
Oscar Nierstrasz

12. A bit of Smalltalk

Roadmap

2

> The origins of Smalltalk
> What is Smalltalk?
> Syntax in a nutshell
> Seaside — web development with Smalltalk

Roadmap

3

> The origins of Smalltalk
> What is Smalltalk?
> Syntax in a nutshell
> Seaside — web development with Smalltalk

4

The origins of Smalltalk

Alan Kay’s Dynabook project (1968)

Alto — Xerox PARC (1973)

gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html

In the late 60s, Alan Kay predicted that in the foreseeable future
handheld multimedia computers would become affordable. He
called this a “Dynabook”. (The photo shows a mockup, not a real
computer.)
He reasoned that such systems would need to be based on object
from the ground up, so he set up a lab at the Xerox Palo Alto
Research Center (PARC) to develop such a fully object-oriented
system, including both software and hardware. They developed
the first graphical workstations with windowing system and
mouse.

5

Object-oriented language genealogy

Simula was the first object-oriented language, designed by Kristen
Nygaard and Ole Johan Dahl. Simula was designed in the early 60s,
to support simulation programming, by adding classes and inheritance
to Algol 60. The language was later standardized as Simula 67.
Programmers quickly discovered that these mechanisms were useful
for general-purpose programming, not just simulations.
Smalltalk adopted the ideas of objects and message-passing as the
core mechanisms, not just add-ons to a procedural language.
Stroustrup ported the ideas of Simula to C to support simulation
programming. The resulting language was first called “C with
classes”, and later C++.
Cox added Smalltalk-style message-passing syntax to C and called it
“Objective-C”.
Java integrated implementation technology from Smalltalk and syntax
from C++.
Squeak and Pharo are modern descendants of Smalltalk-80.

6

Smalltalk vs. Java vs. C++

Smalltalk Java C++
Object model Pure Hybrid Hybrid

Garbage collection Automatic Automatic Manual
Inheritance Single Single Multiple
Types Dynamic Static Static
Reflection Fully reflective Introspection Introspection
Concurrency Semaphores Monitors Some libraries

Modules Categories,
namespaces

Packages Namespaces

The most important difference between Smalltalk, Java and C++,
is that Smalltalk supports “live programming”. Whereas in Java
and C++ you must first write source code and compile it before
you run anything, in Smalltalk you are always programming in a
live environment. You incrementally add classes and compile
methods within a running system.
As a consequence, Smalltalk has to be fully reflective, allowing
you to reify (“turn in objects”) all aspects of the system, and
change them at run time. The only thing you cannot change from
within Smalltalk is the virtual machine.

7

Smalltalk-80 and Pharo

Everything is an object.
Everything is there, all the time.
First windowing system with mouse.
First graphical IDE.

Smalltalk-80 was introduced to the world in 1981 in a now-
famous issue of Byte Magazine. The “Smalltalk balloon” refers to
this issue.

8

What are Squeak and Pharo?

> Squeak is a modern, open-source, highly portable, fast,
full-featured Smalltalk implementation
—Based on original Smalltalk-80 code

> Pharo is a lean and clean fork of Squeak
—pharo.org

http://pharo.org

Squeak was developed by members of the original Smalltalk
team, with the goal of supporting and experimenting with
advanced multimedia systems. The Squeak image was ported
from a Smalltalk-80 image.

Pharo is a modern descendent of Smalltalk-80, largely obeying
the original syntax and design, but with numerous improvements
to the language, the tools, and the environment. Whereas Squeak
was developed with the goal to support experimentation, Pharo
aspired to offer a clean and stable platform upon which both
industrial and research projects can build.

Pharo by Example

9

http://pharobyexample.org/

• Free download
• Open-Source
• Print-on-demand

Pharo by Example is a free book, originally published in 2009, to
teach new users Pharo Smalltalk in an example-driven way. Since
Pharo has advanced considerably since then, a revision of the
book is underway. The old book nevertheless offers a good
introduction.
Please read the beginning of this book for a quick introduction to
Smalltalk.
A sequel, called “Deep into Pharo”, explains advanced details of
the implementation and available tools. All the material is hosted
on github:

github.com/SquareBracketAssociates/

10

Don’t panic!

