
Introduction to Software Engineering!

12. Software Metrics!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.2	

Roadmap!

>  What are metrics? Why do we need them?!
>  Metrics for cost estimation!
>  Metrics for software quality evaluation!
>  Object-Oriented metrics in practice!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.3	

Sources!

>  Software Engineering, I. Sommerville, Addison-Wesley,
Fifth Edn., 1996.!

>  Software Metrics: A Rigorous & Practical Approach,
Norman E. Fenton, Shari l. Pfleeger, Thompson
Computer Press, 1996.!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.4	

Roadmap!

>  What are metrics? Why do we need them?!
>  Metrics for cost estimation!
>  Metrics for software quality evaluation!
>  Object-Oriented metrics in practice!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.5	

Why Metrics?!

!When you can measure what you are speaking about and
express it in numbers, you know something about it; but when you
cannot measure, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind: it may be the
beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science.!

!— Lord Kelvin!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.6	

Why Measure Software?!

Estimate cost and effort! measure correlation between
specifications and final product!

Improve productivity! measure value and cost of software!

Improve software quality! measure usability, efficiency,
maintainability ...!

Improve reliability! measure mean time to failure, etc.!

Evaluate methods and tools! measure productivity, quality,
reliability ...!

“You cannot control what you cannot measure” — De Marco, 1982!
“What is not measurable, make measurable” — Galileo!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.7	

What are Software Metrics?!

Software metrics!
>  Any type of measurement which relates to a software

system, process or related documentation!
— Lines of code in a program!
— the Fog index (calculates readability of a piece of documentation)!

0.4 × (# words / # sentences) + (% words ≥ 3 syllables)!
— number of person-days required to implement a use-case!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.8	

(Measures vs Metrics)!

Mathematically, a metric is a function m measuring the
distance between two objects such that:!

1.  ∀ x, m(x,x) = 0!
2.  ∀ x, y, m(x,y) = m(y,x)!
3.  ∀ x, y, z, m(x,z) ≤ m(x,y) + m(y,z)!

So, technically “software metrics” is an
abuse of terminology, and we should

instead talk about “software measures”.!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.9	

Direct and Indirect Measures!

Direct Measures!
>  Measured directly in terms of the observed attribute (usually by

counting)!
— Length of source-code, Duration of process, Number of defects

discovered!

Indirect Measures!
>  Calculated from other direct and indirect measures!

— Module Defect Density = Number of defects discovered / Length of
source!

— Temperature (usually derived from the length of a liquid column)!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.10	

Measurement Mapping!

Measure & Measurement!
A measure is a function mapping an
attribute of a real world entity (= the
domain) onto a symbol in a set with
known mathematical relations (= the
range).!

A measurement is the symbol assigned
to the real world attribute by the
measure.!

Frank!
Joe!

Laura!

1.80!
1.65!

1.73!

Example: measure mapping height !
attribute of person on a number !
representing height in meters.!

Purpose: Manipulate symbol(s) in the range to draw conclusions about
attribute(s) in the domain!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.11	

Preciseness!

To be precise, the definition of the measure must specify:!
>  domain: do we measure peopleʼs height or width?!
>  range: do we measure height in centimetres or inches?!
>  mapping rules: do we allow shoes to be worn?!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.12	

Possible Problems!

Do we use the same units
to compare? !

What is a “line of code”?!
What is the “time unit”?!

Is the context the same?! Were programmers familiar with the language? !
Is “code size” really what
we want to produce? !

What about code quality?!

How do we want to
interpret results? !

Average productivity of a programmer?!
Programmer X is twice as productive as Y?!

What do we want to do
with the results? !

Do you reward “productive” programmers?!
Do you compare productivity of software
processes?!

Example: Compare productivity in lines of code per time unit.!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.13	

GQM!

Goal — Question — Metrics approach 
[Basili et al. 1984]!

>  Define Goal!
— e.g., “How effective is the coding standard XYZ?”!

>  Break down into Questions!
—  “Who is using XYZ?”!
—  “What is productivity/quality with/without XYZ?”!

>  Pick suitable Metrics!
— Proportion of developers using XYZ!
— Their experience with XYZ ...!
— Resulting code size, complexity, robustness ...!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.14	

Validity and reliability!

Reliable but not
valid!

Valid but not
reliable!

Valid and reliable!

>  A good metric is both valid (measures what it is intended to
measure) and reliable (yields consistent results)!

