

Introduction to Software Engineering

11. Software Evolution

Based on a lecture by Oscar Nierstrasz and
the SDE Course at the University of Bern.

Laws of Software Evolution

Reverse and Reengineering

Mining Software Evolution

Laws of Software Evolution

Reverse and Reengineering

Mining Software Evolution

�5

Lehman’s Law of Continuing Change

—A program that is used in a real-world environment
must change, or become progressively less useful in
that environment.

Lehman, Belady. Program Evolution: Processes of Software
Change, London Academic Press, London, 1985

Lehman’s Laws of Software Evolution

Classification of Systems"
> P-type"
> S-type"
> E-Type

�6

IBM System 360

Lehman, Belady. Program Evolution: Processes of Software
Change, London Academic Press, London, 1985

S-type — specification based

P-type — algorithms. chess playing system.

E-type — real world activity. integrated in the environment.

�7

Continuous Development

17.4% Corrective"
(fixing reported errors)

18.2% Adaptive"
(new platforms or OS)

60.3% Perfective"
(new functionality)

The bulk of the maintenance/evolution cost is due to new functionality"
⇒ even with better requirements, it is hard to predict new functions

4.1% Other

data from [Lien78a] !
"
Well, better requirements engineering indeed helped to identify stable ground in the muddle of CHANGING
REQUIREMENTS.

Unfortunately, an empirical survey done by Lientz and Swanson revealed that the majority of changes requested
have to do with EXTRA FUNCTIONALITY.

That’s why modern requirements engineering tries to define SCENARIOs FOR FUTURE EXTENSIONS so that the
designers can accommodate their designs. That’s why we try to define good DOMAIN MODELS, so that most of
the changes will fit our design.

Unfortunately, no matter how good our requirements engineering, we will never be able TO PREDICT THE FUTURE

Therefore, there will always be changes that DO NOT FIT OUR ORIGINAL DESIGN, and depending on our problem
domain this may be quite a lot.

By the way, that’s one of the reasons why AGILE DEVELOPMENT METHODS are so popular nowadays. They
observed that for certain problem domains you cannot make good predictions about the 60% perfective
maintenance here (POINT TO SLIDE). When that’s the case, its useless to invest in a good design because you
don’t know which variation points to build into your design. Half of the times, you will guess wrong and then you

�8

Lehman’s Law of Increasing Entropy

—As a program evolves, it becomes more complex, and
extra resources are needed to preserve and simplify its
structure.

Lehman, Belady. Program Evolution: Processes of Software
Change, London Academic Press, London, 1985

Lehman’s Law of …

�9

this slide is intentionally left blank.

�10

Software Ageing = Increasing Entropy

Lack of Knowledge"
> obsolete or no documentation"
> departure of the original

developers or users"
> limited understanding of entire

system (missing tests?)

How can you ASSESS WHETHER A SYSTEM NEEDS REENGINEERING (i.e., when is it time to take the second path ?)

"
In fact, there are QUITE A LOT OF SYMPTOMS as you can see on this slide

"
I won't go into detail for each of them,

RATHER, I will point you to the ones I ASK FOR EACH TIME I FACE A NEW SYSTEM

⇒missing tests, simple changes take too long. big build times

"
The reason I looked for those is because they are MEASURABLE.

This is especially important, because during a reengineering project, there will ALWAYS COME A TIME WHEN YOU
WILL BE CHALLENGED. Opponents will try to cancel you project and start again from scratch.

Therefore, its is good to have some QUANTIFYABLE GOALS, to show that you are making progress, EVEN IF THE
REENGINEERING IS NOT FINISHED

Common Symptoms of Software Aging (2)

�11

Process Failures"
> too long to turn things over to

production"
> constant bug fixes"
> simple changes take too long

Code symptoms"
• duplicated code"
• code smells

�12

Common Problems

Architectural Problems"
> insufficient documentation 

= non-existent or out-of-date"
> improper layering 

= too few or too many layers"
> lack of modularity 

= strong coupling"
> duplicated code 

= copy, paste & edit code"
> duplicated functionality 

= by separate teams

Refactoring opportunities"
> misuse of inheritance  

= code reuse vs polymorphism"
> missing inheritance  

= duplication, case-statements"
> misplaced operations 

= operations outside classes

We have been facing quite a lot of systems that NEEDED REENGINEERING.

