
Oscar Nierstrasz

3. Design by Contract

Thursday, 8 March 12

Design by Contract

2

Bertrand Meyer, Touch of Class —
Learning to Program Well with Objects
and Contracts, Springer, 2009.

Thursday, 8 March 12

Roadmap

3

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Thursday, 8 March 12

Roadmap

4

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Thursday, 8 March 12

Class Invariants

5

An invariant is a predicate that must hold at certain points
in the execution of a program

A class invariant characterizes the valid states of instances
It must hold:

1. after construction
2. before and after every public method

+service
–state
Provider class invariant:

state is valid

Thursday, 8 March 12

Client
+service
–state
Provider

precondition:
request ok1:request

2:response
postcondition:

service guaranteed!

6

Contracts

A contract binds the client to pose valid requests, and
binds the provider to correctly provide the service.

Thursday, 8 March 12

7

Contract violations

If either the client or the provider violates the contract,
an exception is raised.

NB: The service does not need to implement any special
logic to handle errors — it simply raises an exception!

Client
+service
–state
Provider

precondition:
request ok1:bad request

2:exception
postcondition:

service guaranteed!

Thursday, 8 March 12

8

Exceptions, failures and defects

> An exception is the occurrence of an abnormal condition
during the execution of a software element.

> A failure is the inability of a software element to satisfy its
purpose.

> A defect (AKA “bug”) is the presence in the software of
some element not satisfying its specification.

Thursday, 8 March 12

Disciplined Exceptions

> There are only two reasonable ways to react to an
exception:
1. clean up the environment and report failure to the client

(“organized panic”)
2. attempt to change the conditions that led to failure and retry

9

A failed assertion often indicates presence of a software
defect, so “organized panic” is usually the best policy.

Thursday, 8 March 12

Roadmap

10

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Thursday, 8 March 12

11

Stacks

A Stack is a classical data abstraction with many applications in
computer programming.
Stacks support two mutating methods: push and pop.

Operation Stack isEmpty() size() top()

TRUE 0 (error)
push(6) FALSE 1 6
push(7) FALSE 2 7
push(3) FALSE 3 3
pop() FALSE 2 7

push(2) FALSE 3 2
pop() FALSE 2 7

6 7

6 7 3

6 7

6 7 2

6 7

6

Thursday, 8 March 12

12

Stack pre- and postconditions

Stacks should respect the following contract:

service pre post

isEmpty() - no state change

size() - no state change

push(Object item) -
not empty,
size == old size + 1,
top == item

top() not empty no state change

pop() not empty size == old size -1

Thursday, 8 March 12

Stack invariant

> The only thing we can say about the Stack class
invariant is that the size is always ≥ 0
—we don’t know anything yet about its state!

13

Thursday, 8 March 12

Roadmap

14

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Thursday, 8 March 12

Design by Contract

15

“If you promise to call S with the precondition
satisfied, then I, in return, promise to deliver a final
state in which the post-condition is satisfied.”

Consequence:
—if the precondition does not hold, the object is not required to

provide anything! (in practice, an exception is raised)

When you design a class, each service S provided
must specify a clear contract.

Thursday, 8 March 12

16

In other words …

Design by Contract =
Don’t accept anybody

else’s garbage!

Thursday, 8 March 12

17

Pre- and Post-conditions

The pre-condition binds clients:
—it defines what the data abstraction requires for a call to the

operation to be legitimate
—it may involve initial state and arguments
—example: stack is not empty

The post-condition, in return, binds the provider:
—it defines the conditions that the data abstraction ensures on

return
—it may only involve the initial and final states, the arguments

and the result
—example: size = old size + 1

Thursday, 8 March 12

18

Benefits and Obligations

A contract provides benefits and obligations for both
clients and providers:

Obligations Benefits

Client Only call pop() on a
non-empty stack!

Stack size decreases by 1.
Top element is removed.

Provider
Decrement the size.
Remove the top
element.

No need to handle case
when stack is empty!

Thursday, 8 March 12

Roadmap

19

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Thursday, 8 March 12

20

StackInterface

Interfaces let us abstract from concrete implementations:

✎How can clients accept multiple implementations of a
data abstraction?