New Smalltalkers often think they need to understand
all the details of a thing before they can use it.

Try to answer the question

with

Alan Knight. Smalltalk Guru

“How does this work?”

“I don’t care”.

This slide is a paraphrase of:
Try not to care — Beginning Smalltalk programmers often have trouble
because they think they need to understand all the details of how a thing
works before they can use it. This means it takes quite a while before they can
master Transcript show: ’Hello World’.
One of the great leaps in OO is to be able to answer the question “How does
this work?” with “I don’t care”.

alanknightsblog.blogspot.ch

Roadmap

11

> The origins of Smalltalk
> What is Smalltalk?
> Syntax in a nutshell
> Seaside — web development with Smalltalk

Two rules to remember

Everything is an object

(Nearly) everything in Smalltalk is an object, which means that
you can “grab it” and talk to it. Everything that you see on the
screen is an object, so you can interact with it programmatically.
The implementation of Smalltalk itself is build up of objects, so
you can grab these objects and explore them. In particular, all the
tools are objects, but also classes and methods are objects. This
feature is extremely powerful and leads to a style of programming
that is different from the usual edit/compile/run development
cycle.

Everything happens by
sending messages

The only way to make anything happen is by sending messages.
To ask “what can I do with this object?” is the same as asking
“what messages does it understand?”
The terminology of “message sending” is perhaps unfortunate, as
those new to Smalltalk often assume it has something to do with
network communication, but one should understand it as a
metaphor: you do not “call an operation” of an object, but you
politely ask it to do something by sending it a request (a
“message”). The object then decides how to respond by checking
to see if its class has a “method” for handling this request. If it
does, it performs the method. If not, it asks its superclass if it has
such a method, and so on. If this search fails, the object does not
understand the message (but let’s not get into that now!).

15

What is Smalltalk?

Image

Changes
+

Virtual machine

Sources
+

Smalltalk is often bundled into a single, “one-click” application, but
there are actually four pieces that are important to understand.
Every user of Smalltalk can work with one or more Smalltalk images.
The image file contains a snapshot of all the objects of the running
system. Every time you quit Smalltalk, you can save and update this
snapshot. In addition, the changes file consists of a log of all changes
to the source code of that image, i.e., all new or changed classes and
all compiled methods. If your image crashes (which is possible since
Smalltalk allows you to do anything, even if that might be fatal), you
can restart your image and replay your changes, so nothing is lost.
In addition, the virtual machine and sources files may be shared
between users. The VM runs the bytecode of compiled methods and
manages the image and changes file. Finally the sources file
(optional) contains all the source code of objects in the base image (so
you can not only explore this but modify it if you want).

16

Demo: Running Pharo

You can find the demo script in the p2-Smalltalk folder of the P2
examples repo:
git clone git://scg.unibe.ch/lectures-p2-examples

The demo illustrates: the workspace and basic tools, navigating
between objects and their source code, inspection of live objects,
test-driven development, debugging a live system …

17

Mouse Semantics

Select
Operate

Window

Smalltalk-80 assumes you have a “three-button mouse”. The “red
button” allows you to select an object on the screen, the “yellow
button” pops up a menu of things you can do with it, and the
“blue button” offers a “meta menu” of system operations. (In
Pharo, the “World menu”.)
Depending on the version of Smalltalk you are using and the
platform you are on, the three buttons may be mapped to different
modifier keys (e.g., <ALT>, <CTL> etc.)

18

World Menu

19

Standard development tools

Here we see (clockwise from top left)
• the Playground, for executing arbitrary Smalltalk code
• the System Browser, for browsing (top) packages, classes,

interfaces (or “protocols”), methods, and (bottom) source code
• the Monticello Browser, for connecting to a Monticello version

repository
• the Test Runner, for (you guessed it!) running tests, and
• the Transcript, for displaying console messages.

20

Debuggers, Inspectors, Explorers

Here we see
• a Playground, where we inspect the expression  

 50 isPerfect
• an object Inspector on the result of evaluating this expression
• another Playground where we evaluate and inspect Smalltalk

explore in a separate tab
• a Debugger window showing us that the method isPerfect is

just a stub to be implemented.

21

Do it, Print it, …

You can evaluate any
expression anywhere
in Smalltalk.

