
Oscar Nierstrasz

9. GUI Construction

Monday, September 19, 11

2

GUI Construction

Sources
> David Flanagan, Java in Nutshell: 5th edition, O’Reilly.
> David Flanagan, Java Foundation Classes in a Nutshell,

O’Reilly
> http://java.sun.com/docs/books/tutorial/uiswing

> ant.apache.org

Monday, September 19, 11

http://ant.apache.org
http://ant.apache.org

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

3

Monday, September 19, 11

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

4

Monday, September 19, 11

5

A Graphical TicTacToe?

Our existing TicTacToe implementation is very limited:
> single-user at a time
> textual input and display

We would like to migrate it towards an interactive game:
> running the game with graphical display and mouse input

Monday, September 19, 11

6

Model-View-Controller

Version 6 of our game implements a model of the game, without a GUI. The
GameGUI will implement a graphical view and a controller for GUI events.

The MVC paradigm separates an application from its GUI so that
multiple views can be dynamically connected and updated.

:MouseListener

clicks mouse

Model:TicTacToe

:MouseListener

1:mouseClicked()

1.1.1:update()

1.1.2:update()

Controller

Views

1.1:move()

Monday, September 19, 11

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout

Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

7

Monday, September 19, 11

Component
A Container is a
component that may
contain other
components.

Container LabelButton

Panel Window

java.applet.Applet

A Panel is a
container inside
another container.
(E.g., an Applet
inside a browser.)

Frame

A Frame is a top-
level Window

8

AWT Components and Containers

The java.awt package defines GUI components, containers and their
layout managers.

NB: There are also many graphics classes to define colours, fonts,
images etc.

Monday, September 19, 11

9

Swing JComponents

The javax.swing package defines GUI components that can
adapt their “look and feel” to the current platform.

Monday, September 19, 11

10

Swing Containers and Containment

Jbutton b = new Jbutton(“Push me”);
JPanel p = new Jpanel();
p.add(b);

Swing Containers may contain other Components

Monday, September 19, 11

11

Layout Management

swing LayoutManagersawt LayoutManagers

The Layout Manager defines how the components are
arranged in a container (size and position).

JPanel p = new JPanel(new BorderLayout());

http://java.sun.com/docs/books/tutorial/uiswing/layout/using.html

Container contentPane = frame.getContentPane();
contentPane.setLayout(new FlowLayout());

Monday, September 19, 11

12

An example: GridLayout

A GridLayout places components in a grid of cells.
> Each component takes up all the space in a cell.
> Each cell is the same size

GridLayout experimentLayout = new GridLayout(0,2);
…
compsToExperiment.setLayout(experimentLayout);
compsToExperiment.add(new Jbutton(“Button 1”);
compsToExperiment.add(new Jbutton(“Button 2”);

Monday, September 19, 11

13

The GameGUI

The GameGUI is a JFrame using a BorderLayout (with a centre and up to
four border components), and containing a JButton (“North”), a JPanel
(“Center”) and a JLabel (“South”).

The central Panel itself
contains a grid of squares
(Panels) and uses a
GridLayout.

NB: GameGUI and Place are the only
classes that differ for AWT & Swing

:GameGUI

:Panel:Button :Label

:Panel :Panel...

Monday, September 19, 11

14

Laying out the GameGUI

public class GameGUI extends JFrame implements Observer {
! …
! public GameGUI(String title) throws HeadlessException {
! ! super(title);
! ! game = makeGame();
! ! …
! ! this.setSize(…);
! ! add("North", makeControls());
! ! add("Center", makeGrid());
! ! label = new JLabel();
! ! add("South", label);
! ! showFeedBack(game.currentPlayer().mark() + " plays");
! ! …
! ! this.show();
! }

TicTacToe v7-swing

Monday, September 19, 11

15

Helper methods

As usual, we introduce helper methods to hide the details of
GUI construction ...

private Component makeControls() {
! JButton again = new JButton("New game");
! ...
! return again;
}

Monday, September 19, 11

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

16

Monday, September 19, 11

17

Interactivity with Events

> To make your GUI do something you need to handle
events
—An event is typically a user action — a mouse click, key stroke, etc.
—The Java Event model is used by Java AWT and Swing

(java.awt.AWTEvent and javax.swing.event)

Monday, September 19, 11

18

Concurrency and Swing

> The program is always responsive to user interaction, no
matter what it is doing.

