
Oscar Nierstrasz

2. Object-Oriented Design Principles

Roadmap

2

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Roadmap

3

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Motivation

4

The law of continuing change:
A large program that is used undergoes continuing
change or becomes progressively less useful.
The change process continues until it is judged
more cost-effective to replace the system with a
recreated version.

— Lehman and Belady, 1985

Lehmann and Belady studied the evolution of industrial software
systems in the early 80s and formulated several “laws of software
evolution”. Even though software technology has changed, these
laws are generally considered to hold true today.
Systems that are used in a real environment are always asked to
do more because business changes.
Nowadays, more effort is spent in “maintenance” (i.e. after
deployment) than in initial development.
Manny Lehman and Les Belady. Program Evolution: Processes of
Software Change, p. 538, London Academic Press, London, 1985.

What should design optimize?

5

Enable small, incremental changes by designing software
around stable abstractions and interchangeable parts.

We want changes to be easy to make — small, incremental
changes should be well-localized, easy to understand and verify.
Consequently we need to build software around stable
abstractions.
Data (implementation) tends to change, so what do we do?
Instead we should focus on domain concepts and responsibilities.
This is the key idea behind object-oriented design.

How do we find the “right” design?

6

Object-oriented design is an iterative and exploratory process

Don’t worry if your initial design is ugly.
If you apply the OO design principles
consistently, your final design will be beautiful!

The examples that we show in this lecture are the end result of a
first iteration. The design might change radically if we take new
requirements into account.
We will explore these issues in depth in later lectures.

7

Running Example: Snakes and Ladders

http://en.wikipedia.org/wiki/Snakes_and_ladders

Snakes and Ladders is a rather simple game suitable for teaching
children how to apply rules. It is dull for adults because there is
absolutely no strategy involved, but this makes it easy to
implement as a computer program!

Game rules

> Players
— Snakes and Ladders is played by two to four players, each with her own

token to move around the board.
> Moving

— Players roll a die or spin a spinner, then move the designated number of
spaces, between one and six. Once they land on a space, they have to
perform any action designated by the space.

> Ladders
— If the space a player lands on is at the bottom of a ladder, he should climb the

ladder, which brings him to a space higher on the board.
> Snakes

— If the space a player lands on is at the top of a snake, she must slide down
to the bottom of it, landing on a space closer to the beginning.

> Winning
— The winner is the player who gets to the last space on the board first,

whether by landing on it from a roll, or by reaching it with a ladder.
8http://www.ehow.com/facts_5163203_snakes-amp-ladders-rules.html

http://www.ehow.com/facts_5163203_snakes-amp-ladders-rules.html
http://www.ehow.com/facts_5163203_snakes-amp-ladders-rules.html

Variations

> A player who lands on an occupied square must go back
to the start square.

> If you roll a number higher than the number of squares
needs to reach the last square, you must continue
moving backwards.

> …

9

Roadmap

10

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Players

Game Board

Start Square

Square End SquareSnake

Die
Ladder

Programming is modeling

11

Model domain objects

What about roll, action, winner … ?

Object-orientation lets you simulate a virtual world, so model the
domain objects as you want them to be. Note that we do not have
to model the world as it is, but as we want to think about it! In our
virtual world, objects can be active and take responsibility for
their actions, unlike passive objects in the real world.

We have a game board, rules, players, a die, and various kinds of
squares. Watch out for synonyms – space/square, player/token …
Are there other domain objects we have missed?

Everything is an object

12

Every domain concept that plays a role in the
application and assumes a responsibility is a
potential object in the software design

“Winner” is just a state of a player
— it has no responsibility of its own.

Don’t distinguish between first and second class objects:
everything that has a responsibility and plays a role should be an
object.
Sure, Squares are part of the board, but they are objects too.

“Everything is an object” — Goldberg and Robson, Smalltalk 80:
the Language and its Implementation, 1983

Computation is simulation

13

“Instead of a bit-grinding processor … plundering
data structures, we have a universe of well-behaved
objects that courteously ask each other to carry out
their various desires.”

