UNIVERSITATY

12. A bit of Smalitalk

Oscar Nierstrasz

Roadmap

<

> The origins of Smalltalk

> What is Smalltalk?

> Syntax in a nutshell

> Seaside — web development with Smalltalk

Roadmap

=

> The origins of Smalltalk

> What is Smalltalk?

> Syntax in a nutshell

> Seaside — web development with Smalltalk

The origins of Smalltalk

Alan Kay’s Dynabook project (1968)

Alto — Xerox PARC (1973)

gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html

In the late 60s, Alan Kay predicted that in the foreseeable future
handheld multimedia computers would become affordable. He
called this a “Dynabook”. (The photo shows a mockup, not a real
computer.)

He reasoned that such systems would need to be based on object
from the ground up, so he set up a lab at the Xerox Palo Alto
Research Center (PARC) to develop such a fully object-oriented
system, including both software and hardware. They developed
the first graphical workstations with windowing system and
mouse.

Object-oriented language genealogy

1950

1960

1970

1980

1990

2000

2010

| Smalltalk 72 |

| Smalltalk 80

Simula 67

ALGOL 60

ALGOL 68

C#

e e

Simula was the first object-oriented language, designed by Kristen
Nygaard and Ole Johan Dahl. Stmula was designed 1n the early 60s,
to support simulation programming, by adding classes and inheritance
to Algol 60. The language was later standardized as Simula 67.
Programmers quickly discovered that these mechanisms were useful
for general-purpose programming, not just simulations.

Smalltalk adopted the 1deas of objects and message-passing as the
core mechanisms, not just add-ons to a procedural language.

Stroustrup ported the 1deas of Simula to C to support sitmulation

programming. The resulting language was first called “C with
classes, and later C++.

Cox added Smalltalk-style message-passing syntax to C and called 1t
“Objective-C”.

Java itegrated implementation technology from Smalltalk and syntax
from C++.

Squeak and Pharo are modern descendants of Smalltalk-80.

Smalltalk vs. Java vs. C++

Smalltalk Java C++
Object model Pure Hybrid Hybrid
Garbage collection Automatic Automatic Manual
Inheritance Single Single Multiple
Types Dynamic Static Static
Reflection Fully reflective Introspection Introspection
Concurrency Semaphores Monitors Some libraries
Modules Categories, Packages Namespaces

namespaces

The most important difference between Smalltalk, Java and C++,
1s that Smalltalk supports “live programming”. Whereas 1n Java
and C++ you must first write source code and compile it before
you run anything, in Smalltalk you are always programming in a
live environment. You incrementally add classes and compile
methods within a running system.

As a consequence, Smalltalk has to be fully reflective, allowing
you to reify (“turn in objects”) all aspects of the system, and
change them at run time. The only thing you cannot change from
within Smalltalk 1s the virtual machine.

Smalltalk-80 and Pharo

Everything is an object.

Everything is there, all the time.
First windowing system with mouse.
First graphical IDE.

Smalltalk-80 was introduced to the world 1n 1981 in a now-
famous 1ssue of Byte Magazine. The “Smalltalk balloon™ refers to
this 1ssue.

What are Squeak and Pharo?

> Squeak is a modern, open-source, highly portable, fast,
full-featured Smalltalk implementation
—Based on original Smalltalk-80 code

oo
O]

C

> Pharo is a lean and clean fork of Squeak

Phar

http://pharo.org

Squeak was developed by members of the original Smalltalk
team, with the goal of supporting and experimenting with
advanced multimedia systems. The Squeak 1mage was ported
from a Smalltalk-80 1mage.

Pharo 1s a modern descendent of Smalltalk-80, largely obeying
the original syntax and design, but with numerous improvements
to the language, the tools, and the environment. Whereas Squeak
was developed with the goal to support experimentation, Pharo
aspired to offer a clean and stable platform upon which both
industrial and research projects can build.

Pharo by Example

http://pharobyexample.org/

Phar®

by example * Free download
* Open-Source
* Print-on-demand

Pharo by Example 1s a free book, originally published in 2009, to
teach new users Pharo Smalltalk in an example-driven way. Since
Pharo has advanced considerably since then, a revision of the
book 1s underway. The old book nevertheless offers a good
introduction.