Here we have selected the text 3+4 in the Playground and clicked
the “yellow” button to display a menu of operations we can
perform.
• do it will evaluate it and discard the result
• print it will display the result
• inspect it will open an Inspector on the result
and so on

Roadmap

22

> The origins of Smalltalk
> What is Smalltalk?
> Syntax in a nutshell
> Seaside — web development with Smalltalk

23

Three kinds of messages

> Unary messages

> Binary messages

> Keyword messages

5 factorial
Transcript cr

3 + 4

3 raisedTo: 10 modulo: 5

Transcript show: 'hello world'

Smalltalk has a very simple syntax. There are just three kinds of
messages:
1.Unary messages consist of a single world sent to an object (the

result of an expression). Here we send factorial to the
object 5 and cr (carriage return) to the object Transcript.
(Aside: upper-case variables are global in Smalltalk, usually
class names. Transcript is one of the few globals that is not a
class.)

2.Binary messages are operators composed of the characters +,
-, *, /, &, =, >, |, <, ~, and @.  
Here we send the message “+ 4” to the object 3.

3.Keyword messages take multiple arguments. Here we send
“raisedTo: 10 modulo: 5” to 3 and “show: 'hello
world'” to Transcript.

24

Precedence

2 raisedTo: 1 + 3 factorial

1 + 2 * 3
1 + (2 * 3)

128

9 (!)
7

First unary, then binary, then keyword:

Use parentheses to force order:

2 raisedTo: (1 + (3 factorial))Same as:

The precedence rules for Smalltalk are exceedingly simple: unary
messages are sent first, then binary, and finally keyword
messages. Use parentheses to force a different order.
Note that there is no difference in precedence between binary
operators.

25

A typical method in the class Point

<= aPoint
"Answer whether the receiver is neither
below nor to the right of aPoint."

^ x <= aPoint x and: [y <= aPoint y]

(2@3) <= (5@6) true

Method name Argument Comment

Return

Keyword message
Instance variable

BlockBinary message

The slide shows the <= method of the Point class as it appears
in the IDE.
The first line lists the method name and its formal parameters. In
this case we are defining the method for the <= selector. (In
Smalltalk, method names are called “selectors”, because when a
message is received, the selector is used to select the method to
respond.)
Comments are enclosed in double quotation marks (strings are
enclosed in single quotes).
The body of this method consists of a single expression. The caret
(^) is a reserved symbol in Smalltalk and denotes a return value.
A block is enclosed in square brackets and denotes an expression
that may be evaluated. In this case, the Boolean and: method
will only evaluate the block if its receiver (i.e., the subexpression
to the left of the and:) evaluates to true.

26

Statements and cascades

| p pen |
p := 100@100.
pen := Pen new.
pen up.
pen goto: p; down; goto: p+p

Temporary variables
Statement

Cascade

Assignment

This is a code snippet (not a method) that may be evaluated in the
Playground.
Here we see that statements are expressions separated by periods (.).
Even though Smalltalk does not support type declarations, local
variables must still be declared, appearing within or-bars (|).
A variable is bound to a value using the assignment operator (:=).
Smalltalk supports a special syntax, called a cascade, to send multiple
messages to the same receiver. Messages in a cascade are separated
by semi-colons (;). In this case we send the messages “goto: p”,
“down”, and finally “goto: p+p” to the receiver p. (This draws a
line from the Point 100@100 to 200@200.)
Note that 100@100 looks like special syntax for Point objects, but
it is really just a Factory method of the Number class, which creates
a new Point instance.

27

Literals and constants

Strings & Characters 'hello' $a
Numbers 1 3.14159
Symbols #yadayada
Arrays #(1 2 3)
Pseudo-variables self super
Constants true false

Everything is an object in Smalltalk, including these literal and
constant values.
Strings are just special kinds of ordered collections holding
character values.
Smalltalk supports various kind of numbers, and also supports
radix notation for numbers in different bases.
Symbols behave much like strings, but are guaranteed to be
globally unique. They always start with a hash (#).
In addition to self, super, true and false, there are only
two further reserved names in Smalltalk: nil and
thisContext. (The latter is only needed for meta-
programming!)