✔ Make them depend only on an interface or an abstract
class.

public interface StackInterface<E> {
! public boolean isEmpty();
! public int size();
! public void push(E item);
! public E top();
! public void pop();
}

Thursday, 8 March 12

21

Interfaces in Java

Interfaces reduce coupling between objects and their
clients:

> A class can implement multiple interfaces
—... but can only extend one parent class

> Clients should depend on an interface, not an
implementation
—... so implementations don’t need to extend a specific class

Define an interface for any data abstraction
that will have more than one implementation

Thursday, 8 March 12

size = 0

top =

nilsize = 1

top = 6

nil

22

Stacks as Linked Lists

A Stack can easily
be implemented by
a linked data
structure:

stack = new Stack();
stack.push(6);
stack.push(7);
stack.push(3);
stack.pop();

size = 2

top =

6

nil

7

size = 3

top =

6

nil

7

3

size = 2

top =

6

nil

7

Thursday, 8 March 12

23

LinkStack Cells

We can define the Cells of the linked list as an inner class
within LinkStack:

public class LinkStack<E> implements StackInterface<E> {
! private Cell top;
! private class Cell {
! ! E item;
! ! Cell next;
! ! Cell(E item, Cell next) {
! ! ! this.item = item;
! ! ! this.next = next;
! ! }
! }
! ...
}

Thursday, 8 March 12

24

Private vs Public instance variables

✎ When should instance variables be public?
✔ Always make instance variables private or protected.

The Cell class is a special case, since its instances are
strictly private to LinkStack!

Thursday, 8 March 12

25

LinkStack abstraction

The constructor must construct a valid initial state:

public class LinkStack<E> implements StackInterface<E> {
! ...
! private int size;
! public LinkStack() {
! ! // Establishes the class invariant.
! ! top = null;
! ! size = 0;
! }
! ...

Thursday, 8 March 12

26

Class Invariants

A class invariant is any condition that expresses the valid
states for objects of that class:

> it must be established by every constructor
> every public method

—may assume it holds when the method starts
—must re-establish it when it finishes

Stack instances must satisfy the following invariant:
> size ≥ 0
> ...

Thursday, 8 March 12

27

LinkStack Class Invariant

A valid LinkStack instance has an integer size, and a
top that points to a sequence of linked Cells, such
that:
—size is always ≥ 0
—When size is zero, top points nowhere (== null)
—When size > 0, top points to a Cell containing the top item

Thursday, 8 March 12

When to check invariants?

> In principle, check invariants:
—at the end of each constructor
—at the end of every public mutator

28

Thursday, 8 March 12

Roadmap

29

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Thursday, 8 March 12

30

Assertions

> An assertion is a declaration of a boolean expression that
the programmer believes must hold at some point in a
program.
—Assertions should not affect the logic of the program
—If an assertion fails, an exception is raised

x = y*y;
assert x >= 0;

Thursday, 8 March 12

31

Assertions

Assertions have four principle applications:
1. Help in writing correct software

— formalizing invariants, and pre- and post-conditions
2. Documentation aid

— specifying contracts
3. Debugging tool

— testing assertions at run-time
4. Support for software fault tolerance

— detecting and handling failures at run-time

Thursday, 8 March 12

32

Assertions in Java

assert is a keyword in Java since version 1.4

will raise an AssertionError if expression is false.
—NB: Throwable Exceptions must be declared; Errors need not be!

✔ Be sure to enable exceptions in eclipse! (And set the vm
flag -enableassertions [-ea])

assert expression;

Thursday, 8 March 12

33

Enabling assertions in eclipse

Thursday, 8 March 12

34

Checking pre-conditions

Assert pre-conditions to inform clients when they violate the
contract.

✎ When should you check pre-conditions to methods?
✔ Always check pre-conditions, raising exceptions if they

fail.

public E top() {
! assert !this.isEmpty(); ! // pre-condition
! return top.item;
}

NB: This is all you have to do!

Thursday, 8 March 12

35

Checking class invariants

Every class has its own invariant:

protected boolean invariant() {
! return (size >= 0) &&
! ! ((size == 0 && this.top == null)
! ! || (size > 0 && this.top != null));
}

Why protected and not private?

Thursday, 8 March 12

36

Checking post-conditions

Assert post-conditions and invariants to inform yourself
when you violate the contract.

✎ When should you check post-conditions?
✔ Check them whenever the implementation is non-trivial.

! public void push(E item) {
! ! top = new Cell(item, top);
! ! size++;
! ! assert !this.isEmpty();!! ! ! // post-condition
! ! assert this.top() == item;!! ! // post-condition
! ! assert invariant();! ! ! ! !
! }

NB: This is all you have to do!

Thursday, 8 March 12

Roadmap

37

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Thursday, 8 March 12

38

Example: Balancing Parentheses

Problem:
> Determine whether an expression containing parentheses

(), brackets [] and braces { } is correctly balanced.