Please read the beginning of this book for a quick introduction to
Smalltalk.

A sequel, called “Deep into Pharo™, explains advanced details of
the implementation and available tools. All the material 1s hosted
on github:

github.com/SquareBracketAssociates/

Don’t panic!

New Smalltalkers often think they need to understand
all the details of a thing before they can use ft.

Try to answer the question

“How does this work?”
with
“l don’t care”.

Alan Knight. Smalltalk Guru

This slide 1s a paraphrase of:

Try not to care — Beginning Smalltalk programmers often have trouble
because they think they need to understand all the details of how a thing
works before they can use 1t. This means 1t takes quite a while before they can

master Transcript show: ’‘Hello World’.

One of the great leaps in OO is to be able to answer the question “How does
this work?” with “I don’t care”.

alanknightsblog.blogspot.ch

Roadmap

=

> The origins of Smalltalk

> What is Smalltalk?

> Syntax in a nutshell

> Seaside — web development with Smalltalk

Two rules to remember

Everything is an object

(Nearly) everything in Smalltalk 1s an object, which means that
you can “grab 1t” and talk to it. Everything that you see on the
screen 1S an object, so you can interact with it programmatically.

The implementation of Smalltalk 1tself 1s build up of objects, so
you can grab these objects and explore them. In particular, all the
tools are objects, but also classes and methods are objects. This
feature 1s extremely powerful and leads to a style of programming
that 1s different from the usual edit/compile/run development
cycle.

Everything happens by
sending messages

The only way to make anything happen is by sending messages.
To ask “what can I do with this object?” is the same as asking
“what messages does 1t understand?”

The terminology of “message sending” 1s perhaps unfortunate, as
those new to Smalltalk often assume 1t has something to do with
network communication, but one should understand it as a
metaphor: you do not “call an operation” of an object, but you
politely ask 1t to do something by sending it a request (a
“message’). The object then decides how to respond by checking
to see 1f 1ts class has a “method” for handling this request. If 1t
does, 1t performs the method. If not, 1t asks 1ts superclass if it has
such a method, and so on. If this search fails, the object does not
understand the message (but let’s not get into that now!).

What is Smalltalk?

Image —

Changes -

Virtual machine

Sources

15

Smalltalk 1s often bundled into a single, “one-click” application, but
there are actually four pieces that are important to understand.

Every user of Smalltalk can work with one or more Smalltalk images.
The image file contains a snapshot of all the objects of the running
system. Every time you quit Smalltalk, you can save and update this
snapshot. In addition, the changes file consists of a log of all changes
to the source code of that image, 1.e., all new or changed classes and
all compiled methods. If your image crashes (which 1s possible since
Smalltalk allows you to do anything, even 1f that might be fatal), you
can restart your image and replay your changes, so nothing 1s lost.

In addition, the virtual machine and sources files may be shared
between users. The VM runs the bytecode of compiled methods and
manages the 1mage and changes file. Finally the sources file
(optional) contains all the source code of objects 1n the base image (so
you can not only explore this but modify it if you want).

Demo: Running Pharo

® O

1 Pharo4.0.image

har

x -0 Welcome to Pharo 4.0!

welcome to Pharo, an immersive live programming environment.

You can learn pharo by highlighting the next line and selecting [Do it] from the
context menu:"

PharoTutorial go.

"Pharo 4.0 already comes pre-loaded with a rich set of packages that you can use to
explore the system and develop your own applications. However there is also a huge
library of user contributed projects that you can also load using the 'Configurations
Browser' by executing:"

MetacelloConfigurationBrowser open.

"This browser is also accessible from the World | Tools menu (just click the desktop,

v

16

You can find the demo script 1n the p2-Smalltalk folder of the P2
examples repo:

git clone git://scg.unibe.ch/lectures-p2-examples

The demo 1llustrates: the workspace and basic tools, navigating
between objects and their source code, inspection of live objects,
test-driven development, debugging a live system ...

Mouse Semantics

Operate

Select \ E
;/ Window
i B

o /

é7

Smalltalk-80 assumes you have a “three-button mouse”. The “red
button™ allows you to select an object on the screen, the “yellow
button” pops up a menu of things you can do with it, and the
“blue button™ offers a “meta menu” of system operations. (In
Pharo, the “World menu”.)

