
Oscar Nierstrasz

10. Guidelines, Idioms and Patterns

Wednesday, September 21, 11

> Idioms, Patterns and Frameworks
—Programming style: Code Talks; Code Smells

> Basic Idioms
—Delegation, Super, Interface

> Some Design Patterns
—Adapter, Proxy, Template Method, Composite, Observer, Visitor,

State

Roadmap

2

Wednesday, September 21, 11

> Idioms, Patterns and Frameworks
—Programming style: Code Talks; Code Smells

> Basic Idioms
—Delegation, Super, Interface

> Some Design Patterns
—Adapter, Proxy, Template Method, Composite, Observer, Visitor,

State

Roadmap

3

Wednesday, September 21, 11

4

Sources

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns, Addison Wesley, Reading, MA, 1995.

Frank Buschmann, et al., Pattern-Oriented Software Architecture —
A System of Patterns, Wiley, 1996

Mark Grand, Patterns in Java, Volume 1, Wiley, 1998

Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997

“Code Smells”, http://c2.com/cgi/wiki?CodeSmell
 or http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html

Wednesday, September 21, 11

http://c2.com/cgi/wiki?CodeSmell
http://c2.com/cgi/wiki?CodeSmell

5

Style

Code Talks
> Do the simplest thing you can think of (KISS)

—Don't over-design
— Implement things once and only once
—First do it, then do it right, then do it fast

(don’t optimize too early)

> Make your intention clear
—Write small methods
—Each method should do one thing only
—Name methods for what they do, not how they do it
—Write to an interface, not an implementation

Wednesday, September 21, 11

6

Refactoring

Redesign and refactor when the code starts to “smell”
Code Smells (http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html)

> Methods too long or too complex
—decompose using helper methods

> Duplicated code
— factor out the common parts

(e.g., using a Template method Pattern)
> Violation of encapsulation

— redistribute responsibilities
> Too much communication (high coupling)

— redistribute responsibilities
Many idioms and patterns can help you improve your design ...

Wednesday, September 21, 11

7

Refactoring Long Methods

Wednesday, September 21, 11

7

Refactoring Long Methods

short is good!

If I need to comment then
extract as method

Wednesday, September 21, 11

8

What are Idioms and Patterns?

Idioms
Idioms are common programming techniques and
conventions. They are often language-specific.
(http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html)

Patterns Patterns document common solutions to design
problems. They are language-independent.

Libraries
Libraries are collections of functions, procedures or
other software components that can be used in
many applications.

Frameworks
Frameworks are open libraries that define the
generic architecture of an application, and can be
extended by adding or deriving new classes.
(http://martinfowler.com/bliki/InversionOfControl.html)

Frameworks typically make use of common idioms and patterns.Frameworks typically make use of common idioms and patterns.

Wednesday, September 21, 11

> Idioms, Patterns and Frameworks
—Programming style: Code Talks; Code Smells

> Basic Idioms
—Delegation, Super, Interface

> Some Design Patterns
—Adapter, Proxy, Template Method, Composite, Observer, Visitor,

State

Roadmap

9

Wednesday, September 21, 11

10

Delegation

✎ How can an object share behaviour without inheritance?
✔ Delegate some of its work to another object

Inheritance is a common way to extend the behaviour of a
class, but can be an inappropriate way to combine
features.

Delegation reinforces encapsulation by keeping roles and
responsibilities distinct.

Wednesday, September 21, 11

11

Delegation

Example
> When a TestSuite is asked to run(), it delegates the

work to each of its TestCases.

Consequences
> More flexible, less structured than inheritance.

Delegation is one of the most basic object-oriented idioms,
and is used by almost all design patterns.

Wednesday, September 21, 11

12

Delegation example

public class TestSuite implements Test {
! ...
! public void run(TestResult result) {
! ! for(Enumeration e = fTests.elements();
! ! ! ! e.hasMoreElements();)
! ! {
! ! ! if (result.shouldStop())
! ! ! ! break;
! ! ! Test test = (Test) e.nextElement();
! ! ! test.run(result);
! ! }
! }
}

delegate

Wednesday, September 21, 11

13

Super

✎ How do you extend behavior inherited from a superclass?
✔ Overwrite the inherited method, and send a message to

“super” in the new method.