Examples:
> balanced:

> not balanced:

if (a.b()) { c[d].e(); }
else { f[g][h].i(); }

((a+b())

Thursday, 8 March 12

39

A simple algorithm

Approach:
> when you read a left parenthesis, push the matching

parenthesis on a stack
> when you read a right parenthesis, compare it to the

value on top of the stack
— if they match, you pop and continue
— if they mismatch, the expression is not balanced

> if the stack is empty at the end, the whole expression is
balanced, otherwise not

Thursday, 8 March 12

40

Using a Stack to match parentheses

Sample input: “([{ }]]”

Input Case Op Stack
(left push))
[left push])]
{ left push })]}
} match pop)]
] match pop)
] mismatch ^false)

Thursday, 8 March 12

41

The ParenMatch class

A ParenMatch object uses a stack to check if
parentheses in a text String are balanced:

public class ParenMatch {
! private String line;
! private StackInterface<Character> stack;
!
! public ParenMatch(String aLine,
! ! ! ! ! ! ! ! StackInterface<Character> aStack) {
! {
! ! line = aLine;
! ! stack = aStack;
! }

Thursday, 8 March 12

42

A declarative algorithm

We implement our algorithm at a high level of abstraction:

public boolean parenMatch() {
! for (int i=0; i<line.length(); i++) {
! ! char c = line.charAt(i);
! ! if (isLeftParen(c)) { // expect matching right paren later
! ! ! stack.push(matchingRightParen(c)); // Autoboxed to Character
! ! } else {
! ! ! if (isRightParen(c)) {
! ! ! ! // empty stack => missing left paren
! ! ! ! if (stack.isEmpty()) { return false; }
! ! ! ! if (stack.top().equals(c)) { // Autoboxed
! ! ! ! ! stack.pop();
! ! ! ! } else { return false; } // mismatched paren
! ! ! }
! ! }
! }
! return stack.isEmpty(); // not empty => missing right paren
}

Thursday, 8 March 12

43

Ugly, procedural version

public boolean parenMatch() {
! char[] chars = new char[1000]; // ugly magic number
! int pos = 0;
! for (int i=0; i<line.length(); i++) {
! ! char c = line.charAt(i);
! ! switch (c) { // what is going on here?
! ! case '{' : chars[pos++] = '}'; break;
! ! case '(' : chars[pos++] = ')'; break;
! ! case '[' : chars[pos++] = ']'; break;
! ! case ']' : case ')' : case '}' :
! ! ! if (pos == 0) { return false; }
! ! ! if (chars[pos-1] == c) { pos--; }
! ! ! else { return false; }
! ! ! break;
! ! default : break;
! ! }
! }
! return pos == 0; // what is this?
}

Thursday, 8 March 12

44

Helper methods

The helper methods are trivial to implement, and their
details only get in the way of the main algorithm.

	 private boolean isLeftParen(char c) {
! ! return (c == '(') || (c == '[') || (c == '{');
! }
!
! private boolean isRightParen(char c) {
! ! return (c == ')') || (c == ']') || (c == '}');
! }

Thursday, 8 March 12

45

Running parenMatch

public static void parenTestLoop(StackInterface<Character> stack) {
! BufferedReader in =
! ! new BufferedReader(new InputStreamReader(System.in));
! String line;
! try {
! ! System.out.println("Please enter parenthesized expressions to test");
! ! System.out.println("(empty line to stop)");
! ! do {
! ! ! line = in.readLine();
! ! ! System.out.println(new ParenMatch(line, stack).reportMatch());
! ! } while(line != null && line.length() > 0);
! ! System.out.println("bye!");
! } catch (IOException err) {
! } catch (AssertionException err) {
! ! err.printStackTrace();
! }
}

Thursday, 8 March 12

46

Running ParenMatch.main ...

Which contract has been violated?

Please enter parenthesized expressions to test
(empty line to stop)
(hello) (world)
"(hello) (world)" is balanced
()
"()" is balanced
static public void main(String args[]) {
"static public void main(String args[]) {" is not balanced
()
"()" is not balanced
}
"}" is balanced

"" is balanced
bye!

Thursday, 8 March 12

47

What you should know!

✎ What is an abstract data type?
✎ What is the difference between encapsulation and

information hiding?
✎ How are contracts formalized by pre- and post-

conditions?
✎ What is a class invariant and how can it be specified?
✎ What are assertions useful for?
✎ What situations may cause an exception to be raised?
✎ How can helper methods make an implementation more

declarative?

Thursday, 8 March 12

48

Can you answer these questions?

✎When should you call super() in a constructor?
✎When should you use an inner class?
✎What happens when you pop() an empty java.util.Stack?

Is this good or bad?
✎What impact do assertions have on performance?
✎Can you implement the missing LinkStack methods?

Thursday, 8 March 12

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Thursday, 8 March 12

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