Depending on the version of Smalltalk you are using and the
platform you are on, the three buttons may be mapped to different
modifier keys (e.g., <ALT>, <CTL> etc.)

World Menu

x World
t:- System Browser
r# Playground
& Test Runner

<’ Spotter

71J Monticello Browser

5| System B
(2) Help v
- wlndows p

=) Save as...
|- Save and quit

|- Quit

é Finder

& Conﬁguratlon Browser

| Versionner
LJ Komitter

ETranscnpt
® Time Profiler

/4, Critic Browser
@1 Process Browser
(= File Browser

45 Recent Messages
@, Change Sorter

,@ Recover lost changes...

© Emergency Evaluator
{z Screenshot

18

Standard development tools

‘x -0 Playground S
Page > I R
Transcript show: 'Mello worldl’; ¢r h
‘x -0 Transcript =
-
Hello world!
Hello world!
Hello world!
x -0 Test Runner
v
Graphics-Fonts-Tests A FloatTest
Graphics-Tests-Files FractionTest
Graphics-Tests-Primitives LargeNegativeintegerTest
HelpSystem-Tests-Builders LargePositivelntogerTest
HelpSystem-Tests-Core-Model NumberTest
HelpSystem-Tests-Core-Ul RandomTest
HelpSystem-Tests-Core-Utilitie ScaledDecimalTest
KemnelTests-Chronology SmallintegerTest
KemelTests-Classes ItegerDigitlogicTest
KernelTests-Exception IntegerTest
KernelTests-Methods
KernelTests-Numbers
KemelTests-Obyects
KernelTests-Pragmas
KormnelTests-Processes
KernedTests-Protocols
Keymapping-Tests
Maniest-Tests
Metacelio-TestsCore
Metacelio-TestsCore-Conligs
Metacelio TestsCore-Specs
Metacelio-TestsM(
Metacello-TestsMCCore v
<« B
Run Selected Run Profiled Run Failures Run Errors

File out results

x =0 Number>>#isZero -
I kgl PRgliPk.” v O paarcatprintPolicy A - even
i SIE + © FloatPristPolicy arithmetic isDhrisibloBy-
Numbers © mexactFloatPrintPolicy comparing « iinfinite
::’"‘“ L Magnitude converting » SNaN
m‘:"‘“ L Number tervals * isNumber
e L Foat mathematical functions » sZero
» 8 KemelTests L Fracticn printing + Pegative
» i Keymapping-Core L ScaledDecimal testing v odd
Keymapping-MeyCombinatio L Integer truncation and round off * positive
i Keymapping-Pragmas L Largeinteger & “Kesned-Chronology » stricthyPositive
g Keymapping-Settings E LargeNegativelnteger @ "monticelichletree-core
> i Keymapping Tests L LargePositiveinteger @ "Morphic-8ase
| B Keymappeg-ToolsSpeC wi p crliinteger
| 4 TR PR v
Groups Hierarchy [Class side Correnents History Navigator v
1sZero (1)
Aself = @ G
13
L —
x -0 Monticetio Browser -
| +Package +Config +Slice Browse Changes +Repository Save Open
v ¥ Package v
AST-Core (Theintegrator.283) A () /users/oscar Desktop Pharod 0.app/ Contents/ Resources, package-<ache

AST-Tests-Core (Theintegratoe £5)
Announcements-Core (MarcusDenker,55)
Announcements-Help (Theintegrator.12)

AsmJit-Core (MarcunDenker 8)
Asmit-Extension (MarcusDenker.3)
AsmUit-instructions (Theintegrator.13)
AsmJit-Operands (StephaneDucasse.14)

AsmJit-Tests (Theintegrator.21)
Asmit-xB6 (Theintegrator 40}
Athens-Balloon (MarcusDenker.20)
Athens-Cairo (MarcusDenker 85)
Athens-CairoPools (NicolaiHess. 14)
Athens-Core (MarcusDenker.50)

Announcemants-Tests-Core (Theintegratee 25)

AsmUit-StackManagement (SvenVanCaekenberghe.11)

09 hetpe/smalitalikchub.com/me/Pharo/Pharo$0/main

(3 Matpe//smalitalichub. comme/ Pharo/ PharotOinbox main

19

Here we see (clockwise from top left)
* the Playground, for executing arbitrary Smalltalk code

 the System Browser, for browsing (top) packages, classes,
interfaces (or “protocols”), methods, and (bottom) source code

 the Monticello Browser, for connecting to a Monticello version
repository

» the Test Runner, for (you guessed 1t!) running tests, and
» the Transcript, for displaying console messages.

