
5. Software Architecture

Introduction to Software Engineering

Mircea F. Lungu

Based on a lecture by Oscar Nierstrasz.

Roadmap

5

> What is Software Architecture?
> Architectural styles

—Layered
—Client-Server
—Repository, Dataflow, ...

> UML diagrams for architectures
> Coupling and Cohesion

Design patterns - solutions to recurring problems.
We learn about software architecture to know what other use and
learn from them.
“The quality without a name” - C. Alexander
Architecture styles = Architecture Patterns

Real architecture: concerns of beauty and habitability.
SW Architecture: concerns of non-functional requirements &
maintainability.

Roadmap

6

> What is Software Architecture?
> Architectural styles

— Layered
—Client-Server
—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures
> Coupling and Cohesion

7

What is Software Architecture?

The architecture of a system consists of:
1. the structure(s) of its parts

e.g. design-time, test-time, and run-time software and hardware parts

2. the externally visible properties of those parts
e.g. interfaces of modules, hardware units, objects

3. the relationships and constraints between them
 — Bass & Clements, IEEE 1471

The set of design decisions about
any system (or subsystem) that keeps
its implementors and maintainers
from exercising needless creativity.

The numerous definitions on the website of SEI.
http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

Architecture is a shared mental model

8

The architecture is a mental model
shared by the stakeholders [Holt].

Ergo, there will be multiple viewpoints since there will be multiple
stakeholders.

Architectural Viewpoints

9

Run-time How are responsibilities distributed amongst run-time entities?

Process How do processes communicate and synchronize?

Dataflow How do data and tasks flow through the system?

Deployment How are components physically distributed?

Module How is the software partitioned into modules?

Build What dependencies exist between modules?

Example of Architectural Diagram for a Unix
Subsystem

10

Very often the diagrams that the programmers draw diverge from
the actual state of the system.

11

What is Software Architecture?

! A neat-looking drawing of some boxes, circles, and lines,
laid out nicely in Powerpoint or Word, does not constitute
an architecture.

 — D’Souza & Wills

Why are D’Souza and Wills so angry? Because people forget
of boxes, and soon the good intentions are forgotten. People
should enforce the architecture.

Conformance checking.

12

How Architecture Is Usually Specified

> “Use a 3-tier client-server architecture: all business logic
must be in the middle tier, presentation and dialogue on
the client, and data services on the server; that way you
can scale the application server processing independently
of persistent store.”

How Architecture Is Usually Specified (2)

> “Use CORBA for all distribution, using Corba event
channels for notification and the Corba relationship
service; do not use the Corba messaging service as it is
not yet mature.”

13

2002 Email of Jeff Bezos @ Amazon.com

All teams will henceforth expose their data and
functionality through service interfaces

• Teams must communicate exclusively through these
interfaces with each other.

• It doesn’t matter what technology they use.
• There will be no other form of inter-process

communication allowed: no direct linking, no direct
reads of another team’s data store, no shared-memory
model, no back-doors whatsoever.

• Anyone who doesn’t do this will be fired. Thank you;
have a nice day!

14

Lessons that you learn on the way:
- every team becomes a possible DoS attacker
- service discovery. how do you know what the other servies

Architectural Description Languages
or how architecture could be specified...

15

Formal languages for representing
and reasoning about software
architecture.

Provide a conceptual framework and
a concrete syntax for characterizing
architectures.

Some are executable, or implemented
in a general-purpose programming
language.

Wright
underlying model is CSP,
focuses on connectivity of
concurrent components

Darwin
focuses on supporting
distributed applications.
Components are single-
threaded active objects

ADL: Components and connectors

Component: unit of computation
or data store. Typically contains
interface (ports) and formal
behavioral description.

Connector: architectural building
block used to model interactions
among components. Typically
contains interface (roles) and
formal behavioral description.

Configuration: connected graph
of components and connectors
that describe architectural
structure.

16

connector

port
role

componentcomponent

Roadmap

17

> What is Software Architecture?
> Architectural styles

—Layered
—Client-Server
—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures
> Coupling and Cohesion

18

Architectural Parallels

> Architects are the technical interface between the
customer and the contractor building the system

> A bad architectural design for a building cannot be
rescued by good construction — the same is true for
software

Sommerville

Architectural Styles

19

San Francisco residential vs. New York Corporate
Each makes sense in its own context.

20

Architectural Styles in Software

! An architectural style defines a family of systems in
terms of a pattern of structural organization. More
specifically, an architectural style defines a vocabulary of
components and connector types, and a set of
constraints on how they can be combined.

 — Shaw and Garlan

keyword = structural organization

components, connectors, and constrains: a basic language for
defining all kinds of architectures.

Roadmap

21

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles

—Layered
—Client-Server
—Repository, Event-driven, Dataflow, ...

> Model-Driven Architecture
> UML diagrams for architectures

The most famous example is the TCP/IP protocol stack.

