http://creativecommons.org/licenses/by-sa/3.0/ 