Debuggers, Inspectors, Explorers

x -0
a Smallinteger (50)
x -0 Playground i Raw Integer Meta
P A ™
o 0 — Variable
58 isPerfect L solf
self
x =0 MessageNotUnderstood: Smallinteger>>isPerfect -
Smallinteger(Number) isPerfect
UndefinedObject Dot
OpalCompiler evaluate
RubSmalitalkEdtor evaluate:andDo:
RubSmalitalkeditor highlightEvaluateAndDo: x -0
[..] in GLMMorphicPharoPlaygroundRenderer(GLMMorphicPharoCodeRenderer) actOnHighlightAndEvaluate: Pa
RubEditingArea(RubAbstractTextArea) handleEdit: "
I 1m0 MM Rarn hir O s rn B sumrrnimndDandesnr G MM armbicr Db srad adaleamdarne) srtimidinhlinht AndC sl abn. v
Smalltalk explore
Proceed Restart Into Over Through Full Stack Run to here Where is?
isPerfect
self shouldBelmplemented.
< > Eyeintegerinspector w thisContext | Smallinteger(Number)>>isPerfect
= stackTop |
self 0 all temp vars
hex

octal

Inspector on a Smallinteger (50) .
(2] aSmallinteger (50) X 3
Raw Integer Meta
Value Kty Value
50 decimal 'S0
hex 37
octal ‘62"
binary ‘110010
character $2
el
-
Playground >
Q & [asmalitaliamage (Smalltalk) x
W Details Raw Meta
Variable Value -
- Uit reuddrnuupscuum SNNVTOSTSULONECUIUN (Ve
¥ °* globals a SystemDuctionary [SO040 it,
v °F array an Array [7643 tems) (8%
» L1 FMemoryHandle->Mc
» L2 FEyeCharactesinspec
(CIE nil
[C I nil
» LS #MonthTest->Month)
» L6 FEABIt->BaBIt
» L7 FFLGIobalSendNotPr
[- l?Ml»on'ChllMinﬂOv
GPSen ~
Smalltalk"”
self

Here we see

 a Playground, where we 1nspect the expression
50 isPerfect

 an object Inspector on the result of evaluating this expression

 another Playground where we evaluate and inspect Smalltalk
explore 1n a separate tab

* a Debugger window showing us that the method isPerfect is
just a stub to be implemented.

Do it, Print It, ...

x - 0O Playground
Page
3+ 4
Doitand go cmd+g
% Doit cmd+d
&4 Inspect it cmd+
&d'Basic Inspectit ~ cmd+shift+
Debug it cmd+shift+d
Profile it
Cut cmd+x
You can evaluate any i ol
expression anywhere oo Enc
aste...
n Smalltalk Code search... 4

Here we have selected the text 3+4 in the Playground and clicked

the “yellow” button to display a menu of operations we can
perform.

e do it will evaluate i1t and discard the result
e print it will display the result

* inspect it will open an Inspector on the result
and so on

Roadmap

=

> The origins of Smalltalk

> What is Smalltalk?

> Syntax in a nutshell

> Seaside — web development with Smalltalk

Three kinds of messages

> Unary messages 5 factorial
Transcript cr

S —— E—

> Binary messages 3 + 4

P——

> Keyword messages

3 raisedTo: 10 modulo: 5

Transcript show: 'hello world’

Smalltalk has a very simple syntax. There are just three kinds of
messages:

1.Unary messages consist of a single world sent to an object (the
result of an expression). Here we send factorial to the

object 5 and cr (carriage return) to the object Transcript.
(Aside: upper-case variables are global 1n Smalltalk, usually
class names. Transcript 1s one of the few globals that 1s not a
class.)