> The runtime of the Swing framework creates threads —
you don’t explicitly create them.

> The Event Dispatch thread is responsible for event
handling.

Monday, September 19, 11

19

Events and Listeners (I)

Instead of actively checking for GUI events, you can define callback
methods that will be invoked when your GUI objects receive events:

Hardware events ...
(MouseEvent, KeyEvent, ...)

AWT Framework/
Swing Framework

Callback methods

... are handled by subscribed
Listener objects

AWT/Swing Components publish events and (possibly multiple)
Listeners subscribe interest in them.

http://java.sun.com/docs/books/tutorial/uiswing/events/index.html

Monday, September 19, 11

20

Events and Listeners (II)

Every AWT and Swing component publishes a variety of different events
(see java.awt.event) with associated Listener interfaces).

Component Events Listener Interface Listener methods

JButton ActionEvent ActionListener actionPerformed()

JComponent

MouseEvent

MouseListener

mouseClicked()

JComponent

MouseEvent

MouseListener

mouseEntered()

JComponent

MouseEvent

MouseListener mouseExited()

JComponent

MouseEvent

MouseListener

mousePressed()

JComponent

MouseEvent

MouseListener

mouseReleased()
JComponent

MouseEvent

MouseMotionListener
mouseDragged()

JComponent

MouseEvent

MouseMotionListener
mouseMoved()

JComponent

KeyEvent KeyListener

keyPressed()

JComponent

KeyEvent KeyListener keyReleased()

JComponent

KeyEvent KeyListener

keyTyped()

Monday, September 19, 11

21

Listening for Button events

When we create the “New game” Button, we attach an
ActionListener with the Button.addActionListener() method:

We instantiate an anonymous inner class to avoid defining a named
subclass of ActionListener.

private Component makeControls() {
! Button again = new Button("New game");
! again.addActionListener(new ActionListener() {
! ! public void actionPerformed(ActionEvent e) {
! ! ! showFeedBack("starting new game ...");
! ! ! newGame(); ! ! ! ! // NB: has access to methods
! ! }! ! ! ! ! ! ! ! // of enclosing class!
! });
! return again;
}

Monday, September 19, 11

22

Gracefully cleaning up

A WindowAdapter provides an empty implementation of the
WindowListener interface (!)

public class GameGUI extends JFrame implements Observer {
! …
! public GameGUI(String title) throws HeadlessException {
! ! …
! ! this.addWindowListener(new WindowAdapter(){
! ! ! public void windowClosing(WindowEvent e) {
! ! ! ! GameGUI.this.dispose();
! ! ! ! // NB: disambiguate “this”!
! ! ! }
! ! });
! ! this.show();
! }

Monday, September 19, 11

23

Listening for mouse clicks

We also attach a MouseListener to each Place on the board.

private Component makeGrid() { ...
! Panel grid = new Panel();
! grid.setLayout(new GridLayout(3, 3));
! places = new Place[3][3];
! for (Row row : Row.values()) {
! ! for (Column column : Column.values()) {
! ! ! Place p = new Place(column, row);
! ! ! p.addMouseListener(new PlaceListener(p, this));
! ! ! ...
! return grid;
}

Monday, September 19, 11

24

The PlaceListener

MouseAdapter is another convenience class that defines empty
MouseListener methods

public class PlaceListener extends MouseAdapter {
! private final Place place;
! private final GameGui gui;
! public PlaceListener(Place myPlace, GameGUI myGui) {
! ! place = myPlace;
! ! gui = myGui;
! }
...

Monday, September 19, 11

25

The PlaceListener ...