We learned that all of them have different MOTIVATIONS,

however there seems to be a COMMON SET OF PROBLEMS THAT REAPPEAR IN ALL projects

... READ SLIDE ...

So what to do?

Before:!
 Design for change. Build a family of solutions

If software is bound to change, plan for change. Don’t build a solution, build a family of solutions.

Open-Closed Principle.

After: !
 Reengineer.!
 Refactor.

So what to do?

Never try to rewrite"
the system. There"
is too much "

knowledge"
encoded in the"
running system.

> Project management"
> Work environment"
> The concept of “flow”

People Matter: Peopleware

�16

[Bonus Topic] The Concept of Flow

�17

“You know that what you need to do is possible to do, even though difficult, and sense of time disappears. You forget yourself. You feel part of something
larger.”
"
Mihaly Csikszentmihalyi on experiencing ‘flow’
"

http://www.ted.com/talks/mihaly_csikszentmihalyi_on_flow.html
http://www.ted.com/talks/mihaly_csikszentmihalyi_on_flow.html

Night on Earth, Jim Jarmush

Anecdotal evidence of distance-communication still working.
"
Image from “Night on Earth”. Jim Jarmush.

Some software shops work around the clock.

But is this efficient?

Laws about people

�19

Characterizing people as non-linear, first-
order components in software development,
Alistair Cockburn

"
—Communication degradation"
—Inconsistency of people"
—Good citizenship"
—Diversity of people

Good citizenship. GitHub.

Inconsistency. People need external factors.

People like proximity.

http://Characterizing%20people%20as%20non-linear,%20first-order%20components%20in%20software%20development

Gamification: “People like to see progress”

On Gamification.

Laws of Software Evolution

Reverse and Reengineering

Mining Software Evolution

Reengineering ... is the examination and alteration of
a subject system to reconstitute it in a new form and
the subsequent implementation of the new form.

“Forward Engineering is the traditional process of moving from high-level abstractions and logical, implementation-independent designs to the physical
implementation of a system.”
"
“Reverse Engineering is the process of analyzing a subject system to identify the system’s components and their interrelationships and create
representations of the system in another form or at a higher level of abstraction.”
""

 — Chikofsky and Cross [in Arnold, 1993]

Charles Eugster @ TEDxZurich

Born in 1919. Still goes to the gym.

How to get this?

With explicit effort.

http://www.youtube.com/watch?v=rGgoCm1hofM

�24

Goals of Reengineering

> Untangling"
—split a monolithic system into parts that can be separately marketed"
— increase the understandability of the code"

> Performance"
—“first do it, then do it right, then do it fast” — experience shows this

is the right sequence!"
> Porting"

—the architecture must distinguish the platform dependent modules"
> Design extraction"

—to improve maintainability, portability, etc."
> Exploitation of New Technology"

— i.e., new language features, standards, libraries, etc.

�25

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement"
analysis

(1) model"
capture

(2) problem"
detection (3) problem"

resolution

(4) program transformation

• people centric"
• lightweight

To tackle these problems, you need some kind of GENERIC REENGINEERING PROCESS

Here is the one that we propose, WHICH WE WILL USE TROUGHOUT THIS TALK

Note that you should see this as a way to describe the various activities that take place during a project, but not

necessarily a STRICT ORDER ON when these activities must take place.

