
Oscar Nierstrasz

Programmierung 2
Object-Oriented Programming with Java

Friday, January 20, 12

2

P2 — Object-Oriented Programming

Lecturer: Oscar Nierstrasz

Assistants: Niko Schwarz, Aaron Karper, Joel Krebs

WWW: scg.unibe.ch/teaching/p2

Friday, January 20, 12

> Goals, Schedule
> What is programming all about?
> What is Object-Oriented programming?
> Foundations of OOP
> Why Java?
> Programming tools, version control

Roadmap

3

Friday, January 20, 12

> Goals, Schedule
> What is programming all about?
> What is Object-Oriented programming?
> Foundations of OOP
> Why Java?
> Programming tools, version control

Roadmap

4

Friday, January 20, 12

5

Your Learning Targets

+

You understand requirements engineering,
designing and implementing object-oriented software

You can understand and create basic UML Diagrams

You apply a Test-Driven Development process

You use your IDE, Debugger efficiently and effectively

You understand and can apply various Design Patterns

You can communicate and work in Teams

Knowledge

Skills

Friday, January 20, 12

6

The Big Picture

P2 ESE PSE …P1

EI DA

DB MMS

Friday, January 20, 12

7

Recommended Texts

> Java in Nutshell: 5th edition,
! David Flanagan, O’Reilly, 2005.

> An Introduction to Object-Oriented Programming,
! Timothy Budd, Addison-Wesley, 2004.

> Object-Oriented Software Construction,
! Bertrand Meyer,Prentice Hall, 1997.

> Object Design - Roles, Responsibilities and Collaborations,
! Rebecca Wirfs-Brock, Alan McKean, Addison-Wesley, 2003.

> Design Patterns: Elements of Reusable Object-Oriented Software,
! Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Addison Wesley,

Reading, Mass., 1995.

> The Unified Modeling Language Reference Manual,
! James Rumbaugh, Ivar Jacobson, Grady Booch, Addison-Wesley, 1999

Friday, January 20, 12

8

Schedule

1. Introduction
2. Object-Oriented Design Principles
3. Design by Contract
4. A Testing Framework
5. Iterative Development
6. Debugging and Tools
7. Inheritance and Refactoring
8. Advanced OO Design (lab)
9. GUI Construction
10.Guidelines, Idioms and Patterns
11.A bit of C++
12.A bit of Smalltalk
13.Guest Lecture — Einblicke in die Praxis
14.Final Exam

Friday, January 20, 12

> Goals, Schedule
> What is programming all about?
> What is Object-Oriented programming?
> Foundations of OOP
> Why Java?
> Programming tools, version control

Roadmap

9

Friday, January 20, 12

What is the hardest part of programming?

Friday, January 20, 12

11

What constitutes programming?

> Understanding requirements
> Design
> Testing
> Debugging
> Developing data structures and algorithms
> User interface design
> Profiling and optimization
> Reading code
> Enforcing coding standards
> ...

Friday, January 20, 12

> Goals, Schedule
> What is programming all about?
> What is Object-Oriented programming?
> Foundations of OOP
> Why Java?
> Programming tools, version control

Roadmap

12

Friday, January 20, 12

Programming is modeling

13

Friday, January 20, 12

14

Encapsulation

Composition

Distribution of
Responsibility

Message Passing

Inheritance

Abstraction & Information Hiding

Nested Objects

Separation of concerns
(e.g., HTML, CSS)

Delegating responsibility

Conceptual hierarchy,
polymorphism and reuse

What is Object-Oriented Programming?

Friday, January 20, 12

(3,3)

(6,6)

(12,3)

(5,9)

(10,12)

15

Procedural versus OO designs

Problem: compute the total area of a set of geometric
shapes

public static void main(String[] args) {
! Picture myPicture = new Picture();
! myPicture.add(new Square(3,3,3)); ! ! // (x,y,width)
! myPicture.add(new Rectangle(5,9,5,3));! // (x,y,width,height)
! myPicture.add(new Circle(12,3,3)); ! ! // (x,y,radius)
!
! System.out.println("My picture has size " + myPicture.size());
}

How to compute the size?

Friday, January 20, 12

16

Procedural approach: centralize computation
double size() {
! double total = 0;
! for (Shape shape : shapes) {
! ! switch (shape.kind()) {
! ! case SQUARE:
! ! ! Square square = (Square) shape;
! ! ! total += square.width * square.width;
! ! ! break;
! ! case RECTANGLE:
! ! ! Rectangle rectangle = (Rectangle) shape;
! ! ! total += rectangle.width * rectangle.height;
! ! ! break;
! ! case CIRCLE:
! ! ! Circle circle = (Circle) shape;
! ! ! total += java.lang.Math.PI * circle.radius * circle.radius / 2;
! ! ! break;
! ! }
! }
! return total;
}

Friday, January 20, 12

Object-oriented approach: distribute computation

17

double size() {
! double total = 0;
! for (Shape shape : shapes) {
! ! total += shape.size();
! }
! return total;
}

What are the advantages and
disadvantages of the two solutions?

public class Square extends Shape {
...
! public double size() {
! ! return width*width;
! }
}

Friday, January 20, 12

> Goals, Schedule
> What is programming all about?
> What is Object-Oriented programming?
> Foundations of OOP
> Why Java?
> Programming tools, version control

Roadmap

18

Friday, January 20, 12

19

Object-Oriented Design in a Nutshell

> Identify minimal requirements
> Make the requirements testable
> Identify objects and their responsibilities
> Implement and test objects
> Refactor to simplify design
> Iterate!