2.Binary messages are operators composed of the characters +,
) *9 /9 &9=3>9 ‘9<9~9and@°
Here we send the message “+ 4” to the object 3.

3.Keyword messages take multiple arguments. Here we send
“raisedTo: 10 modulo: 5”7to 3 and “show: 'hello

world'” to Transcript.

Precedence

First unary, then binary, then keyword:

2 raisedTo: 1 + 3 factorial 128

Same as: 2 raisedTo: (1 + (3 factorial))

Use parentheses to force order:

1 + 2 % 3 9 (!)
1 + (2 * 3) |7

S—

The precedence rules for Smalltalk are exceedingly simple: unary
messages are sent first, then binary, and finally keyword
messages. Use parentheses to force a different order.

Note that there 1s no difference 1n precedence between binary
operators.

A typical method in the class Point

Method name Argument Comment

ot S

"Answer whether the receiver 1s nelther
below nor to the right of aPoint.”

/" X <=! aPoint x and: [g/\ <= aPoint y]

Return Binary message Block

, Keyword message
Instance variable

(2@3) <= (5@6) true

S — ———

The slide shows the <= method of the Point class as 1t appears
in the IDE.

The first line lists the method name and its formal parameters. In

this case we are defining the method for the <= selector. (In
Smalltalk, method names are called “selectors”, because when a
message 1s received, the selector 1s used to select the method to
respond.)

Comments are enclosed 1n double quotation marks (strings are
enclosed 1n single quotes).

The body of this method consists of a single expression. The caret

(") 1s areserved symbol 1n Smalltalk and denotes a return value.
A block 1s enclosed 1n square brackets and denotes an expression
that may be evaluated. In this case, the Boolean and : method

will only evaluate the block 1f its recerver (i.e., the subexpression

to the left of the and :) evaluates to true.

Statements and cascades

Temporary variables
\ Statement

| p pen | /

p := 100@100.

,/ﬁéh := Pen new.

pen up.
pen goto: p; down; goto: p+p

N\

Cascade

Assignment

This 1s a code snippet (not a method) that may be evaluated in the
Playground.

Here we see that statements are expressions separated by periods (.).

Even though Smalltalk does not support type declarations, /ocal
variables must still be declared, appearing within or-bars (|).

A variable 1s bound to a value using the assignment operator (:=).

Smalltalk supports a special syntax, called a cascade, to send multiple
messages to the same receiver. Messages 1n a cascade are separated
by semi-colons (;). In this case we send the messages “goto: p”,
“down”, and finally “goto: p+p” to the receiver p. (This draws a

line from the Point 100@100 to 200@200.)

Note that 100@100 looks like special syntax for Point objects, but
it 1s really just a Factory method of the Number class, which creates
a new Point instance.

Literals and constants

Strings & Characters |'hello’ Sa
Numbers 1 3.14159
Symbols #yadayada
Arrays #(1 2 3)
Pseudo-variables self super
Constants true false

Everything 1s an object in Smalltalk, including these literal and
constant values.

Strings are just special kinds of ordered collections holding
character values.

Smalltalk supports various kind of numbers, and also supports
radix notation for numbers in different bases.

Symbols behave much like strings, but are guaranteed to be
globally unique. They always start with a hash (#).

In addition to self, super, true and false, there are only
two further reserved names in Smalltalk: nil and

thisContext. (The latter is only needed for meta-
programming!)

Variables

> Local variables are delimited by | var|
Block variables by : var|

OrderedCollection>>collect: aBlock
"Evaluate aBlock with each of my elements as the argument.”

| newCollection |
newCollection := self species new: self size.
firstIndex to: lastIndex do:

[:index |

newCollection addLast: (aBlock value: (array at: index))].

A

newCollection

(OrderedCollection with: 10 with: 5) collect: [:each| each factorial

o

an OrderedCollection(3628800 120)

NB: Since source code for methods in the IDE does not show the
class of the method, it 1s a common convention in documentation
to add the missing class name, followed by two greater-than signs

(>>), as in this example.

This example serves mainly to show that blocks can take
arguments. The arguments are after the opening left square

bracket, and each 1s preceded by a colon (2).
The block:

:each| each factorial]

takes 1ts arguments from the receiver of collect:, the
collection holding 10 and 5.