Sometimes you just want to extend inherited behavior,
rather than replace it.

Wednesday, September 21, 11

14

Super

Examples
> Place.paint() extends Panel.paint() with specific painting

behaviour
> Constructors for many classes, e.g., TicTacToe, invoke their

superclass constructors.

Consequences
> Increases coupling between subclass and superclass: if you change

the inheritance structure, super calls may break!

Never use super to invoke a method different than the one being
overwritten — use “this” instead!

Wednesday, September 21, 11

15

Super examples

public class Place extends Panel {
! ...
! public void paint(Graphics g) {
! ! super.paint(g);
! ! Rectangle rect = g.getClipBounds();
! ! int h = rect.height;
! ! int w = rect.width;
! ! int offset = w/10;
! ! g.drawRect(0,0,w,h);
! ! if (image != null) {
! ! ! g.drawImage(image, offset, offset, w-2*offset, h-2*offset, this);
! ! }
! }
! ...

public class TicTacToe extends AbstractBoardGame {
! public TicTacToe(Player playerX, Player playerO)
! {
! ! super(playerX, playerO);
! }

Wednesday, September 21, 11

16

Interface

✎ How do you keep a client of a service independent of
classes that provide the service?

✔ Have the client use the service through an interface
rather than a concrete class.

If a client names a concrete class as a service provider,
then only instances of that class or its subclasses can be
used in future.

By naming an interface, an instance of any class that
implements the interface can be used to provide the
service.

Wednesday, September 21, 11

17

Interface

Example
> Any object may be registered with an Observable if it

implements the Observer interface.

> Consequences
> Interfaces reduce coupling between classes.
> They also increase complexity by adding indirection.

Wednesday, September 21, 11

18

Interface example

public class GameGUI extends JFrame implements Observer {
! …
! public void update(Observable o, Object arg) {
! ! Move move = (Move) arg;
! ! showFeedBack("got an update: " + move);
! ! places_[move.col][move.row].setMove(move.player);
! }
…
}

Wednesday, September 21, 11

> Idioms, Patterns and Frameworks
—Programming style: Code Talks; Code Smells

> Basic Idioms
—Delegation, Super, Interface

> Some Design Patterns
—Adapter, Proxy, Template Method, Composite, Observer,

Visitor, State

Roadmap

19

Wednesday, September 21, 11

20

Adapter Pattern

✎ How do you use a class that provide the right features but
the wrong interface?

✔ Introduce an adapter.

An adapter converts the interface of a class into another
interface clients expect.

> The client and the adapted object remain independent.
> An adapter adds an extra level of indirection.

Also known as Wrapper

Wednesday, September 21, 11

21

Adapter Pattern

Examples
> A WrappedStack adapts java.util.Stack, throwing

an AssertionException when top() or pop() are
called on an empty stack.

> An ActionListener converts a call to
actionPerformed() to the desired handler method.

> Consequences
> The client and the adapted object remain independent.
> An adapter adds an extra level of indirection.

Wednesday, September 21, 11

22

Adapter Pattern example

public class WrappedStack implements StackInterface {

! private java.util.Stack stack;

! public WrappedStack() {
! ! this(new Stack());
! }

! public WrappedStack(Stack stack) {
! ! this.stack = stack;
! }

! public void push(Object item) {
! ! stack.push(item);
! ! assert this.top() == item;
! ! assert invariant();
! }

delegate
request to
adaptee

Wednesday, September 21, 11

23

Proxy Pattern

✎ How do you hide the complexity of accessing objects that
require pre- or post-processing?

✔ Introduce a proxy to control access to the object.

Some services require special pre or post-processing.
Examples include objects that reside on a remote
machine, and those with security restrictions.

A proxy provides the same interface as the object that it
controls access to.