See: Stephen H. Kan, Metrics and Models in Software
Quality Engineering, Addison Wesley, 2002. Ch. 3.4!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.15	

Some Desirable Properties of Metrics!

>  Valid and reliable (consistent)!
>  Objective, precise!
>  Intuitive!
>  Robust (failure-tolerant)!
>  Automatable and economical (practical)!
>  …!

See: 2.Brian Henderson-Sellers, Object-Oriented Metrics:
Measures of Complexity, Prentice-Hall, 1996, Ch. 2.6!

Caveat: Attempts to
define formally

desirable properties
have been heavily

disputed …!

Weyukerʼs Axioms for Software Complexity
Measures!

1.  At least two programs have different measures!
2.  Only finitely many programs have the same complexity!
3.  There exist multiple programs with the same complexity !
4.  There exist equivalent programs with different complexity!
5.  The complexity of P is less than or equal to an extension of P!
6.  …!

But, also useless metrics satisfy these properties!!

!“in practice, almost any complexity measure can be successfully
used in software development”!

© Oscar Nierstrasz!

LECTURE TITLE!

16!

Weyuker. Evaluating Software Complexity Measures.
IEEE TSE 14(9) p. 1357—1365, 1988!

Cherniavsky, Smith. On Weyuker's Axioms for Software
Complexity Measures. IEEE TSE 17 p. 636—638, June 1991!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.17	

Roadmap!

>  What are metrics? Why do we need them?!
>  Metrics for cost estimation!
>  Metrics for software quality evaluation!
>  Object-Oriented metrics in practice!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.18	

Cost estimation objectives!

Cost estimation and planning/scheduling are closely related activities!

Goals!
>  To establish a budget for a software project!
>  To provide a means of controlling project costs!
>  To monitor progress against the budget !

— comparing planned with estimated costs!
>  To establish a cost database for future estimation!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.19	

Estimation techniques!

Each method has strengths and weaknesses!!
Estimation should be based on several methods!

Expert judgement! cheap, but risky!!
Estimation by analogy! limited applicability!
Parkinson's Law! unlimited risk!!
Pricing to win! i.e., you do what you can with the money!
Top-down estimation! may miss low-level problems!
Bottom-up estimation! may underestimate integration costs!
Algorithmic cost
modelling!

requires correlation data!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.20	

Algorithmic cost modelling!

>  Cost is estimated as a mathematical function of product, project and
process attributes whose values are estimated by project managers!

>  The function is derived from a study of historical costing data!
>  Most commonly used product attribute for cost estimation is LOC

(code size)!
>  Most models are basically similar but with different attribute values!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.21	

Measurement-based estimation!

A. Measure!
Develop a !system model !
and measure its size!

B. Estimate!
Determine the effort with !
respect to an ! empirical !
database! of measurements !
from !similar projects!

C. Interpret!
Adapt the effort with !
respect to a specific !
Development Project Plan!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.22	

Lines of code!

Lines of Code as a measure of system size?!
>  Easy to measure; but not well-defined for modern languages!

—  What's a line of code?!

>  A poor indicator of productivity!
—  Ignores software reuse, code duplication, benefits of redesign!
—  The lower level the language, the more productive the programmer!!
—  The more verbose the programmer, the higher the productivity!!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.23	

Function points!

Function Points (Albrecht, 1979)!
>  Based on a combination of program characteristics:!

—  external inputs and outputs!
—  user interactions!
—  external interfaces!
—  files used by the system!

>  A weight is associated with each of these!
>  The function point count is computed by multiplying each raw count by the

weight and summing all values!
>  Function point count modified by complexity of the project!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.24	

Function points!

Good points, bad points!
>  Can be measured already after design!
>  FPs can be used to estimate LOC depending on the average

number of LOC per FP for a given language!
>  LOC can vary wildly in relation to FP!
>  FPs are very subjective — depend on the estimator. They cannot

be counted automatically!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.25	

Programmer productivity!

A measure of the rate at which individual engineers involved in software
development produce software and associated documentation!

Productivity metrics!
>  Size-related measures based on some output from the software process.

This may be lines of delivered source code, object code instructions, etc.!
>  Function-related measures based on an estimate of the functionality of the

delivered software. Function-points are the best known of this type of
measure!

…!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.26	

Programmer productivity …!

Productivity estimates!
>  Real-time embedded systems, 40-160 LOC/P-month!
>  Systems programs , 150-400 LOC/P-month!
>  Commercial applications, 200-800 LOC/P-month!