Friday, January 20, 12

20

Responsibility-Driven Design

> Objects are responsible to maintain information and
provide services

> A good design exhibits:
—high cohesion of operations and data within classes
— low coupling between classes and subsystems

> Every method should perform one, well-defined task:
—High level of abstraction — write to an interface, not an

implementation

Friday, January 20, 12

21

Design by Contract

> Formalize client/server contract as obligations
> Class invariant — formalize valid state
> Pre- and post-conditions on all public services

—clarifies responsibilities
—simplifies design
—simplifies debugging

Friday, January 20, 12

22

Extreme Programming

Some key practices:
> Simple design

—Never anticipate functionality that you “might need later”
> Test-driven development

—Only implement what you test!
> Refactoring

—Aggressively simplify your design as it evolves
> Pair programming

—Improve productivity by programming in pairs

Friday, January 20, 12

23

Testing

> Formalize requirements
> Know when you are done
> Simplify debugging
> Enable changes
> Document usage

Friday, January 20, 12

24

Code Smells

> Duplicated code
> Long methods
> Large classes
> Public instance variables
> No comments
> Useless comments
> Unreadable code
> …

Friday, January 20, 12

Refactoring

25

! Common refactoring operations:
> Rename methods, variables and classes
> Redistribute responsibilities
> Factor out helper methods
> Push methods up or down the hierarchy
> Extract class
> …

“Refactoring is the process of rewriting a computer
program or other material to improve its structure or
readability, while explicitly keeping its meaning or
behavior.”

— wikipedia.org

Friday, January 20, 12

26

Design Patterns

! “a general repeatable solution to a commonly-occurring problem in
software design.”

Example
> Adapter — “adapts one interface for a class into one that a client

expects.”

Patterns:
> Document “best practice”
> Introduce standard vocabulary
> Ease transition to OO development
But …
> May increase flexibility at the cost of simplicity

Friday, January 20, 12

> Goals, Schedule
> What is programming all about?
> What is Object-Oriented programming?
> Foundations of OOP
> Why Java?
> Programming tools, version control

Roadmap

27

Friday, January 20, 12

28

Why Java?

Special characteristics
> Resembles C++ minus the complexity
> Clean integration of many features
> Dynamically loaded classes
> Large, standard class library

Simple Object Model
> “Almost everything is an object”
> No pointers
> Garbage collection
> Single inheritance; multiple subtyping
> Static and dynamic type-checking
Few innovations, but reasonably clean, simple and usable.

Friday, January 20, 12

1960

1970

1980

1990

2000

FORTRAN

1950

ALGOL 60 COBOL LISP

Simula 67

Smalltalk 72

Smalltalk 80

Squeak

ALGOL 68

PrologPascal

Clu

Eiffel Oberon

Ada 95

2010

Perl

awk

php

Groovy

Python

Ada

Modula-2

C#

JavaScript
Java

PL/1

C

C++

Objective C Self

Ruby

29

History

Friday, January 20, 12

> Goals, Schedule
> What is programming all about?
> What is Object-Oriented programming?
> Foundations of OOP
> Why Java?
> Programming tools, version control

Roadmap

30

Friday, January 20, 12

31

Programming Tools

Know your tools!

—IDEs (Integrated Development Environment)— e.g., Eclipse,
—Version control system — e.g., svn,cvs, rcs
—Build tools — e.g., maven, ant, make
—Testing framework — e.g., Junit
—Debuggers — e.g., jdb
—Profilers — e.g., java -prof, jip
—Document generation — e.g., javadoc

Friday, January 20, 12

32

Version Control Systems

A version control system keeps track of multiple file
revisions:

> check-in and check-out of files
> logging changes (who, where, when)
> merge and comparison of versions
> retrieval of arbitrary versions
> “freezing” of versions as releases
> reduces storage space (manages sources files + multiple

“deltas”)

Friday, January 20, 12

33

Version Control

Version control enables you to make radical changes to a
software system, with the assurance that you can
always go back to the last working version.

✎ When should you use a version control system?
✔ Use it whenever you have one available, for even the

smallest project!

Version control is as important as testing in iterative
development!

Friday, January 20, 12

34

What you should know!

✎ What is meant by “separation of concerns”?
✎ Why do real programs change?
✎ How does object-oriented programming support

incremental development?
✎ What is a class invariant?
✎ What are coupling and cohesion?
✎ How do tests enable change?
✎ Why are long methods a bad code smell?

Friday, January 20, 12

35

Can you answer these questions?

✎ Why does up-front design increase risk?
✎ Why do objects “send messages” instead of “calling

methods”?
✎ What are good and bad uses of inheritance?
✎ What does it mean to “violate encapsulation”?
✎ Why is strong coupling bad for system evolution?
✎ How can you transform requirements into tests?
✎ How would you eliminate duplicated code?
✎ When is the right time to refactor your code?

Friday, January 20, 12

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Friday, January 20, 12

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