— Ingalls 1981

Daniel H. H. Ingalls, Design Principles Behind Smalltalk, Byte
Magazine, August 1981.

Alan Kay (the inventor of Smalltalk) argued that computing
power should be used to simulate a virtual world that enhances
the user’s interactive experience.
Alan C. Kay. Microelectronics and the Personal Computer. In
Scientific American 3(237) p. 230—240, 1977

Model specialization

14

The first square is a kind of square, so model it as such

Is a snake a kind of reverse ladder?

Square

FirstSquare LastSquare Snake Ladder

Model IS-A relationships, e.g., a Snake is-a Square, the First
Square is-a Square. There are different kinds of Squares, so
model them as a hierarchy with a common interface.

Are the first and last squares really special kinds of squares, or
not? Are there other special squares?

Is a snake a kind of ladder, or vice versa? Are they both special
versions of something more general?

More about this in the lecture on inheritance …

Roadmap

15

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Responsibility-Driven Design

16

• What actions is this object responsible for?
• What information does this object share?

Well-designed objects have clear responsibilities

Drive design by asking:

Responsibility-driven design ... minimizes the
rework required for major design changes.

— Wirfs-Brock, 1989

Data-driven approaches are bad for encapsulation because they
focus too quickly on implementation (representation) of objects
rather than their interface.
Instead, focus on the responsibilities of an object: what data and
tasks is it responsible for?

Responsibility = what you know and maintain
This will lead you to focus on the interface of an object rather
than its representation.

Identifying responsibilities will help you to discover missing
objects, and it will also tell you whether an object is needed in
your design or not.
Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener.
Designing Object-Oriented Software, Prentice-Hall, 1990.

Snakes and Ladders responsibilities

17

Die
• provides a random

number from 1 to 6

Game
• keeps track of the game state

Player
• keeps track of where it is
• moves over squares of the

board
Square

• keeps track of any player on it

First Square
• can hold multiple players Last Square

• knows it is the winning square
Snake

• sends a player back to
an earlier square

Ladder
• sends a player ahead to

a later square

The Single Responsibility Principle

18
http://en.wikipedia.org/wiki/Single_responsibility_principle

An object should have no more than one key responsibility.

If an object has several, unrelated responsibilities,
then you are missing objects in your design!

The different kinds of squares have
separate responsibilities, so they must
belong to separate classes!

Robert (“Uncle Bob”) Martin has written extensively on OO
design principles:
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Martin equates responsibility with change of state:

“There should never be more than one reason for a class to change.”

Multiple responsibilities impact cohesion — an object that does
too many things is overly complex.

Top-down decomposition

19

Use concrete scenarios to drive interface design

http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

jack = new Player("Jack");
jill = new Player("Jill");
Player[] args = { jack, jill };
Game game = new Game(12, args);
game.setSquareToLadder(2, 4);
game.setSquareToLadder(7, 2);
game.setSquareToSnake(11, -6);
assertTrue(game.notOver());
assertTrue(game.firstSquare().isOccupied());
assertEquals(1, jack.position());
assertEquals(1, jill.position());
assertEquals(jack, game.currentPlayer());

game.movePlayer(4);
assertTrue(game.notOver());
assertEquals(5, jack.position());
assertEquals(1, jill.position());
assertEquals(jill, game.currentPlayer());

Test-driven development works this way. By writing tests first,
you are forced into deciding what interfaces your objects must
support.

In this case we are writing a test for a full scenario, not a unit test.
More on this in the Unit Testing lecture …

Jack makes a move

20

game

movePlayer(4) remove()

jack

jackplayers

moveFwd(4) leave(jack)

moveAndLand(4)

square1

findSquare(4)

isOccupied()

enter(jack)

add(jack)

square()
square5

square5

isLastSquare()
false

square5
landHereOrGoHome()

square5square5

This is a UML sequence diagram tracing a concrete scenario of
the first move of a game:
The game has a queue of players to keep track of whose turn it is.
Jack moves forward by leaving his current square, then asking
that square to find the square 4 positions further to land on.
The current square asks the game board which square that is.
It then asks that square (the fifth one) if it is safe to land there.
Since it isn’t, Jack can occupy this square.
The game puts Jack in the back of the queue, and checks if he has
landed on the last square.

