
Introduction to Software Engineering

12. An Empirical Software Engineering Primer!
(and a bit on type systems)
Mircea F. Lungu

Partially using materials by Massimiliano Di Penta



Almost done…

> Next (week): Project Presentation!
—Public (invite your friends)!
—7 minutes of presenting the project!

> Next (next (week)): Exam Preparation
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Report from the CHOOSE Forum

> Dragos: Functional and OO can co-exist!
> Zeller: Testing can be automated!
> Dustdar: We must learn how to design systems with 

humans included!
> Di Penta: Empirical studies for detecting bad code!
> Gamma: Monaco is the new editor for Typescript
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Empirical Studies
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Empirical = Observation | Experimentation



Kinds of empirical studies

> Quantitative: to get numerical relations among variables!
—Are programmers more productive with Java than with C#?!
—Are defects correlated with cyclomatic complexity?!
!

> Qualitative: to interpret a phenomenon just observing it 
in its context!
—E.g. by using explanations obtained by interviewing developers!
—I interview developers to know why a given method improves their 

productivity!
—By observing some software artifacts



Quantitative Studies
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Evaluating state of the 
art and practice	


No user involvement	

Tool selection and 

tailoring

Evaluating specific 
aspects of a technology 

in a controlled 
environment	


Careful design	

Replication

Evaluating the whole 
technology on a 
realistic project	


Lower level of control 
than experiments



Examples of Empirical Studies in SE

> API Design at Microsoft!
> UML In Practice!
> API Deprecation!
> Influence of Type Systems!
> Pair Programming!
> Is Code Duplication Good or Bad?!
> How Developers use Reflection!
> Comparing Programming Languages!
> Which metrics correlate better with perceived complexity?
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Case Study: Static vs. Dynamic Typing
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Type systems

> Goal: assigning meaning to bits!
> Multiple aspects!

—Weak!
—Strong!
—Static!
—Dynamic!

> Automate boring checks

�10



Weak Typing

> When one can “coerce” a variable of one type to be used 
in stead of a variable of another type!

> Pointer Arithmetic!
> Languages: C
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Strong Typing

> A type system which prevents the possibility of 
unchecked runtime errors!

> Languages: Haskell, Java!
> Advantages: Tool support
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Static Type Checking

> Verifying the type safety of a program based on the text 
of the program!

> Executed by the compiler!
> Languages: Java, C++
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Dynamic Typing

> Type checks are executed at compile time!
> Is not excluded by static typing!
> Languages: Smalltalk, Ruby, Python!
> Advantages: faster round trip
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Dynamic Typing Enables Duck Typing

> Duck.quack()

�15



Specifying types is extra work
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Type inference can require less specification
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object InferenceTest1 extends Application {!
  val x = 1 + 2 * 3         // the type of x is Int!
  val y = x.toString()      // the type of y is String!
  def succ(x: Int) = x + 1  // method succ returns Int values!
}!

http://www.scala-lang.org/old/node/127



Static is Great!
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James Gosling

Anything that tells you about a 
mistake earlier not only makes 

things more reliable because you 
find the bugs, but the time you 

don't spend hunting bugs is time 
you can spend doing something 

else

http://www.artima.com/intv/strongweak.html

http://www.artima.com/intv/strongweak.html


Dynamic is Great!
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The flexibility of dynamically typed languages 
makes writing code significantly easier. There 

are no build time issues at all. Life in a 
dynamically typed world is fundamentally 

simpler.

Robert Martin

http://www.artima.com/weblogs/viewpost.jsp?thread=4639



Impact on Development Time

> 49 subjects!
> developing a parser!
> 27 hours of work time!
> Purity language (16 hours 

training)!
> 200 test cases

�20> static type system has no impact on development time



Intermezzo: Designing Controlled Experiments

> Hypothesis formulation!
> Controlling Variables!
> Threats to validity!
> Replication
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Hypothesis formulation

> The experiment aims at rejecting a null hypothesis!
> We can reject the null hypothesis → we can draw 

conclusions!
> Hypothesis must be specific

�22



Process…
Independent	


Variables

Dependent	

variableExp. 

design
…

Treatment

Fixed independent variables

Controlling the variables

[Wohlin et al., 2000]



Null Hypothesis H0

> There do not exist trend/patterns in the experimental 
setting: the occurred differences are due to chances!

> Example: there is no difference in code comprehension 
with the new technique and the old one H0 μNold= 
μNnew
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Alternative Hypothesis Ha

> In favor of which the null hypothesis is rejected!
> Example: the new technique allows a better level of code 

comprehension than the old one H0 μNold< μNnew
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Important!

> An experiment does not prove any theory, it can only fail 
to reject an hypothesis!

> The logic of scientific discovery [Popper, 1959]!
—Any statement made in a scientific field is true until anybody can 

contradict it!
> In practice we could do it after several replications…
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Quiz

> Average time is 20% higher in the control group than in 
the experimental group. Can we conclude that the 
experimental treatment is better?
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Can you eat the cake and have it too?

�28

function twoMoreThanYou(calculateANumber: 
Function):number {!
    return calculateANumber(4) + 2;!
}!
!
function double(n:number):number {!
    return n*2;!
}!
!
console.log("TWO MORE", twoMoreThanYou(double))!

Typescript, Dart add optional static type annotations
http://en.wikipedia.org/wiki/TypeScript



Bonus: An Experiment About Comparing 
Languages

> 80 implementations !
> in 7 languages!
> task: string manipulation 

and search in a dictionary
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> dynamic languages are more productive!
> C/C++ use less memory!
> differences between programmers are larger than between 

languages



What you should know

> What are type systems and what are some of the 
advantages of the different approaches!

> What kind of empirical studies can be run in software 
engineering!

> What is the difference between qualitative and 
quantitative experiments?!

> Can an experiment prove a hypothesis?
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