We only have to define the mouseClicked() method:

public void mouseClicked(MouseEvent e){
! ...
! if (game.notOver()) {
! ! try {
! ! ! ((GUIplayer) game.currentPlayer()).move(col,row);
! ! ! gui.showFeedBack(game.currentPlayer().mark() + " plays");
! ! } catch (AssertionException err) {
! ! ! gui.showFeedBack("Invalid move ignored ...");
! ! }
! ! if (!game.notOver()) {
! ! ! gui.showFeedBack("Game over -- " + game.winner() + " wins!");
! ! }
! } else {
! ! gui.showFeedBack("The game is over!");
! }
}

Monday, September 19, 11

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

26

Monday, September 19, 11

27

The Observer Pattern

> Also known as the publish/subscribe design pattern - to
observe the state of an object in a program.

> One or more objects (called observers) are registered to
observe an event which may be raised in an observable
object (the observable object or subject).

> The the observable object or subject which may raise an
event maintains a collection of observers.

Monday, September 19, 11

JFrame Observable

AbstractBoardGame

game : BoardGame
label : Jlabel
places : Places[][]

GameGUI

update()

«interface»
Observer

«interface»
BoardGame

TicTacToe Gomoku

*

Observer Observable / Subject
28

Our BoardGame Implementation

Monday, September 19, 11

+ update(Observable, Object)

«interface»
Observer

*

+ addObserver(Observer)
+ deleteObserver(Observer)
+ notifyObservers()
+ notifyObservers(Object)
+ deleteObservers()
setChanged()
clearChanged()
+ hasChanged() : boolean
+ countObservers() : int

Observable

29

Observers and Observables

A class can implement the
java.util.Observer interface
when it wants to be informed of
changes in Observable objects.

An Observable object can have
one or more Observers.

After an observable instance
changes, calling
notifyObservers() causes all
observers to be notified by means
of their update() method.

Monday, September 19, 11

30

Adding Observers to the Observable

public class GameGUI extends JFrame implements Observer
{
! ...
 public GameGUI(String title) throws HeadlessException {
 super(title);
 game = makeGame();
 game.addObserver(this); // notify GameGui if state change

...

Monday, September 19, 11

31

Observing the BoardGame

In our case, the GameGUI represents a View, so plays the
role of an Observer of the BoardGame TicTacToe:

public class GameGUI extends JFrame implements Observer
{
! ...
! public void update(Observable o, Object arg) {
! ! Move move = (Move) arg; // Downcast Object type
! ! showFeedBack("got an update: " + move);
! ! places[move.col][move.row].setMove(move.player);
! }
}
...

Monday, September 19, 11

32

Observing the BoardGame ...

The BoardGame represents the Model, so plays the role of
an Observable (i.e. the subject being
observed):

public abstract class AbstractBoardGame
! extends Observable implements BoardGame
{! ...
! public void move(int col, int row, Player p) {
! ! ...
! ! setChanged();
! ! notifyObservers(new Move(col, row, p));
! }
}

Monday, September 19, 11

33

Handy way of Communicating changes

A Move instance bundles together information about a
change of state in a BoardGame:

public class Move {
! public final int col, row; ! ! // NB: public, but final
! public final Player player;
! public Move(int col, int row, Player player) {
! ! this.col = col; this.row = row;
! ! this.player = player;
! }
! public String toString() {
! ! return "Move(" + col + "," + row + "," + player + ")";
! }
}

Monday, September 19, 11

:Place

:TicTacToe

:PlaceListener

:GameGUI

:GUIplayer

1:new

2:new

3:addObserver(this)

4:new

5:new

6:addMouseListener()

start

34

Setting up the connections

When the GameGUI is created, the model (BoardGame), view
(GameGui) and controller (Place) components are instantiated.

The GameGUI subscribes itself as an Observer to the game
(observable), and subscribes a PlaceListener to MouseEvents for
each Place on the view of the BoardGame.