Roadmap

21

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Separate interface and implementation

22

Information hiding: a component should provide all and
only the information that the user needs to effectively use it.

http://en.wikipedia.org/wiki/Information_hiding

Information hiding protects both the provider and
the client from changes in the implementation.

Clients should depend only on an interface, so changes to the
implementation do not affect them.
Conversely, the provider is free to change the implementation if it
knows that clients will not be affected.
Information hiding is important for many reasons — it is a
version of the “need to know” principle.
Separate development of components is also enabled if
dependencies are restricted to interfaces.

David L. Parnas. On the Criteria To Be Used in Decomposing
Systems into Modules. In CACM 15(12) p. 1053—1058,
December 1972.

Abstraction, Information Hiding and
Encapsulation

23

Abstraction = elimination of inessential detail

Encapsulation = bundling operations to
access related data as a data abstraction

Information hiding = providing only the
information a client needs to know

In object-oriented languages we can
implement data abstractions as classes.

See also:
Edward V. Berard, “Abstraction, Encapsulation, and Information
Hiding” in Essays On Object-Oriented Software Engineering,
1993.
See:
William Cook, “On Understanding Data Abstraction, Revisited”,
OOPSLA 2009
for an interesting discussion on the distinction between data
abstractions and abstract data types.

Encapsulate state

24

public class Game {
protected List<ISquare> squares;
protected int size;
protected Queue<Player> players;
protected Player winner;
...

}

Don't let anyone
else play with you.

— Joseph Pelrine
public class Player {
protected String name;
protected ISquare square;
...

}
public class Square implements ISquare {
protected int position;
protected Game game;
protected Player player;
...

}

As a rule, the state of an object should only be accessible to the
object itself. To ensure that instances of subclasses can also
access their state, instance variables should normally be declared
as protected. (If they are declared private, then subclass
instances won’t be able to accesss their own state!)
Avoid public or package scope for state as these will violate
encapsulation and make your design more fragile.
Changes to public state will impact all clients who make use of it.

Keep behaviour close to state

25

public class Square implements ISquare {
protected Player player;

public boolean isOccupied() {
return player != null;

}

public void enter(Player player) {
this.player = player;

}

public void leave(Player _) {
this.player = null;

}
...

}

Behaviour should be associated with the objects responsible for
the associated state.
Avoid defining behaviour for which another object is responsible.

Program to an interface, not an implementation

26

public interface ISquare {
public int position();
public ISquare moveAndLand(int moves);
public boolean isFirstSquare();
public boolean isLastSquare();
public void enter(Player player);
public void leave(Player player);
public boolean isOccupied();
public ISquare landHereOrGoHome();

}

public class Player {
protected ISquare square;
public void moveForward(int moves) {
square.leave(this);
square = square.moveAndLand(moves);
square.enter(this);

} ...
}

Depend on
interfaces, not

concrete classes

Players do not
need to know all
the different kinds
of squares …

Avoid depending on concrete classes. Your code should not care
which implementation is underneath.
If you have more than one implementation of a given interface,
consider defining it either as a Java interface or an abstract class.

Java interfaces have the advantage that they are independent of
the class hierarchy, but they require all implementations to
implement all methods. If you change the interface this will
impact all clients.

Abstract classes are tied to the hierarchy, but you can provide a
default implementation.

See the Introduction to Gamma, et al. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison Wesley, 1995.

Aside: Messages and methods

27

Objects send messages to one another;
they don’t “call methods”

public class Square implements ISquare {
protected Player player;

public void enter(Player player) {
this.player = player;

}
...

} public class FirstSquare extends Square {
protected List<Player> players;

public void enter(Player player) {
players.add(player);

}
...