(0) Requirement analysis: analyse on WHICH PARTS OF YOUR REQUIREMENTS HAVE CHANGED

(1)Model capture: REVERSE ENGINEER from the source-code into a MORE ABSTRACT FORM, typically some form of
a design model. How abstract depends on the kind of problem you want to solve

(2)problem detection: IDENTIFY DESIGN PROBLEMS in that abstract model

(3)problem resolution: PROPOSE AN ALTERNATIVE DESIGN that will solve the identified problem

(4)program transformations: MAKE THE NECESSARY CHANGES TO THE CODE, so that it adheres to the new design
YET PRESERVES ALL THE REQUIED FUNCTIONALITY 
Here TESTING will play an important role

In the REMAINDER OF THE TALK, we will use this picture to ILLUSTRATE WHERE the various techniques and tools
FIT IN.

While doing that, we will emphasize the role of THE HUMAN IN THE LOOP, because we believe that reengineering

�26

Goals of Reverse Engineering

> Facilitate reuse"
— detect candidate reusable artifacts and components"

> Generate alternative views"
— automatically generate different ways to view systems"

> Synthesize higher abstractions"
— identify latent abstractions in software"
"

> Cope with complexity"
— need techniques to understand large, complex systems"

> Recover lost information"
— extract what changes have been made and why"

> Detect side effects"
— help understand ramifications of changes"

" — Chikofsky and Cross [in Arnold, 1993]

�27

Reverse Engineering Techniques

> Re-documentation"
—diagram generators"
—cross-reference listing generators"
"

> Design recovery"
—software metrics"
—browsers, visualization tools"
—static analyzers"
—dynamic (trace) analyzers

CS - they pay good money for a decent cross-referencer

�28

Reengineering Patterns

Reverse engineering patterns encode
expertise and trade-offs in "
"
— extracting design from source
code, running systems and people."

"
—transforming legacy code to resolve
problems that have emerged.

�29

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform Conditionals
to Polymorphism

We documented most of our techniques in the form of REENGINEERING PATTERNS

"
Here is a map of these patterns, as they appeared in ou book

�30

Initial Understanding

Top down

Speculate about Design

Recover
design

Analyse the
Persistent Data

Study the Exceptional
Entities

Read it Compile it

Bottom up

understand ⇒"
Obtain a higher-level model

�31

Pattern: Study the Exceptional Entities

Problem"
—How can you quickly gain insight into complex software?"

Solution"
—Measure software entities and study the anomalous ones"
"

Steps"
—Use simple metrics"
—Visualize metrics to get an overview"
—Browse the code to get insight into the anomalies

�32

System Complexity View

Nodes = Classes"
Edges = Inheritance Relationships

Width = Number of Attributes"
Height = Number of Methods"
Color = Number of Lines of Code

System Complexity View

Color"
Metric

Position"
Metrics

Width Metric

Height "
Metric

Code Ownership View

System complexity - Clone evolution view

Class blueprint - Topic Correlation Matrix - Distribution Map for topics spread over classes in packages

Hierarchy Evolution view - Ownership Map

High-Level Dependency View

�34http://scg.unibe.ch/softwarenaut

http://scg.unibe.ch/softwarenaut

�35

Detailed Model Capture

Tie Code and Questions

Refactor to Understand
Keep track of"

your understanding

Expose design

Step through the Execution

Look for the Contracts

Learn from the Past

Expose collaborations

Expose contracts

Expose evolution

Write Tests"
to Understand

Expose the design & make sure
it remains exposed

�36

Tests: Your Life Insurance

Write Tests to Enable Evolution

Grow Your Test 
Base Incrementally

Managing tests
Use a Testing"
Framework

Test the Interface,"
Not the Implementation

Record Business  
Rules as Tests

Designing"
tests

Write Tests"
to Understand

• Test Fuzzy features"
• Test Old Bugs"
• Retest Persistent Problems

Regression Test 
after Every Change

Migration Strategies

Heads up to Cucumber

�37

Redistribute Responsibilities

Eliminate Navigation Code

Data containers

Monster client of"
data containers

Split Up God Class

Move Behaviour Close to Data

Chains of data"
containers

�38

High-level refactorings

High-level refactorings
make use of many low-

level refactorings

�39

Transform  
Self Type Checks

Test provider"
type Test self type Test external"