28

Variables

> Local variables are delimited by |var|  
Block variables by :var|

OrderedCollection>>collect: aBlock
"Evaluate aBlock with each of my elements as the argument."
| newCollection |
newCollection := self species new: self size.
firstIndex to: lastIndex do:

[:index |
newCollection addLast: (aBlock value: (array at: index))].

^ newCollection

(OrderedCollection with: 10 with: 5) collect: [:each| each factorial]

 an OrderedCollection(3628800 120)

NB: Since source code for methods in the IDE does not show the
class of the method, it is a common convention in documentation
to add the missing class name, followed by two greater-than signs
(>>), as in this example.
This example serves mainly to show that blocks can take
arguments. The arguments are after the opening left square
bracket, and each is preceded by a colon (:).
The block:
[:each| each factorial]

takes its arguments from the receiver of collect:, the
collection holding 10 and 5.

29

Control Structures

> Every control structure is realized by message sends

max: aNumber
^ self < aNumber

ifTrue: [aNumber]
ifFalse: [self]

4 timesRepeat: [Beeper beep]

There are no built-in control constructs in Smalltalk. Everything
happens by sending messages!
Even a simple if statement is achieved by sending a message to a
boolean expression, which will then evaluate the block argument
only if it boolean is true.
Here we see that the max: method is implemented by sending
ifTrue:ifFalse: to the Boolean expression
self<aNumber. The ifTrue:ifFalse: method is itself
defined in the Boolean classes True and False.
(Try to imagine how it would be implemented, and then check in
the image to see how it is done.)

30

Creating objects

> Class methods

> Factory methods

OrderedCollection new
Array with: 1 with: 2

1@2
1/2

a Point
a Fraction

Ultimately all objects (aside from literals) are created by sending
the message new to a class. (The message new: is used to create
arrays of a given length.) Further constructors may be defined as
convenience methods on classes, for example,
Array with: 1 with: 2

will create an Array of length 2 using new:, and then initialize
it with the two arguments.
Other instance creation methods may be defined on the classes of
arguments used to create the objects. For example, to create a
Fraction, we send the message / to an Integer, with the
numerator as its argument. This method will then actually create a
new Fraction for us.

31

Creating classes

> Send a message to a class (!)

Number subclass: #Complex
instanceVariableNames: 'real imaginary'
classVariableNames: ''
poolDictionaries: ''
category: 'ComplexNumbers'

Everything is an object, ergo classes are objects too!
To create a new class, you must send a message to an existing
class, asking it to create (or redefine) a subclass.
Since the class to be created probably does not yet exist, its name
is not defined globally, so we must pass in the name as a symbol
(here #Complex).
We can also provide the names of its instance variables (or we
can update this later). Please ignore classVariableNames and
PoolDictionaries — they are almost never needed. The
“category” is the name of a related group of classes (something
like a poor man's package).

Demo: Defining classes and methods

32

This demo script can also be found in the same github repo listed
earlier.
Here we apply test-driven development to simulate a Post Office
serving customers.

Roadmap

33

> The origins of Smalltalk
> What is Smalltalk?
> Syntax in a nutshell
> Seaside — web development with Smalltalk

Seaside — a Smalltalk web development platform

34

Seaside is a very successful web development platform built on
top of Pharo Smalltalk. Like Pharo, it supports live programming.

Demo: PostOffice in Seaside

35

The demo shows how we can quickly develop a simple web
interface to the Post Office simulation.

36

What you should know!

✎ What are the key differences between Smalltalk, C++
and Java?

✎ What is at the root of the Smalltalk class hierarchy?
✎ What kinds of messages can one send to objects?
✎ What is a cascade?
✎ Why does 1+2/3 = 1 in Smalltalk?
✎ How are control structures realized?
✎ How is a new class created?
✎ What are categories for?
✎ What are Factory methods? When are they useful?

37

Can you answer these questions?

✎ Which is faster, a program written in Smalltalk, C++ or
Java?

✎ Which is faster to develop & debug, a program written in
Smalltalk, C++ or Java?

✎ How are Booleans implemented?
✎ Is a comment an Object? How would you check this?
✎ What is the equivalent of a static method in Smalltalk?
✎ How do you make methods private in Smalltalk?
✎ What is the difference between = and ==?
✎ If classes are objects too, what classes are they

instances of?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

