
Oscar Nierstrasz

4. A Testing Framework

2

A Testing Framework

Sources
> JUnit documentation (from www.junit.org)

http://www.junit.org/
http://www.junit.org/

Roadmap

3

> Junit — a testing framework
> Testing an interface
> Testing an algorithm

Roadmap

4

> Junit — a testing framework
—Testing practices
—Frameworks vs. Libraries
—Junit 3 vs. Junit 4 and 5 (annotations)

> Testing an interface
> Testing an algorithm

5

The Problem

Interactive testing is tedious and seldom exhaustive.
Automated tests are better, but,

—how to introduce tests interactively?
—how to organize suites of tests?

“Testing is not closely integrated with development.
This prevents you from measuring the progress of
development — you can't tell when something starts
working or when something stops working.”

— “Test Infected”, Beck & Gamma, 1998

Note that the “Test Infected” article was written in 1998. Since
then, the Unit Testing approach promoted by Beck and Gamma
has had a huge influence on software development, and testing is
much better integrated into model development processes.
Tests should be repeatable, deterministic and automated.

6

Testing Practices

During Development
> When you need to add new functionality, write the tests first.

—You will be done when the test runs.
> When you need to redesign your software to add new features,

refactor in small steps, and run the (regression) tests after each
step.
—Fix what’s broken before proceeding.

During Debugging
> When someone discovers a defect in your code, first write a test

that demonstrates the defect.
—Then debug until the test succeeds.

“Whenever you are tempted to type something into a print
statement or a debugger expression, write it as a test instead.”

Martin Fowler

Test-Driven Development (TDD) is a practice in which tests are
written before any functional code is written. One of the
advantages of TDD is that writing the tests first influences the
design of the code: it makes clear what functional interfaces are
needed, and also ensures that the design supports testing.

JUnit - A Testing Framework

7

> JUnit is a simple framework to write repeatable tests. It is an
instance of the xUnit architecture for unit testing frameworks
written by Kent Beck and Erich Gamma

The first unit testing framework was SUnit, written for Smalltalk.
Beck and Gamma later ported the design to Java, and since then
xUnit frameworks have been developed for most mainstream
programming languages.

JUnit documentation can be found here:
junit.sourceforge.net/doc/cookbook/cookbook.htm

Library

Your code

Framework

You call the library The framework calls you

The framework
contains/uses the library

8

Frameworks vs. Libraries

In traditional application architectures, user code makes use
of library functionality in the form of procedures or classes.

A framework reverses the usual
relationship between generic and
application code. Frameworks
provide both generic functionality
and application architecture.

Essentially, a
framework says:
“Don’t call me —
I’ll call you.”

The word “framework” suggests a skeleton that can be filled in
with details.

The difference between a library and a framework lies in the fact
that a framework represents a complete application, with only
certain functional details missing. As a result, the framework is in
control: you don't call the framework, the framework calls you.

9

JUnit 3.8

JUnit is a simple “testing framework” that provides:
> classes for writing Test Cases and Test Suites
> methods for setting up and cleaning up test data

(“fixtures”)
> methods for making assertions
> textual and graphical tools for running tests

JUnit is a framework in the sense that it provides all the
infrastructure needed to organize and run tests. The “missing
details” to be filled in consist of the concrete tests that you must
provide.

JUnit 3.8 is a classical object-oriented framework that relies on
inheritance: JUnit provides a set of interacting classes, and you
provide subclasses of the framework classes that provide the
actual tests to be run.

JUnit 4 and later versions are component-based frameworks that
instead rely on pluggable interfaces and annotations to tailor the
framework. Since a lot of Java unit tests are based on the older
framework, it is important to understand both approaches.

10

Failures and Errors

JUnit distinguishes between failures and errors:
> A failure is a failed assertion, i.e., an anticipated problem

that you test.
> An error is a condition you didn’t check for, i.e., a runtime

error.

Note the similarity to the terminology that we saw in the lecture
on Design by Contract, but also the differences. Both failures and
errors cause exceptions to be raised, but here a failure refers
specifically to a failed test (assertion), i.e., something you
explicitly test for. An error, on the other hand, refers to something
you didn’t test. JUnit keeps track of both kinds of exceptions.

Assertions, as in DbC, are predicates that are assumed to hold. If
an assertion fails, this means there is a defect (bug) in the code (or
perhaps in the test). JUnit provides a rather richer set of assertion
methods than basic Java, so we can produce more informative
error messages.