Monday, September 19, 11

:Place

:TicTacToe

:PlaceListener

:GameGUI
click

:GUIplayer

1:mouseClicked()
1.2.1.2.1:update()

1.1:currentPlayer()
1.2:move()

1.2.1:move()

1.2.1.1:set()

1.2.1.2:notifyObservers()

1.2.1.2.1.1:setMove()

35

Playing the game

Mouse clicks are propagated from a Place (controller) to the
BoardGame (model):

If the corresponding move is valid, the model’s state changes, and
the GameGUI updates the Place (view).

Monday, September 19, 11

36

public void move(int col, int row, Player p)
! throws InvalidMoveException
{
! assert this.notOver();
! assert p == currentPlayer();
! userAssert(this.get(col, row).isNobody(),
! ! ! ! ! ! "That square is occupied!");
! ...
}

private void userAssert(Boolean condition, String message)
! throws InvalidMoveException
{
! if (!condition) {
! ! throw new InvalidMoveException(message);
! }
}

Checking user errors

> Assertion failures are generally a sign of errors in our program
— However we cannot guarantee the user will respect our contracts!
— We need special always-on assertions to check user errors

Monday, September 19, 11

37

Refactoring the BoardGame

Adding a GUI to the game affects many classes. We iteratively introduce
changes, and rerun our tests after every change ...

> Shift responsibilities between BoardGame and Player (both should be
passive!)
— introduce Player interface, InactivePlayer and StreamPlayer classes
— move getRow() and getCol() from BoardGame to Player
— move BoardGame.update() to GameDriver.playGame()
— change BoardGame to hold a matrix of Player, not marks

> Introduce GUI classes (GameGUI, Place, PlaceListener)
— Introduce GUIplayer
— PlaceListener triggers GUIplayer to move

> BoardGame must be observable
— Introduce Move class to communicate changes from BoardGame to

Observer
> Check user assertions!

Monday, September 19, 11

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

38

Monday, September 19, 11

39

Jar files

We would like to bundle the Java class files of our
application into a single, executable file
—A jar is a Java Archive
—The manifest file specifies the main class to execute

We could build the jar manually, but it would be better to
automate the process …

(http://java.sun.com/docs/books/tutorial/deployment/jar/)

Manifest-Version: 1.0
Main-Class: tictactoe.gui.GameGUI

Monday, September 19, 11

40

Ant

Ant is a Java-based make-like utility that uses XML to specify dependencies
and build rules.

You can specify in a “build.xml”:
> the name of a project
> the default target to create
> the basedir for the files of the project
> dependencies for each target
> tasks to execute to create targets
> You can extend ant with your own tasks
> Ant is included in eclipse
 (Each task is run by an object that implements a particular Task interface.)

 (http://ant.apache.org/manual/index.html)

Monday, September 19, 11

41

A Typical build.xml

<project name="TicTacToeGUI" default="all" basedir=".">
<!-- set global properties for this build -->
<property name="src" value="src"/>
<property name="build" value="build"/>
<property name="doc" value="doc"/>
<property name="jar" value="TicTacToeGUI.jar"/>

<target name="all" depends="jar,jdoc"/>

<target name="init">
<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>
<copy todir="${build}/tictactoe/gui/images">

<fileset dir="${src}/tictactoe/gui/images"/>
</copy>
<mkdir dir="${doc}"/>

</target>

<target name="compile" depends="init">
<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"

source="1.5" target="1.5"
classpath="junit.jar" />

</target>

…

Monday, September 19, 11

42

…

<target name="jdoc" depends="init">
<!-- Generate the javadoc -->
<javadoc destdir="${doc}" source="1.5">
<fileset dir="${src}" includes="**/*.java"/>
</javadoc>

</target>

<target name="jar" depends="compile">
<jar jarfile="${jar}”
! manifest="${src}/tictactoe/gui/manifest-run" basedir="${build}"/>

</target>

<target name="run" depends="jar">
<java fork="true" jar="${jar}"/>

</target>

<target name="clean">
<!-- Delete the ${build} directory -->
<delete dir="${build}"/>
<delete dir="${doc}"/>
<delete>