22

OSI reference model

© Ian Sommerville 2000

Communications medium

Physical Physical Physical

Data link

Network

Transport

Session

Presentation

Application

Data link

Network

Transport

Session

Presentation

Application

Data link

Network

importance of layers: imagine if you had to worry about the
shape of the signals that travel on the wire... or even about the
error correction... or even about routing to the desired router.

23

Layered Architectures

A layered architecture organises a system into a set of
layers each of which provide a set of services to the layer
“above”.

> Normally layers are constrained so elements only see
—other elements in the same layer, or
—elements of the layer below

> Callbacks may be used to communicate to higher layers
> Supports the incremental development of sub-systems in

different layers.
—When a layer interface changes, only the adjacent layer is affected

Sommerville
Callbacks example: the letterbox.

24

The Android Architecture

Bottom is Linux 2.6 with a series of patches. This provides process
management, device management, networking.

C libraries which are well known: webkit browser engine, libc
standard C library. Functionalities are exposed through the
Application Framework.

Android runtime offers the DalvikVM. Register based. Allows each
process to run in its own process. with its own instance of the
DalvikVM.

Core libraries offer most of the core libraries available in Java.

Activity Lifecycle

25

> Callbacks
—onSaveInstanceState
—onCreate/onDestroy
—onStart/onStop
—onResume/onPause

http://developer.android.com/reference/android/app/Activity.html!

Architectural constraints are enforced by the frameworks that one uses.
The application framework can happily remain ignorant of the actual apps
built on top of it.

Roadmap

26

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles

—Layered
—Client-Server
—Repository, Event-driven, Dataflow, ...

> Model-Driven Architecture
> UML diagrams for architectures

The most famous example is the web - you have a client, that sends
requests to the server that performs computations.

Historically, the servers would be much more powerful.

27

Client-Server Architectures

A client-server architecture distributes application logic and
services respectively to a number of client and server sub-
systems, each potentially running on a different machine and
communicating through the network (e.g, by RPC).

Sommerville (adapted!)

28

Film and picture library

© Ian Sommerville 2000

Wide area network

Client 1 Client 2 Client 3 Client 4

Video
server

Music
server

Photo
server

Web
server

29

Client-Server Architectures

Advantages
> Distribution of data is straightforward
> Makes effective use of networked systems. May require

cheaper hardware
> Easy to add new servers or upgrade existing servers

Disadvantages
> No shared data model so sub-systems use different data

organisation. Data interchange may be inefficient
> Redundant management in each server
> May require a central registry of names and services — it

may be hard to find out what servers and services are
available

Sommerville (adapted!)

30

Three/Four-Tier Architectures

© D'Souza, Wills, 1999

Advantage of this is clear: it scales.
Fat client vs. Thin client.

Service Based Architectures

> The extreme generalization of Client-Server
> Instead of monolithic systems one has many concise

services
> A Service is a “loosely coupled, reusable software

component, which can be distributed”
> Services use message based communication
> Service discovery becomes a challenge

31

RESTful Architectures

32

> Inspired from the architecture of the largest distributed
application ever: the Web
—Statelesss requests
—Every resource has an individual URI
—Uniform interface for all resources (GET, POST, PUT, DELETE)

> The structure of a response is not specified

Roadmap

33

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles

—Layered
—Client-Server
—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures

34

Repository Architectures

A repository architecture distributes application logic to a
number of independent sub-systems, but manages all data
in a single, shared repository.

This classical pattern is the grandfather of storing data in the cloud.

Your google docs is an instance of a repository architecture. Your
docs are always in the cloud.

35

IDE architecture

© Ian Sommerville 2000

Design
editor

Code
generator

Design
analyzer

Report
generator

Design
translator

Program
editorProject repository

When looking at the picture - think Eclipse.

36

Repository Architectures

Advantages
> Efficient way to share large amounts of data
> Sub-systems need not be concerned with how data is

produced, backed up etc.
> Sharing model is published as the repository schema

Disadvantages
> Sub-systems must agree on a repository data model
> Data evolution is difficult and expensive (unless NoSQL)
> Repository can become performance bottleneck

Sommerville, Buschmann

Sharding

> A method of storing data
across multiple machines
—reduces processing needs
—reduces storage needs

> Queries must be routed to
the corresponding shards

37

38

Event-driven Systems

In an event-driven architecture components perform
services in reaction to external events generated by
other components.

> In broadcast models an event is broadcast to all sub-systems.
Any sub-system which can handle the event may do so.

> In interrupt-driven models real-time interrupts are detected by an
interrupt handler and passed to some other component for
processing.

This kind of Event-driven systems scale.

This is going to become increasingly relevant with the advent of
multi-core machines.

In the same time, it is the most basic architecture implemented
down at the hardware level: @Int 21

39

Broadcasting

© Ian Sommerville 2000

Event and message handler

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

> Flooding
> Selective broadcasting

If the network topology has loops, a packet might circulate forever.
Implement TTL or hopcount.