Control Structures

> Every control structure is realized by message sends

max: aNumber

~ self < aNumber
1fTrue: [aNumber]

ifFalse: [self]

4 timesRepeat: [Beeper beep]

There are no built-in control constructs in Smalltalk. Everything
happens by sending messages!

Even a simple if statement 1s achieved by sending a message to a
boolean expression, which will then evaluate the block argument
only 1f 1t boolean 1s true.

Here we see that the max : method 1s implemented by sending
ifTrue:ifFalse: to the Boolean expression
self<aNumber. The ifTrue:ifFalse: method is itself
defined 1n the Boolean classes True and False.

(Try to imagine how i1t would be implemented, and then check 1n
the 1mage to see how it 1s done.)

Creating objects

> (Class methods

OrderedCollection new
Array with: 1 with: 2

> Factory methods

1@2 a Point
1/2 a Fraction

Ultimately all objects (aside from literals) are created by sending

the message new to a class. (The message new: 1s used to create

arrays of a given length.) Further constructors may be defined as
convenience methods on classes, for example,

Array with: 1 with: 2

will create an Array of length 2 using new:, and then initialize
it with the two arguments.

Other 1nstance creation methods may be defined on the classes of
arguments used to create the objects. For example, to create a
Fraction, we send the message / to an Integer, with the
numerator as 1ts argument. This method will then actually create a
new Fraction for us.

Creating classes

> Send a message to a class (!)

Number subclass: #Complex
instanceVariableNames: 'real imaginary'
classVariableNames: "'

poolDictionaries:
category: 'ComplexNumbers'

Everything 1s an object, ergo classes are objects too!

To create a new class, you must send a message to an existing
class, asking it to create (or redefine) a subclass.

Since the class to be created probably does not yet exist, its name
1s not defined globally, so we must pass in the name as a symbol

(here #Complex).

We can also provide the names of its instance variables (or we
can update this later). Please 1ignore classVariableNames and
PoolDictionaries — they are almost never needed. The
“category” 1s the name of a related group of classes (something
like a poor man's package).

Demo: Defining classes and methods

@00 ¥ Pharod.0.image
| N AP
x -0 PostOfficeTest>>#testPostOffice v

v ! Customer —all--
. - PostOfficeTest as yet unclassified

tp PostOffice
1 PragmacCollector
&3 ProfStef-Core
i ProfStef-Help
3 ProfStef-Tests
£ RPackage-Core
t# RPackage-Systemintegration
RPackage-Tests

» & RecentSubmissions
i Refactoring-Changes

» & Refactoring-Core

» £} Refactoring-Critics

M Dafnrtncios Caienmmnnn + v
Bl >
Groups Hierarchy O Class side Comments History Navigator v
testPostOffice ‘O
self assert: postoffice isEmpty. G

(Customer named: 'jack') enters: postoffice.
self assert: postoffice waiting = 1.
(Customer named: 'jane') enters: postoffice.
self assert: postoffice waiting = 2.
(Customer named: 'jill') enters: postoffice.
self assert: postoffice waiting = 3.
self assert: postoffice serveCustomer
self assert: postoffice waiting = 2.
self assert: postoffice serveCustomer = 'jane'.
self assert: postoffice waiting = 1.

‘jack'.

self assert: postoffice serveCustomer = 'jill'.
self assert: postoffice waiting = 0.
P, I S T S . L pp——_, | v

I~ PostOfficeTest>>#testPostOf...

This demo script can also be found 1n the same github repo listed
carlier.

Here we apply test-driven development to simulate a Post Office
serving customers.

Roadmap

—

> The origins of Smalltalk

> What is Smalltalk?