<fileset dir="." includes="TicTacToeGUI.jar"/>
</delete>

</target>
</project>

Monday, September 19, 11

43

Running Ant

% ant jar
Buildfile: build.xml
init:
 [mkdir] Created dir: /Scratch/P2-Examples/build
 [mkdir] Created dir: /Scratch/P2-Examples/doc
compile:
 [javac] Compiling 18 source files to /Scratch/P2-Examples/build
jar:
 [jar] Building jar: /Scratch/P2-Examples/TicTacToeGUI.jar
BUILD SUCCESSFUL
Total time: 5 seconds

Ant assumes that the build file is called build.xml

Monday, September 19, 11

Javadoc

> Javadoc generates API documentation in HTML format
for specified Java source files.

—Each class, interface and each public or protected method may be
preceded by “javadoc comments” between /** and */.

—Comments may contain special tag values (e.g., @author) and
(some) HTML tags.

44

Monday, September 19, 11

45

Javadoc input

package p2.tictactoe;
/**
 * Minimal interface for Player classes that get moves from user
 * and forward them to the game.
 * @author $Author: oscar $
 * @version $Id: Player.java,v 1.5 2005/02/22 15:08:04 oscar Exp $
 */
public interface Player {
! /**
! * @return the char representation of this Player
! * @see AbstractBoardGame#toString
! */
! public char mark();
! …
}

Monday, September 19, 11

46

Javadoc output

Monday, September 19, 11

47

GUI objects in practice ...

Consider using Java webstart
> Download whole applications in a secure way

Consider other GUI frameworks (eg SWT from eclipse)
> org.eclipse.swt.* provides a set of native (operating system specific)

components that work the same on all platforms.

Use a GUI builder
> Interactively build your GUI rather than programming it — add the

hooks later. (e.g. http://jgb.sourceforge.net/index.php)

Monday, September 19, 11

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

48

Monday, September 19, 11

49

A Networked TicTacToe?

We now have a usable GUI for our game, but it still
supports only a single user.

We would like to support:
> players on separate machines
> each running the game GUI locally
> with a remote “game server” managing the state of the

game

Monday, September 19, 11

50

The concept

:GameServer

3:new

X:Player O:Player

:Gomoku

6:new

13:move9:move

2:new

1:join 5:join

4:new 7:new

12:move8:move
10:update 11:update

:GameConsole :GameConsole

:GameGUI :GameGUI14:update 15:update

Monday, September 19, 11

registry

1a:new Server()

main

serverskeletonstub

client

2a:Naming.bind (name, server)1b:Naming.lookup(name)

2b:server.service()

51

Remote Method Invocation

A client may look up up the service using the public name, and obtain a local
object (stub) that acts as a proxy for the remote server object (represented by a
skeleton).

RMI allows an application to register a Java object under
a public name with an RMI registry on the server
machine.

Monday, September 19, 11

52

Playing the game

1d:update() ... 1c:update()

:GameObserver

:GameGUI

:Place

:PlaceListener

:WrappedObserverskel stub

:Gomoku

:PassivePlayer

:GameProxy

click

1a:mouseClicked()

1.1a:move() ... 1b:move()

stub skel

1.2b:move()

1.2.1b:move()

1.2.1.1b:update()1.1d:update()

1.1.1d:setMove()

1.
1b

:c
ur

re
nt

Pl
ay

er
()

Monday, September 19, 11

53

What you should know!

✎The TicTacToe game knows nothing about the GameGUI
or Places. How is this achieved? Why is this a good
thing?

✎What are models, view and controllers?
✎What is a Container,Component?
✎What does a layout manager do?
✎What are events and listeners? Who publishes and who

subscribes to events?
✎How does the Observer Pattern work?
✎Ant
✎ javadoc

Monday, September 19, 11

54

Can you answer these questions?

✎How could you make the game start up in a new
Window?

✎What is the difference between an event listener and an
observer?

✎The Move class has public instance variables — isn’t this
a bad idea?

✎What kind of tests would you write for the GUI code?

Monday, September 19, 11

License

55

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work
only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

Monday, September 19, 11