}

Clients should not
care what kind of
square they occupy

The word “method” was introduced in Smalltalk as a metaphor –
You tell objects to do something by sending them a message; the
object then chooses the method it will use to handle that message.

If you talk about “calling a method” you are breaking the
metaphor – it makes no sense in English to “call someone’s
method”!

The point is that objects should encapsulate their behavior; you
speak to their interface by sending a message. The method is
internal – you should not know it.

public class Square implements ISquare {
public ISquare moveAndLand(int moves) {
return game.findSquare(position, moves).landHereOrGoHome();
}
public ISquare landHereOrGoHome() {
return this.isOccupied() ? game.firstSquare() : this ;
}
...
}

The Open-Closed Principle

28

public class Ladder extends Square {
public ISquare landHereOrGoHome() {
return this.destination().landHereOrGoHome();

}
protected ISquare destination() {
return game.getSquare(position+transport);

}
...

}

Make software entities
open for extension but

closed for modifications.

http://en.wikipedia.org/wiki/Open/closed_principle

Design classes and packages so their functionality can be
extended without modifying the source code.
This can be achieved by using inheritance to override and extend
inherited behaviour.

Bertrand Meyer. Object Oriented Software Construction, 1988.

See also the “Template Method” pattern in the Design Patterns
book.

Why are data abstractions important?

Communication — Declarative Programming
> Data abstractions …

—State what a client needs to know, and no more!
—State what you want to do, not how to do it!
—Directly model your problem domain

Software Quality and Evolution
> Data abstractions …

—Decompose a system into manageable parts
—Protect clients from changes in implementation
—Encapsulate client/server contracts
—Can extend their interfaces without affecting clients
—Allow new implementations to be added transparently to a system

29

Roadmap

30

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Delegate responsibility

31

Responsibility implies
non-interference.

— Timothy Budd

“Don’t do anything you can
push off to someone else.”

— Joseph Pelrine
public class Player {
public void moveForward(int moves) {
square.leave(this);
square = square.moveAndLand(moves);
square.enter(this);

}
...

}
public class Square implements ISquare {
public ISquare moveAndLand(int moves) {
return game.findSquare(position, moves)

.landHereOrGoHome();
}
...

}
public class Game {
public ISquare findSquare(...) {
...
return this.getSquare(target);

}
...

}

Do not take over the responsibilities of other objects. If an object
is in charge of certain information, you should delegate related
tasks to that object, rather than trying to handle them yourself.

For a player to move forward, it must find out what square it
ultimately lands on, but it is the responsibility of the squares on
the board to interpret the logic of the game.
For a square to let a player move forward one position, it needs to
find out what is the next square on the board, but it is the
responsibility of the game to keep track of this.

(Note that we are free to distribute responsibilities as we choose,
but we should also make sure that no object is overloaded with
responsibilities.)

Lots of short methods

32
http://c2.com/cgi/wiki?LotsOfShortMethods

Once and only once
“In a program written with good style, everything
is said once and only once.”

Lots of little pieces
“Good code invariably has small methods and
small objects. Only by factoring the system into
many small pieces of state and function can you
hope to satisfy the ‘once and only once’ rule.”

If you see similar logic repeated in many methods, this is a sign
that the design has not been carefully thought through.

Long methods tend to be a sign of procedural thinking.
Small methods are a hallmark of OO thinking.

See the introduction to:
Kent Beck, Smalltalk Best Practice Patterns, Prentice-Hall, 1997.

Composed Method

33

• Keep all of the operations in a method at the
same level of abstraction.

• This will naturally result in programs with
many small methods, each a few lines long.

Divide your program into methods
that perform one identifiable task.

If a method is too long, take groups of statements doing related
things and encapsulate them in a (protected) helper methods.
Name those methods after what the statements are doing.