11

The JUnit 3 Framework

+ create(String)
+ fail()
+ void runBare()
void runTest()
void setUp()
void tearDown()
+ name() : String

TestCase
abstract

+ countTestCases() : int
+ run(TestResult)

«interface»
Test

+ create()
+ create(Class)
+ addTest(Test)

TestSuite

A Test can run a number of
concrete test cases

+ assertTrue(boolean)
+ assertEquals(Object, Object)
...

«utility»
Assert

All errors and failures are
collected into a TestResult.

+ create()
void run(TestCase)
+ addError(Test, Throwable)
+ addFailure(Test, Throwable)
+ errors() : Enumeration
+ failures() : Enumeration

TestResult

A TestSuite
bundles a set of
Tests

There are many more classes in JUnit than are shown here, but
these are the essential ones. Based on this design, it is easy to
implement a basic xUnit framework for your favourite
programming language x.
TestCase is the most important class: to tailor the framework,
simply define a subclass of TestCase that defines a number of
methods named “test…”. The framework will automatically
collect these into a test suite that can be run. Both test cases and
test suites support the Test interface.
NB: This is a classic example of the Composite design pattern;
TestSuites are composed of nested TestCases, and both
can be tested through a common interface.
Assert is a utility class (i.e., a library) of useful assert methods.
TestResult is the class that actually runs the tests within try-
catch statements, so it can catch all the failures and errors into a
report.

12

A Testing Scenario

The framework calls the test methods that you define for your test cases.

:TestRunner :TestSuite tc:TestCase tr:TestResult

run(tr)
run(tr)

run(tc)

addFailure

setUp

runTest

tearDown

runBare

Here we see clearly how the various classes interact: a
TestRunner runs one or more TestSuites. A TestSuite
simply runs each TestCase it contains. The TestRunner
instantiates a TestResult object (tr) and passes it along to
collect the results. A TestCase asks the TestResult object
to run itself and collect any failures or errors. Note that it is the
same TestResult object that runs all the tests.

Each individual TestCase object may additional specify a
setUp method to prepare the test (e.g., to create needed objects
for the test) and a tearDown method to clean up afterwards, if
necessary.

13

JUnit 3 Example Code

import junit.framework.TestCase;
public class LinkStackTest extends TestCase {

protected StackInterface<String> stack; // test data
protected int size;

protected void setUp() throws Exception {
super.setUp();
stack = new LinkStack<String>();

}

public void testEmpty() {
assertTrue(stack.isEmpty());
assertEquals(0, stack.size());

}
…
}

Here we see the central idea of object-oriented frameworks.
We specialize the JUnit framework by defining
LinkStackTest as a subclass of TestCase. Even though
JUnit does not and cannot know our specific test classes, we can
plug LinkStackTest into JUnit because it is a subclass of a
framework class. It therefore satisfies the TestCase interface
and also inherits any useful methods from it.
LinkStackTest defines specific test methods, such as
testEmpty, and also a setUp method to prepare the test data.
(We don't need a tearDown method here.)

14

Annotations in J2SE 5

> J2SE 5 introduced the Metadata feature (data about
data)

> Annotations allow you to add decorations to your code
(remember javadoc tags: @author)

> Annotations are used for code documentation,
compiler processing (@Deprecated), code
generation, runtime processing

http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html

http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html

15

JUnit 4 and 5

JUnit is a simple “testing framework” that provides:
> Annotations for marking methods as tests
> Annotations for marking methods that setting up and

cleaning up test data (“fixtures”)
> methods for making assertions
> textual and graphical tools for running tests

JUnit 4 and later provide the same functionality as the earlier
object-oriented framework, but it no longer relies on inheritance
to plug concrete tests into the framework. Instead, annotations are
used to flag test methods.

The current release (2021) is JUnit 5:
https://junit.org/junit5/

16

JUnit 5 Example Code

import junit.framework.TestCase;
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;

public class LinkStackTest extends TestCase {
 protected StackInterface<String> stack;

private int size;

@BeforeEach public void setUp() {
stack = new LinkStack<String>();

}

@Test public void testempty() {
assertTrue(stack.isEmpty());
assertEquals(0, stack.size());

}
…

Test classes no longer need to inherit from a specific class. They
just need to contain test methods.
Test methods not longer are required to be named “test…”.
Instead we just need to annotate test methods with @Test. Setup
methods do not need to be named “setUp”, but just need to be
annotated as @BeforeEach methods.

17

Testing Style

> write unit tests that thoroughly test a single class
> write tests as you develop (even before you implement)
> write tests for every new piece of functionality

“Developers should spend 25-50%
of their time developing tests.”

“The style here is to write a few lines of code,
then a test that should run, or even better,
to write a test that won't run, then write the
code that will make it run.”

