
Introduction to Software Engineering

12. An Empirical Software Engineering Primer!
(and a bit on type systems)
Mircea F. Lungu

Partially using materials by Massimiliano Di Penta

Almost done…

> Next (week): Project Presentation!
—Public (invite your friends)!
—7 minutes of presenting the project!

> Next (next (week)): Exam Preparation

�2

Report from the CHOOSE Forum

> Dragos: Functional and OO can co-exist!
> Zeller: Testing can be automated!
> Dustdar: We must learn how to design systems with

humans included!
> Di Penta: Empirical studies for detecting bad code!
> Gamma: Monaco is the new editor for Typescript

�3

Empirical Studies

�4

Empirical = Observation | Experimentation

Kinds of empirical studies

> Quantitative: to get numerical relations among variables!
—Are programmers more productive with Java than with C#?!
—Are defects correlated with cyclomatic complexity?!
!

> Qualitative: to interpret a phenomenon just observing it
in its context!
—E.g. by using explanations obtained by interviewing developers!
—I interview developers to know why a given method improves their

productivity!
—By observing some software artifacts

Quantitative Studies

�7

Evaluating state of the
art and practice	

No user involvement	

Tool selection and

tailoring

Evaluating specific
aspects of a technology

in a controlled
environment	

Careful design	

Replication

Evaluating the whole
technology on a
realistic project	

Lower level of control
than experiments

Examples of Empirical Studies in SE

> API Design at Microsoft!
> UML In Practice!
> API Deprecation!
> Influence of Type Systems!
> Pair Programming!
> Is Code Duplication Good or Bad?!
> How Developers use Reflection!
> Comparing Programming Languages!
> Which metrics correlate better with perceived complexity?

�8

Case Study: Static vs. Dynamic Typing

�9

Type systems

> Goal: assigning meaning to bits!
> Multiple aspects!

—Weak!
—Strong!
—Static!
—Dynamic!

> Automate boring checks

�10

Weak Typing

> When one can “coerce” a variable of one type to be used
in stead of a variable of another type!

> Pointer Arithmetic!
> Languages: C

�11

Strong Typing

> A type system which prevents the possibility of
unchecked runtime errors!

> Languages: Haskell, Java!
> Advantages: Tool support

�12

Static Type Checking

> Verifying the type safety of a program based on the text
of the program!

> Executed by the compiler!
> Languages: Java, C++

�13

Dynamic Typing

> Type checks are executed at compile time!
> Is not excluded by static typing!
> Languages: Smalltalk, Ruby, Python!
> Advantages: faster round trip

�14

Dynamic Typing Enables Duck Typing

> Duck.quack()

�15

Specifying types is extra work

�16

Type inference can require less specification

�17

object InferenceTest1 extends Application {!
 val x = 1 + 2 * 3 // the type of x is Int!
 val y = x.toString() // the type of y is String!
 def succ(x: Int) = x + 1 // method succ returns Int values!
}!

http://www.scala-lang.org/old/node/127

Static is Great!

�18

James Gosling

Anything that tells you about a
mistake earlier not only makes

things more reliable because you
find the bugs, but the time you

don't spend hunting bugs is time
you can spend doing something

else

http://www.artima.com/intv/strongweak.html

http://www.artima.com/intv/strongweak.html

Dynamic is Great!

�19

The flexibility of dynamically typed languages
makes writing code significantly easier. There

are no build time issues at all. Life in a
dynamically typed world is fundamentally

simpler.

Robert Martin

http://www.artima.com/weblogs/viewpost.jsp?thread=4639

Impact on Development Time

> 49 subjects!
> developing a parser!
> 27 hours of work time!
> Purity language (16 hours

training)!
> 200 test cases

�20> static type system has no impact on development time

Intermezzo: Designing Controlled Experiments

> Hypothesis formulation!
> Controlling Variables!
> Threats to validity!
> Replication

�21

Hypothesis formulation

> The experiment aims at rejecting a null hypothesis!
> We can reject the null hypothesis → we can draw

conclusions!
> Hypothesis must be specific

�22

Process…
Independent	

Variables

Dependent	

variableExp.

design
…

Treatment

Fixed independent variables

Controlling the variables

[Wohlin et al., 2000]

Null Hypothesis H0

> There do not exist trend/patterns in the experimental
setting: the occurred differences are due to chances!

> Example: there is no difference in code comprehension
with the new technique and the old one H0 μNold=
μNnew

�24

Alternative Hypothesis Ha

> In favor of which the null hypothesis is rejected!
> Example: the new technique allows a better level of code

comprehension than the old one H0 μNold< μNnew

�25

Important!

> An experiment does not prove any theory, it can only fail
to reject an hypothesis!

> The logic of scientific discovery [Popper, 1959]!
—Any statement made in a scientific field is true until anybody can

contradict it!
> In practice we could do it after several replications…

�26

Quiz

> Average time is 20% higher in the control group than in
the experimental group. Can we conclude that the
experimental treatment is better?

�27

Can you eat the cake and have it too?

�28

function twoMoreThanYou(calculateANumber:
Function):number {!
 return calculateANumber(4) + 2;!
}!
!
function double(n:number):number {!
 return n*2;!
}!
!
console.log("TWO MORE", twoMoreThanYou(double))!

Typescript, Dart add optional static type annotations
http://en.wikipedia.org/wiki/TypeScript

Bonus: An Experiment About Comparing
Languages

> 80 implementations !
> in 7 languages!
> task: string manipulation

and search in a dictionary

�29

> dynamic languages are more productive!
> C/C++ use less memory!
> differences between programmers are larger than between

languages

What you should know

> What are type systems and what are some of the
advantages of the different approaches!

> What kind of empirical studies can be run in software
engineering!

> What is the difference between qualitative and
quantitative experiments?!

> Can an experiment prove a hypothesis?

�30

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