Maintain a consistent level of abstraction …

34

public class Game {
public void play(Die die) {
System.out.println("Initial state: " + this);
while (this.notOver()) {
int roll = die.roll();
System.out.println(this.currentPlayer()
+ " rolls " + roll + ": " + this);

this.movePlayer(roll);
}
System.out.println("Final state: " + this);
System.out.println(this.winner() + " wins!");

}
...

This is the main loop of the game. Notice how it expresses at a
very high level of abstraction, in just 10 lines how the game
proceeds, until it is over.
The details of the game’s logic are expressed at the lower levels.

… to obtain many small methods

35

public boolean notOver() {
return winner == null;

}

public Player currentPlayer() {
return players.peek();

}

public void movePlayer(int roll) {
Player currentPlayer = players.remove(); // from front of queue
currentPlayer.moveForward(roll);
players.add(currentPlayer); // to back of the queue
if (currentPlayer.wins()) {
winner = currentPlayer;

}
}

public Player winner() {
return winner;

}

Most methods have trivial implementations, which makes it very
easy to implement them and ensure that they are correct.
In most cases, the method name serves as all the documentation
we need.
Unfortunately the (library) queue of players does not have
intention-revealing method names for removing elements from
the front or adding them to the back, so we need some comments
here.

… and simple classes

36

public class Die {
static final int MIN = 1;
static final int MAX = 6;

public int roll() {
return this.random(MIN,MAX);

}

public int random(int min, int max) {
int result = (int) (min + Math.floor((max-min) * Math.random()));
return result;

}
}

37

Snakes and Ladders methods

• 76 methods
• Most are 1 or 2 LOC
• Average 3.2 LOC
• All methods > 5 LOC are

tests or algorithms

Most object-oriented methods will be short and self-documenting.
Long methods are a sign of procedural thinking — the method is
doing too much itself, rather than delegating tasks to other
objects.
In a good OO design, the only longer methods tend to be
configuration scripts, algorithms, or tests.

Design by Contract = Don't accept anybody else's
garbage!

38

public class Game {
public void movePlayer(int roll) {
assert roll>=1 && roll<=6;
...

}
...

}

public class Player {
public void moveForward(int moves) {
assert moves > 0;
...

}
...

}

public class Square implements ISquare {
public ISquare moveAndLand(int moves) {
assert moves >= 0;
...

}
...

}

More on this in the
following lecture

http://en.wikipedia.org/wiki/Design_by_contract

Design by Contract offers a concise way to express the client-
supplier contract for each service of a software component.
Public operations should be annotated with assertions that
express preconditions that express how the client should use the
service, post-conditions that express what the service guarantees.
Additionally, invariants express what should be true before and
after every service. Contract violations indicate defects in the way
that the client is using the component (preconditions), or in the
implementation of the component itself (post-conditions and
invariants).

The next lecture will be entirely devoted to design by contract.
Bertrand Meyer. Object-Oriented Software Construction, ed.,
Prentice-Hall, 1997.

Demo

39

public static void main(String args[]) {
(new SimpleGameTest()).newGame().play(new Die());

}

Roadmap

40

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

?!

Program declaratively

41

Name objects and methods so that code documents itself

public class Player {
public void joinGame(Game game) {
square = game.getSquare(1);
((FirstSquare) square).players().add(this);

}
...

} public class Player {
public void joinGame(Game game) {
square = game.firstSquare();
square.enter(this);

}
...

}

Names should be chosen to reveal the intent of the code.

In the sample code, the point is not that we want to get the square
numbered 1, but that we want the first square of the game.
Similarly we want to express that this player is entering the
square, not how this is achieved at a low level.

Whenever you find yourself writing procedural code, extract that
code into declaratively named methods that express what that
code is doing.

Role Suggesting Instance Variable Name

42

Name instance variables for the
role they play in the computation.

Make the name plural if the
variable will hold a collection.

public class Game {
protected List<ISquare> squares;
protected int size;
protected Queue<Player> players;
protected Player winner;
...

}

Several of these patterns are documented in:
Kent Beck, Smalltalk Best Practice Patterns, Prentice-Hall, 1997.