Quality and productivity!
>  All metrics based on volume/unit time are flawed because they do not take

quality into account!
—  Productivity may generally be increased at the cost of quality!
—  It is not clear how productivity/quality metrics are related!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.27	

The COCOMO model!

>  Developed at TRW, a US defence contractor!

>  Based on a cost database of more than 60 different projects!

>  Exists in three stages!
1.  Basic — Gives a “ball-park” estimate based on product attributes!
2.  Intermediate — Modifies basic estimate using project and process

attributes!
3.  Advanced — Estimates project phases and parts separately!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.28	

Basic COCOMO Formula!

>  Effort = C × PMS × M!
—  Effort is measured in person-months!
—  C is a complexity factor!
—  PM is a product metric (size or functionality, usually KLOC)!
—  exponent S is close to 1, but increasing for large projects!
—  M is a multiplier based on process, product and development

attributes (~ 1)!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.29	

COCOMO Project classes!

Organic mode: small teams, familiar
environment, well-understood applications, no
difficult non-functional requirements (EASY)!

Effort = 2.4 (KDSI) 1.05 × M!

Semi-detached mode: Project team may
have experience mixture, system may have
more significant non-functional constraints,
organization may have less familiarity with
application (HARDER)!

Effort = 3 (KDSI) 1.12 × M!

Embedded: Hardware/software systems, tight
constraints, unusual for team to have deep
application experience (HARD)!

Effort = 3.6 (KDSI) 1.2 × M!

KDSI = Kilo Delivered Source Instructions!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.30	

COCOMO assumptions and problems!

>  Implicit productivity estimate !
— Organic mode = 16 LOC/day!
— Embedded mode = 4 LOC/day!

>  Time required is a function of total effort not team size!
>  Not clear how to adapt model to personnel availability!

http://en.wikipedia.org/wiki/Fair_use!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.31	

COCOMO assumptions and problems ...!

>  Staff required canʼt be computed by dividing the development time
by the required schedule!

>  The number of people working on a project varies depending on the
phase of the project!

>  The more people who work on the project, the more total effort is
usually required (!)!

>  Very rapid build-up of people often correlates with schedule slippage!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.32	

Roadmap!

>  What are metrics? Why do we need them?!
>  Metrics for cost estimation!
>  Metrics for software quality evaluation!
>  Object-Oriented metrics in practice!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.33	

Quantitative Quality Model!

Quality according to ISO 9126 standard!
>  Divide-and conquer approach via “hierarchical quality model”!
>  Leaves are simple metrics, measuring basic attributes!

Software!
Quality!

Functionality!
Reliability!
Efficiency!
Usability!

Maintainability!
Portability!

ISO 9126! Factor! Characteristic! Metric!

Error tolerance!
Accuracy!

Simplicity!
Modularity!

Consistency!
defect density!

= #defects / size!

correction impact!
= #components!

changed!

correction time!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.34	

“Define your own” Quality Model !

Define the quality model with the development team!
>  Team chooses the characteristics, design principles, metrics ... and

the thresholds!

Maintainability!

Factor! Characteristic! Design Principle! Metric!

Modularity!

design class as an !
abstract data-type!

encapsulate all !
attributes!

avoid complex !
interfaces!

number of private !
attributes]2, 10[!

number of public !
attributes]0, 0[!

number of public !
methods]5, 30[!

average number of !
arguments [0, 4[!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.35	

Sample Size (and Inheritance) Metrics!

Inheritance Metrics!
- hierarchy nesting level (HNL)!
- # immediate children (NOC)!
- # inherited methods, unmodified (NMI)!
- #overridden methods (NMO)!

Attribute!

inherits! belongsTo!

access!

invokes!

Class Size Metrics!
- # methods (NOM)!
- # attributes, instance/class !
(NIA, NCA)!
- # !S! of method size (WMC)!

Method Size Metrics!
- # invocations (NOI)!
- # statements (NOS)!
- # lines of code (LOC)!
- # arguments (NOA)!

Class!

Method!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.36	

Sample Coupling & Cohesion Metrics!

The following definitions stem from [Chid91a], later republished as [Chid94a]!

Coupling Between Objects (CBO)!
CBO = number of other classes to which given class is coupled!
Interpret as “number of other classes a class requires to compile”!

Lack of Cohesion in Methods (LCOM)!
LCOM = number of disjoint sets (= not accessing same attribute) of local
methods!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.37	

Coupling & Cohesion Metrics!

Beware!!
Researchers disagree whether coupling/cohesion methods are valid!
>  Classes that are observed to be cohesive may have a high LCOM

value!
— due to accessor methods!