Wednesday, September 21, 11

24

Proxy Pattern - UML

Client

Proxy RealSubject

«interface»
Subject

«delegates»

«uses»

Wednesday, September 21, 11

Client

Proxy RealImage
«delegates»

«uses»

displayImage()

«interface»
Image

25

Proxy Pattern Example (1)

Wednesday, September 21, 11

26

Proxy Pattern Example (2)

public class ProxyImage implements Image {
private String filename;
private Image image;

! public ProxyImage(String filename){
! ! this.filename = filename;
! }
! public void displayImage() {
! ! if (image == null) {
! ! ! image = new RealImage(filename); //load only on demand
! ! }
! ! image.displayImage();
! }
}

delegate request
to real subject

Wednesday, September 21, 11

27

Proxy Pattern Example (3)

public class RealImage implements Image {
! private String filename;
! public RealImage(String filename) {
! ! this.filename = filename;
! ! System.out.println("Loading "+filename);
! }

! public void displayImage() {
! ! System.out.println("Displaying
"+filename);
! }

}

Wednesday, September 21, 11

28

Proxy Pattern Example (4) - the Client

public class ProxyExample {
! public static void main(String[] args) {

! ! ArrayList<Image> images = new ArrayList<Image>();
! ! images.add(new ProxyImage("HiRes_10MB_Photo1"));
! ! images.add(new ProxyImage("HiRes_10MB_Photo2"));
! ! images.add(new ProxyImage("HiRes_10MB_Photo3"));

! ! images.get(0).displayImage();
! ! images.get(1).displayImage();
! ! images.get(0).displayImage(); // already loaded
! }

}

Wednesday, September 21, 11

29

Proxies are used for remote object access

Example
> A Java “stub” for a remote object accessed by Remote

Method Invocation (RMI).

Consequences
> A Proxy decouples clients from servers. A Proxy

introduces a level of indirection.

Proxy differs from Adapter in that it does not change the
object’s interface.

Wednesday, September 21, 11

:ServiceStub

Machine A

:Service
1:doit() 1.1:doit()

Machine B

30

Proxy remote access example

Wednesday, September 21, 11

31

Template Method Pattern

✎ How do you implement a generic algorithm, deferring
some parts to subclasses?

✔ Define it as a Template Method.

A Template Method factors out the common part of similar
algorithms, and delegates the rest to:
—hook methods that subclasses may extend, and
—abstract methods that subclasses must implement.

Wednesday, September 21, 11

32

Template Method Pattern (2)

Example
> TestCase.runBare() is a template method that calls the hook

method setUp().
> AbstractBoardGame’s constructor defers initialization to the

abstract init() method

Consequences
> Template methods lead to an inverted control structure since a parent

classes calls the operations of a subclass and not the other way
around.

Template Method is used in most frameworks to allow application
programmers to easily extend the functionality of framework classes.

Wednesday, September 21, 11

hook()
templateMethod()

AbstractClass

hook()

ConcreteClass1

…
hook()
...

hook()

ConcreteClass2

33

Template Method Pattern - UML

The template method
defines the skeleton
of an algorithm.
Concrete methods
override the hook
methods.

Wednesday, September 21, 11

34

Template Method Pattern Example

Subclasses of TestCase are expected to override hook
method setUp() and possibly tearDown() and
runTest().

public abstract class TestCase implements Test {
! ...
! public void runBare() throws Throwable {
! ! setUp();
! ! try { runTest(); }
! ! finally { tearDown(); }
! }
! protected void setUp() { }!! ! // empty by default
! protected void tearDown() { }
! protected void runTest() throws Throwable { ... }
}

Wednesday, September 21, 11

35

Composite Pattern

✎ How do you manage a part-whole hierarchy of objects in
a consistent way?

✔ Define a common interface that both parts and
composites implement.

Typically composite objects will implement their behavior by
delegating to their parts.

Wednesday, September 21, 11

36

Composite Pattern Example

> Composite allows you to treat a
single instance of an object the
same way as a group of
objects.

> Consider a Tree. It consists of
Trees (subtrees) and Leaf
objects.