Although the book focuses on Smalltalk practices, many of the
patterns apply more generally to OO design.

Intention Revealing Method Name

43

public class Player {
public void moveForward(int moves) {
...
square.enter(this);

}
...

}

public class Square implements ISquare {
protected Player player;
public void enter(Player player) {
this.player = player;

}
...

}
public class FirstSquare extends Square {
protected List<Player> players;
public void enter(Player player) {
players.add(player);

}
...

}

Name methods after what
they accomplish, not how.

This is called “Intention Revealing Selector” in Beck’s book.
(In Smalltalk, method names are called “selectors.”)

We do not care how a square allows a player to enter it — we just
care that it happens. The fact that the first square does it
differently from other squares is not relevant at the client’s level
of abstraction.

By selecting a declarative name for this method, we make the
code self-documenting and more flexible.

Roadmap

44

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Don’t send messages to objects
returned from other message sends

public void movePlayer(int roll) {
...
if (currentPlayer.square().isLastSquare()) {
winner = currentPlayer;

}
}

The Law of Demeter: “Do not talk to strangers” 

45en.wikipedia.org/wiki/Law_Of_Demeter

public void movePlayer(int roll) {
...
if (currentPlayer.wins()) {
winner = currentPlayer;

}
}

Tell, don't ask

The Law of Demeter states that you should only send messages
to: an argument passed to you; an object you create; self, super;
or your class.
By obeying this law, you avoid unnecessarily coupling your
classes. Instead of retrieving data from other objects, you should
delegate tasks to them.

Alec Sharp in Smalltalk by Example, McGraw-Hill, 1997,
explains this as “Tell, don’t ask”

Karl J. Lieberherr, et al. Object-Oriented Programming: An
Objective Sense of Style. In Proceedings OOPSLA '88.

Be sensitive to Code Smells

> Duplicated Code
—Missing inheritance or delegation

> Long Method
—Inadequate decomposition

> Large Class / God Class
—Too many responsibilities

> Long Parameter List
—Object is missing

> Feature Envy
—Method needing too much information from another object

> Data Classes
—Only accessors

46http://en.wikipedia.org/wiki/Code_smell

Duplicated Code often indicates a lack of abstraction in your
design. Share code with the help of inheritance or delegation.
Long Methods are signs of procedural thinking. Decompose your
method into helper methods with intention-revealing names.
A very Large Class or a “God Class” has too many
responsibilities. Refactor your design to distribute behaviour to
other classes.
A Long Parameter List suggests that an object is missing. See if
you can bundle arguments together into a new kind of object.
Feature Envy refers to a method that requires too much
information from other objects. Redistribute the responsibility so
that the work is done close to the objects.
Data Classes provide mainly accessor methods. Find the
behaviour in its clients and shift the responsibilities to the data
class to make it a real class.

Conclusions and outlook

> Use responsibility-driven design to stabilize domain concepts
> Delegate responsibility to achieve simple, flexible designs

> Specify contracts to protect your data abstractions
—Design by Contract lecture

> Express your assumptions as tests to tell what works and doesn’t
—Testing Framework lecture

> Develop iteratively and incrementally to allow design to emerge
— Iterative Development lecture

> Encode specialization hierarchies using inheritance
— Inheritance lecture

47

48

What you should know!

✎ Why does software change?
✎ Why should software model domain concepts?
✎ What is responsibility-driven design?
✎ How do scenarios help us to design interfaces?
✎ What is the difference between abstraction,

encapsulation and information hiding?
✎ Can you explain the Open-Closed principle?
✎ How can delegation help you write declarative code?
✎ How should you name methods and instance variables?

49

Can you answer these questions?

✎How do you identify responsibilities?
✎How can we use inheritance to model the relationship

between Snakes and Ladders?
✎How can we tell if an object has too many

responsibilities?
✎ Is top-down design better than bottom-up design?
✎Why should methods be short?
✎How does the Law of Demeter help you to write flexible

software?
✎Why do “God classes” and Data classes often occur

together?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