> Syntax in a nutshell

> Seaside — web development with Smalltalk

Seaside — a Smalltalk web development platform

ann e - b

io"-i.-—. — o AEEf-ivi
seaside™

A

Home
Reg: B0ome 10 SOskSarce, T Smar MOnOMe COOM-RRoRnary for Sauask g Marn. Te gt stanies
Repriter oo regaier your personel scoount and Ceete ety fusber of Sroects Lo host on our server. You'll mredetely

Regnter Progece D0t 31 The NECHANY PATTISLIONS 10 CTESNE NG MANIGEe yOur SCCOWR, GROMCTS and versons. Detales
Falruclons G e Tound on The Help page

Logn This servion 18 Drowght 20 you for free: it i Beched oo daly. SUR, Dlesne mahe Sure Tt you Rave your owe
PPOpe’ Backups 0D NOLE TRIE e CANAGL e Iy ACOMADALY GUaraiast. Mowever, I you wieh pou can et
VO yOur e SSutthSource servir. 1L s ST AGtied I G0 Dt Sowriobded from SoutsiVig.

A:.) 2 l:':."m“.‘ > \t“ m

Fease report ary probiems or sugpestons Lo the Souesk Malng Lt or the Mare Malng Lint. Iney'

W gratallly achrowiedpe the support of the Softwae Compostion Groug and the Univerasy of Bere for
POATAG TN sevie

Documentation Soaice 28 . O

Statstcs

Maombers (3456)
Recerly Jowmed Join Lode, Biwrdo Noguers, stedurt maet sida. S=uor Sarers,
Mowt Aot raraid Copg, Wafes Laguma, om Sunglo, M,

Prajects (2993)

h == g

Bncerry GE NG, TO, SOEAsug ey, Seance Laamng Duampien,

Crestes

Mot Aot teanouiien, RolePay Support Syatem (Branch 03), Cany Roe Moy Sepport Sywsem, Mate
CRgect Dagee,

Most Dowloads. Mo, Semcde 1.0, Sesce, Moose,

ann Onbare T4 Oive Twwhe e The 0 Mo v

Lepiy prtess el

. ———— —)

3

Seaside 1s a very successful web development platform built on
top of Pharo Smalltalk. Like Pharo, it supports live programming.

Demo: PostOffice in Seaside

aNnn Seaside
seasided image <«|» |+ | me1p: / lecalhost SO0 PoSIOMCE? 5= EERZAtTEFIBEXCCDE_k=SYRdg-nIM RG4CFA & Ll Q-
(D #f Apple on wg Llocalv U Bemev CMv Cemeraly Uty Computersv bitly db el luls e Lleo pwyl cul »

N N

Welcome to the Post Office!

Customer: Sd eoter
Serve a customer
an e PostOfficeView
Seaside-Email Customer = all =~ customerName " .
Seaside-Tests-Email PostOffice as yet unclassified customerName: Wmtmg customers:
Seaside-Pharo-Email PostOfficeTest initialize Elvis
DynamicBindings PostOfficeView ' renderContentOn; Janis
KomServices Yimi
KomHttpServer-Kemel sid

KomHMitpServer-Module
KomHttpServer-Protoce
Seaside-Adaptors-Com

Seaside-Tests-Adaptor:
PostOffice - .
P ¢ ot L Timinstancegd 7 1 dass.

browse hierarchy vanables implementors inheritance
renderContentOn: html
html heading: 'Welcome to the Post Office
html form: [
html text: 'Custon 5
html textInput on: #customerName of: self
html submitButton text: 'enter';
callback: [(Customer named: self customerName) enters: postoffice]

New Session Configure Halkks Profile Memory XHTML 2/4 ms

The demo shows how we can quickly develop a simple web
interface to the Post Office simulation.

What you should know!

~ What are the key differences between Smalltalk, C++
and Java?

~> What is at the root of the Smalltalk class hierarchy?
~ What kinds of messages can one send to objects?
~> What is a cascade?

> Why does 1+2/3 1 in Smalltalk?

~ How are control structures realized?

> How is a new class created?

~ What are categories for?

~> What are Factory methods? When are they useful?

Can you answer these questions?

~ Which is faster, a program written in Smalltalk, C++ or
Java?

~> Which is faster to develop & debug, a program written in
Smalltalk, C++ or Java?

~ How are Booleans implemented?

S s a comment an Object? How would you check this?
S~ What is the equivalent of a static method in Smalltalk?
> How do you make methods private in Smalltalk?

> What is the difference between = and ==

~ If classes are objects too, what classes are they
Instances of?

@creative
commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

@ ShareAlike — If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.orqg/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