Leaf
Tree

Wednesday, September 21, 11

addComponent(IComponent)
removeComponent(IComponent)
getChildren() : Collection

«interface»
IComponent

hook()

Leaf

Composite

37

Composite Pattern Example (2)

Wednesday, September 21, 11

38

Composite Pattern Example (3)

public class Composite implements IComponent {
! private String id;
! private ArrayList<IComponent> list = new ArrayList<IComponent> ();
! public boolean addComponent(IComponent c) {
! ! return list.add(c);
! }
! public Collection getChildren() {
! ! return list;
! }
! public boolean removeComponent(IComponent c) {
! ! return list.remove(c);
! }
! …
}

Wednesday, September 21, 11

39

Composite Pattern Example — Client Usage (4)

public class CompositeClient {
! public static void main(String[] args) {
! ! Composite switzerland = new Composite("Switzerland");
! ! Leaf bern = new Leaf("Bern");
! ! Leaf zuerich = new Leaf("Zuerich");
! ! switzerland.addComponent(bern);
! ! switzerland.addComponent(zuerich);
! ! Composite europe = new Composite("Europe");
! ! europe.addComponent(switzerland);
! ! System.out.println(europe.toString());
! }
}

Wednesday, September 21, 11

40

Observer Pattern

✎ How can an object inform arbitrary clients when it
changes state?

✔ Clients implement a common Observer interface and
register with the “observable” object; the object notifies its
observers when it changes state.

An observable object publishes state change events to its
subscribers, who must implement a common interface
for receiving notification.

Wednesday, September 21, 11

41

Observer Pattern (2)

Example
> See GUI Lecture
> A Button expects its observers to implement the
ActionListener interface.
(see the Interface and Adapter examples)

Consequences
> Notification can be slow if there are many observers for

an observable, or if observers are themselves
observable!

Wednesday, September 21, 11

42

Null Object Pattern

✎ How do you avoid cluttering your code with tests for null
object pointers?

✔ Introduce a Null Object that implements the interface you
expect, but does nothing.

Null Objects may also be Singleton objects, since you never
need more than one instance.

Wednesday, September 21, 11

Client
«uses»

request()

AbstractClass

request()

RealObject

request()

NullObject does
nothing

43

Null Object Pattern — UML

Wednesday, September 21, 11

44

Null Object

Examples
> NullOutputStream extends OutputStream with an

empty write() method

Consequences
> Simplifies client code
> Not worthwhile if there are only few and localized tests for

null pointers

Wednesday, September 21, 11

45

Some other Design Patterns…

State

The state pattern is a behavioral design pattern, also
known as the objects for states pattern. This pattern is
used in to represent the state of an object. This is a clean
way for an object to partially change its type at runtime.

Decorator that allows new/additional behaviour to be added to an
existing method of an object dynamically.

Visitor

a way of separating an algorithm from an object structure.
A practical result of this separation is the ability to add
new operations to existing object structures without
modifying those structures.

and many more…and many more…

Wednesday, September 21, 11

46

What Problems do Design Patterns Solve?

Patterns:
> document design experience
> enable widespread reuse of software architecture
> improve communication within and across software development

teams
> explicitly capture knowledge that experienced developers already

understand implicitly
> arise from practical experience
> help ease the transition to object-oriented technology
> facilitate training of new developers
> help to transcend “programming language-centric” viewpoints

Doug Schmidt, CACM Oct 1995

Wednesday, September 21, 11

47

What you should know!

✎What’s wrong with long methods? How long should a
method be?

✎What’s the difference between a pattern and an idiom?
✎When should you use delegation instead of inheritance?
✎When should you call “super”?
✎How does a Proxy differ from an Adapter?
✎How can a Template Method help to eliminate duplicated

code?
✎When do I use a Composite Pattern? Do you know any

examples from the Frameworks you know?

Wednesday, September 21, 11

48

Can you answer these questions?

✎What idioms do you regularly use when you program?
What patterns do you use?

✎What is the difference between an interface and an
abstract class?

✎When should you use an Adapter instead of modifying the
interface that doesn’t fit?

✎ Is it good or bad that java.awt.Component is an abstract
class and not an interface?

✎Why do the Java libraries use different interfaces for the
Observer pattern (java.util.Observer,
java.awt.event.ActionListener etc.)?

Wednesday, September 21, 11

License

49

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work
only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

Wednesday, September 21, 11