attribute

Transform  
Client Type Checks

Transform Conditionals"
into Registration

Test"
null values Introduce  

Null Object

Factor Out Strategy

Factor Out State

Test object state

Transform Conditionals to Polymorphism

Laws of Software Evolution

Reverse and Reengineering

Mining Software Evolution

Versioning Systems and Applications

1970

NATO
Software
Engineering "
Conference"
’68

1980 1990 2010

Seesoft"
Paper,"
by Eick et al."
’92

Mylyn becomes
an official
Eclipse project"
’10

2000

Logical "
Coupling, "
by Gall et al."
’98

SCCS"
Bell Labs"
’72

RCS"
Purdue University"
’82

CVS"
Client Server"
’90

MSR
Workshop"
‘04

20 years of VCS before people start doing research in
analyzing software repositories. !
20 more years until software evolution research results
are integrated in the IDE."

GitHub Ohloh

�41

WCRE, ICSE - constant research is being generated

No way we can cover everything.

Goal is to present several highlights so you can have a feeling on the general directions of the field.

Learn!
about !

how !
people!
build !
software

- detecting the source of a given piece of software

- validate hypotheses: are people using metaprogramming?

-

SC Seminar Project
by Julian S. & Roger K.

"

Are people!
migrating to!

the new !
concurrency !
libraries of !

Java? !
"

Source: GitHub
Projects: 880
Size: 16,5 GB

Can we learn from developer behavior?

�44

Invisible Dependencies

> Logical Coupling"
—by Gall et al. "
—things that changed together

might change again together"
—advantages over static analysis"

– can detect IO-based dependencies!
– works beyond source code

�45

“You can always make another step”

Piatra Craiului
Mountains, Romania x

(wins in googlefight against “make”)

“You can always take another step”

“You can
always make
another step”

Piatra Craiului
Mountains, Romania

We are not that original.

Challenge: can we use this lack of originality when writing source code to learn from others?

Clone analysis
for querying

14% - 17% of
methods in
SqueakSource

are clones

On how often is code cloned across repositories	

Schwarz et al.

http://scg.unibe.ch/scgbib?query=Schw12a&display=abstract

Build!
better!
development!

tools

API Specification Mining

> Data mining reveals
frequent patterns "

- Matching Method Pairs"
- State Machines"
"

Principles!
1. Mines from history"
2. API specific errors"
3. Co-addition is a pattern"
4. Small commits are fixes

�50

some patterns are incomplete, sometimes mistakes, sometimes fixes

- furthermore - you can mine Framework changes. The JUnit example.

Recording IDE Interactions

> Kersten & Murphy ‘05"
—Mylin"
—Task-Focused Interface"
—Degree of Interest ranking

How to filter the large
amount of information
available in the IDE?

Replaying past changes in multi-developer projects	

Lile Hattori et al.

What if we recorded and
replayed our

development sessions?
REPLAYED

+ Correctness (10%)
+ Completion time (6%)

http://scg.unibe.ch/scgbib?query=Hatt10a&display=abstract

Su
m

m
ar

y

What you should know!

> Three of Lehman & Belady’s Laws of Software Evolution"
> Why do software systems become more complex over

time"
> When should one keep an older version of a system

rather than rewrite?"
> What is meant by “reverse engineering”?"
> How to approach a new software system for

reengineering it

�54

Can you answer the following questions?

> How would you ensure that documentation stays in sync
with implementation?"

> How can you use the history of a system to improve
development tools?"

> What approach would you take to reengineer a large
legacy Java system?

�55

References

�56

http://scg.unibe.ch/
download/oorp/

http://www.joelonsoftware.com/

http://scg.unibe.ch/download/oorp/
http://www.joelonsoftware.com/

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