Roadmap

18

> Junit — a testing framework
—Testing practices
—Frameworks vs. Libraries
—Junit 3.x vs. Junit 4.x (annotations)

> Testing an interface
> Testing an algorithm

What to test?

> Test every public method (test the interface)
> Test boundary conditions
> Test key scenarios
> Test exceptional scenarios
> Test every line of code
> Test every path through the code

19

There are two very general strategies to writing tests. Black-box testing focuses on
testing the interface to a class (i.e., without looking inside the code). White-box testing
instead focuses on exercising all the code. Typically a combination of both approaches
is needed.
By testing every public method in the interface of a class, we ensure that we test
everything of interest to a client. Helper methods will be tested indirectly by testing
the public methods that use them.
Many bugs occur at the boundaries of inputs, for example, at minimum or maximum
values of ranges or collections. We therefore should construct tests that explicitly test
these boundaries.
A scenario will test multiple methods in combination. With limited resources, at least
the most common scenarios should be explicitly tested. If possible, unusual or
exceptional scenarios should also be tested, as this is often where bugs arise.
Every line of code should be tested by at least one test. We may need to write several
tests with different data to ensure that every line of code is reached.
Similarly checking that every path through the code is exercised may require multiple
tests for a single method. Note that just by testing every line of code is tested we may
not necessary pass through every possible path.

There also exist testing practices that are more specific to JUnit.
Here is an interesting discussion on the topic:
http://www.kyleblaney.com/junit-best-practices/

Testing the StackInterface

Recall our stack interface from last lecture

We will develop some tests to exercise all the public
methods.

20

public interface StackInterface<E> {
public boolean isEmpty();
public int size();
public void push(E item);
public E top();
public void pop();

}

Testing public methods

21

isEmpty() True when it’s empty; false otherwise
(needs a push)

size() Zero when empty; non-zero otherwise
(needs a push)

push() Possible any time; affects size and top

top() Only valid if not empty; needs a push;
returns the last element pushed

pop() Only valid if not empty; needs a push first;
affects size and top

Without looking at the implementation, we can already see that (i)
we may need multiple tests for a given method, and (ii) some
methods can only be tested in combination with others.

A LinkStackTest class

22

import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;

public class LinkStackTest {
 protected StackInterface<String> stack;

private int size;

@BeforeEach public void setUp() {
stack = new LinkStack<String>();

}
…
}

Start by setting initializing the fixture (stack)

Testing the empty stack

23

@Test public void empty() {
assertTrue(stack.isEmpty());
assertEquals(0, stack.size());

}

We can test both isEmpty() and size() with an initial stack

Alternatively, we could write two
separate tests, one for each condition

assertTrue, etc. are static imported methods of the
Assertions class of the JUnit 5 Framework and raise an
AssertionError if they fail.
Junit 3 raises a JUnit AssertionFailedError (!)

JUnit offers a wide range of assert methods that provide more
informative error messages than the basic assert(boolean)
method. For example, assertEquals(x,y) can report: “I
expected x but I got y”, whereas assert(p) can only tell us “p
was not true”.

Note that we use assertTrue() to test isEmpty(), but
assertEquals() to test size(). In the first case,
isEmpty() already returns a Boolean. We would get no
advantage from testing:
assertEquals(false, stack.isEmpty()); // useless

But in the second case assertEquals() provides us with
useful additional information.
We would lose information were we to write:
assertTrue(stack.size() == 0); // bad style

since a failed assertion would no longer report that we expected
the value 0.

24

Running tests from IntelliJ

Right-click on the class 
(or package) to run the tests

Testing a non-empty stack

25

@Test public void pushOneElement() {
stack.push("a");
assertFalse(stack.isEmpty());
assertEquals(1, stack.size());
assertEquals("a", stack.top());

}

We modify the stack and test the new state:

Testing pop

26

@Test public void pushPopOneElement() {
stack.push("a");
stack.pop();
assertTrue(stack.isEmpty());
assertEquals(0, stack.size());

}

We push and pop and test if the stack is empty.

Testing top

27

@Test public void twoElement() {
stack.push("a");
assertEquals("a", stack.top());
stack.push("b");
assertEquals("b", stack.top());
stack.pop();
assertEquals("a", stack.top());
stack.pop();
assertTrue(stack.isEmpty());

}

We still need to test the “stack-like” behavior of top:

At this point we have minimally
tested the entire stack interface

Without this test, a queue would also pass all the tests we have
defined up to now. Here we are testing that top accurately
returns the last element pushed, and will return previous elements
pushed after a pop.

Testing boundary conditions

28

Bugs frequently occur at boundaries in the input.
These should be carefully tested.