40

Broadcast model

> Effective in integrating sub-systems on different computers in
a network

> Can be implemented using a publisher-subscriber pattern:
—Sub-systems register an interest in specific events
—When these occur, control is transferred to the subscribed sub-

systems
> However, sub-systems don’t know if or when an event will be

handled

Message-passing architectures - the future also with GPUs.
You don’t have shared memory - you must communicate

41

Dataflow Models

In a dataflow architecture each component performs functional
transformations on its inputs to produce outputs.

> Highly effective for reducing latency in parallel or distributed
systems
—No call/reply overhead
—But, fast processes must wait for slower ones

> Not really suitable for interactive systems
—Dataflows should be free of cycles

Classical data flow system: image processing.

Dataflows are usually non-trivial --> high latency --> non-
interactivity

42

Pipes and Filters

Domain Data source Filter Data sink
Unix tar cf - . gzip -9 rsh picasso dd

CGI HTML Form CGI Script generated HTML page

cat Notes.txt
| tr -c '[:alpha:]' '\012'
| sed '/^$/d’
| sort
| uniq –c
| sort –rn
| head -5

14 programming
14 languages
 9 of
 7 for
 5 the

43

Invoice Processing System

© Ian Sommerville 2000

Invoices Read issued
invoices

Payments Identify
payments

RemindersReceipts

Issue receipts

Find
payments

due

Issue
payment
reminder

44

Compilers as Dataflow Architectures

© Ian Sommerville 2000

Symbol table

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

45

Compilers as Repository Architectures

© Ian Sommerville 2000

Lexical
analysis

Syntactic
analysis Semantic

analysis

Code
generation

Repository

Symbol table

Abstract
syntax tree

Output
definition

Grammar
definition

Pretty printer

Editor

Optimizer

Roadmap

46

> What is Software Architecture?
> Architectural styles

—Layered
—Client-Server
—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures
> Coupling and Cohesion

47

UML support: Package Diagram

Decompose
system into
packages
(containing any
other UML
element, incl.
packages)

48

UML support: Deployment Diagram

Physical layout of run-time components on hardware nodes.

Roadmap

49

> What is Software Architecture?
> Architectural styles

—Layered
—Client-Server
—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures
> Cohesion and Coupling

50

Sub-systems, Modules and Components

> A sub-system is a system in its own right whose operation
is independent of the services provided by other sub-
systems.

> A module is a system component that provides services to
other modules but would not normally be considered as a
separate system.

> A component is an independently deliverable unit of
software that encapsulates its design and implementation
and offers interfaces to the out-side, by which it may be
composed with other components to form a larger whole.

51

Cohesion

Cohesion is a measure of how well the parts of a
component “belong together”.

> Cohesion is weak if elements are bundled simply because
they perform similar or related functions (e.g.,
java.lang.Math).

> Cohesion is strong if all parts are needed for the
functioning of other parts (e.g. java.lang.String).
—Strong cohesion promotes maintainability and adaptability by

limiting the scope of changes to small numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!

What do you talk about? Classes here. Modules / Components.

Eclipse plugins. If you have a set of plugins, this allows you to
deploy only partially.

Inadequacy of formal definitions: it is in the eye of the beholder.

52

Coupling

Coupling is a measure of the strength of the
interconnections between system components.

> Coupling is tight between components if they depend
heavily on one another, (e.g., there is a lot of
communication between them).

> Coupling is loose if there are few dependencies between
components.
—Loose coupling promotes maintainability and adaptability since

changes in one component are less likely to affect others.
—Loose coupling increases the chancesof reusability.

53

Tight Coupling

© Ian Sommerville 2000

Subsystem A Subsystem B

Subsystem C Subsystem D

Shared data
area

Classical structured programming. And classical using global
variables.

54

Loose Coupling

© Ian Sommerville 2000

Subsystem A

A’s data

Subsystem B

B’s data

Subsystem A

D’s data

Subsystem A

C’s data

OO good idea: keep behavior close to the data.

55

Sources

> Software Engineering, I. Sommerville, 7th Edn., 2004.
> Objects, Components and Frameworks with UML, D. D'Souza, A.

Wills, Addison-Wesley, 1999
> Pattern-Oriented Software Architecture — A System of Patterns, F.

Buschmann, et al., John Wiley, 1996
> Software Architecture: Perspectives on an Emerging Discipline, M.

Shaw, D. Garlan, Prentice-Hall, 1996

56

What you should know!

> What is software architecture
> What are architectural viewpoints and architectural styles
> What are ADLs, components and connectors
> Advantages and disadvantages of classical architectural

styles
> What kinds of applications are suited to event-driven

architectures?

57

Can you answer the following questions?

> What kind of architectural styles are supported by RMI?
> What are the characteristics of a Three/Four tier

architecture?
> How do callbacks reduce coupling between software

layers?
> How would you implement a dataflow architecture in

Java?

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