>  Classes that are not much coupled may have high CBO value!
— no distinction between data, method or inheritance coupling!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.38	

Sample Quality Metrics (I)!

Productivity (Process Metric)!
>  functionality / time!
>  functionality in LOC or FP; time in hours, weeks, months!

—  be careful to compare: the same unit does not always represent
the same!

>  Does not take into account the quality of the
functionality!!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.39	

Sample Quality Metrics (II)!

Reliability (Product Metric)!
>  mean time to failure =  

mean of probability density function PDF!
—  for software one must take into account the fact that repairs will influence the rest

of the function ⇒ quite complicated formulas!
>  average time between failures = # failures / time!

—  time in execution time or calendar time!
—  necessary to calibrate the probability density function!

>  mean time between failure = MTTF + mean time to repair!
—  to know when your system will be available, take into account repair!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.40	

Sample Quality Metrics (III)!

Correctness (Product Metric)!
>  “a system is correct or not, so one cannot measure

correctness”!
>  defect density = # known defects / product size!

— product size in LOC or FP!
— # known defects is a time based count!!

>  do not compare across projects unless your data
collection is sound!!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.41	

Sample Quality Metrics (IV)!

Maintainability (Product Metric)!
>  #time to repair certain categories of changes!
>  “mean time to repair” vs. “average time to repair”!

— similar to “mean time to failure” and “average time between failures”!
>  beware of the units!

—  “categories of changes” is subjective!
—  time =?  

problem recognition time + administrative delay time + problem analysis
time + change time + testing & reviewing time!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.42	

Roadmap!

>  What are metrics? Why do we need them?!
>  Metrics for cost estimation!
>  Metrics for software quality evaluation!
>  Object-Oriented metrics in practice!

Michele Lanza and Radu Marinescu,
Object-Oriented Metrics in Practice,
Springer-Verlag, 2006!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.43	

Pattern: Study the Exceptional Entities!

Problem!
—  How can you quickly gain insight into complex software?!

Solution!
—  Measure software entities and study the anomalous ones!

Steps!
—  Use simple metrics!
—  Visualize metrics to get an overview!
—  Browse the code to get insight into the anomalies!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.44	

System Complexity View!

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code

System Complexity View

Color
Metric

Position
Metrics

Width Metric

Height
Metric

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.45	

Detection strategy!

>  A detection strategy is a metrics-based predicate to
identify candidate software artifacts that conform to (or
violate) a particular design rule!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.46	

Filters and composition!

>  A data filter is a predicate used to focus attention on a
subset of interest of a larger data set!
—  Statistical filters!

–  I.e., top and bottom 25% are considered outliers!
—  Other relative thresholds!

–  I.e., other percentages to identify outliers (e.g., top 10%)!
—  Absolute thresholds!

–  I.e., fixed criteria, independent of the data set!

>  A useful detection strategy can often be expressed as a
composition of data filters!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.47	

God Class!

>  A God Class centralizes intelligence in the system!
—  Impacts understandibility!
—  Increases system fragility!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.48	

ModelFacade (ArgoUML)!

>  453 methods!
>  114 attributes!
>  over 3500 LOC!
>  all methods and all

attributes are static!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.49	

Feature Envy!

>  Methods that are more interested in data of other classes
than their own [Fowler et al. 99]!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.50	

ClassDiagramLayouter!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.51	

Data Class!

>  A Data Class provides data to other classes but little or
no functionality of its own!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.52	

Data Class (2)!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.53	

Property!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.54	

Shotgun Surgery!

>  A change in an operation implies many (small) changes
to a lot of different operations and classes!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.55	

Project!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.56	

What you should know!!

>  What is a measure? What is a metric?!
>  What is GQM?!
>  What are the three phases of algorithmic cost

modelling?!
>  What problems arise when using LOC as a software

metric?!
>  What are the key ideas behind COCOMO?!
>  Whatʼs the difference between “Mean time to failure” and

“Average time between failures”? Why is the difference
important?!

© Oscar Nierstrasz!

ESE — Software Metrics!

ESE 12.57	

Can you answer the following questions?!

>  During which phases in a software project would you
use metrics?!

>  Is the Fog index a “good” metric?!
>  How would you measure your own software

productivity?!
>  Why are coupling/cohesion metrics important? Why then

are they so rarely used?!

License!

© Oscar Nierstrasz!

ESE — Introduction!

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

http://creativecommons.org/licenses/by-sa/3.0/