Testing boundary conditions

29

@Test public void pushNull() {
stack.push(null);
assertFalse(stack.isEmpty());
assertEquals(1, stack.size());
assertEquals(null, stack.top());

}

The only boundary value in the stack interface could
be if null is pushed:

Testing for failure

30

A special kind of boundary condition is checking
whether the class behaves as expected when the
preconditions for a method do not hold.

@Test
public void emptyTopFails() {
 assertThrows(AssertionError.class, () -> stack.top());
}

@Test
public void emptyRemoveFails() {
 assertThrows(AssertionError.class, () -> stack.pop());
}

Note the elegant use of a Java 8 lambda to pass the call to
stack.top() to the assertion method.
To accomplish the same in JUnit 3 is far more clumsy:
 public void testEmptyTopFails() {

 try {

 stack.top();

 fail("Calling top() on an empty stack should fail");

 } catch (AssertionError e) {

 assertEquals(null, e.getMessage());

 }

}

Here we must explicitly run the faulty code in a try-catch clause,
fail if the code passes, and pass if it fails!

Testing a key scenario

31

@Test
public void firstInLastOut() {

stack.push("a");
stack.push("b");
stack.push("c");
assertEquals("c", stack.top());
stack.pop();
assertEquals("b", stack.top());
stack.pop();
assertEquals("a", stack.top());
stack.pop();
assertTrue(stack.isEmpty());

}

We should also test a more complex scenario that
exercises the interaction between methods:

Testing an exceptional scenario

32

@Test
public void brokenSequence() {

stack.push("a");
stack.pop();
assertThrows(AssertionError.class,

() -> stack.pop());
}

Roadmap

33

> Junit — a testing framework
—Testing practices
—Frameworks vs. Libraries
—Junit 3.x vs. Junit 4.x (annotations)

> Testing an interface
> Testing an algorithm

Testing the parenMatch algorithm

34

public boolean parenMatch() {
 for (int i=0; i<line.length(); i++) {
 char c = line.charAt(i);
 if (isLeftParen(c)) {
 stack.push(matchingRightParen(c)); // (1)
 } else {
 if (isRightParen(c)) {
 if (stack.isEmpty()) { return false; } // (2)
 if (stack.top().equals(c)) {
 stack.pop(); // (3)
 } else { return false; } // (4)
 } // else not a paren char (5)
 }
 }
 return stack.isEmpty(); // (6)
}

To cover every line of code, we must reach all the bold lines:

Note that covering every line of code is not necessarily the same
as covering every possible path through the code. We can have a
path that goes through point (5), but there is no line of code there!

Instantiating paren matchers

35

public class ParenMatchTest {
 protected ParenMatch pm;

 protected ParenMatch makePm(String input) {
 return new ParenMatch(input, new LinkStack<Character>());
 }

 @Test
 public void empty() {
 pm = makePm("");
 assertTrue(pm.parenMatch());
 }
…
}

We need an easy way to create a new paren matcher
for a given test case:

Which path is tested here?

If we had started writing tests earlier, we would perhaps have
designed the ParenMatch class differently to better support tests.
It would be convenient to pass the string to check directly as an
argument to the parenMatch method, which should also reset the
internal stack to be empty.
Testing early can have a positive influence on the design process.

Path testing

36

public boolean parenMatch() {
 for (int i=0; i<line.length(); i++) {
 char c = line.charAt(i);
 if (isLeftParen(c)) {
 stack.push(matchingRightParen(c)); // (1)
 } else {
 if (isRightParen(c)) {
 if (stack.isEmpty()) { return false; } // (2)
 if (stack.top().equals(c)) {
 stack.pop(); // (3)
 } else { return false; } // (4)
 } // else not a paren char (5)
 }
 }
 return stack.isEmpty(); // (6)
}

@Test public void balancedWithOtherChars() {
 pm = makePm("public void main() { return true; }");
 assertTrue(pm.parenMatch()); // (1) (3) (5) (6)
}

How would you
construct tests
to pass through
points (2) or (4)?

To reach point (2), we must have just read a right parenthesis, but
the stack must be empty.

To reach point (4), we must have read a right parenthesis, but it
does not match the top of the stack.

What test inputs could lead to these results?

37

What you should know!

✎ How does a framework differ from a library?
✎ What is a unit test?
✎ What is an annotation?
✎ How does JUnit 3.x differ from JUnit 4.x
✎ What is a test “fixture”?
✎ What should you test in a test case?
✎ How can testing drive design?

38

Can you answer these questions?

✎ How does the TestRunner invoke the right suite()
method?

✎ How do you know when you have written enough tests?
✎ How many assertions should a test contain?
✎ Is it better to write long test scenarios or short,

independent tests?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

