
Oscar Nierstrasz

10. Guidelines, Idioms and Patterns

> Idioms, Patterns and Frameworks
—Programming style: Code Talks; Code Smells

> Basic Idioms
—Delegation, Super, Interface

> Some Design Patterns
—Adapter, Proxy, Template Method, Composite, Observer, Visitor,

State

Roadmap

2

> Idioms, Patterns and Frameworks
—Programming style: Code Talks; Code Smells

> Basic Idioms
—Delegation, Super, Interface

> Some Design Patterns
—Adapter, Proxy, Template Method, Composite, Observer, Visitor,

State

Roadmap

3

4

Sources

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns, Addison Wesley, Reading, MA, 1995.

Frank Buschmann, et al., Pattern-Oriented Software Architecture —
A System of Patterns, Wiley, 1996

Mark Grand, Patterns in Java, Volume 1, Wiley, 1998

Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997

“Code Smells”, http://c2.com/cgi/wiki?CodeSmell
 or http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html

http://c2.com/cgi/wiki?CodeSmell
http://c2.com/cgi/wiki?CodeSmell

The “Design Patterns” book by Gamma et al. (also known as the
“Gang of Four”, or GOF) was the first book to systematically
document design patterns. The book describes patterns
encountered by the four authors during their experience working
on various projects in different object-oriented languages. The
patterns are language-agnostic, and discuss trade-offs in different
languages.
Many other authors have documented other design patterns since
then, both in books and in conferences, particularly the Pattern
Languages of Programs (PLoP) series. There exist also books
dedicated to how design patterns can be implemented in specific
languages, like Java.

Design patterns are common solutions to recurring design
problems.
Design patterns are not just about structure, they also cover
interaction between objects — communication patterns.
Also deal with strategies for inheritance and containment.
The GOF book presents three groups of patterns:
Creational patterns create objects for you. You can decide which
objects are created given a specific case.
Structural patterns help you to compose objects into larger
structures.
Behavioral patterns help you to define communication between
objects and how the flow is controlled in a complex program.

5

Style

Code Talks
> Do the simplest thing you can think of (KISS)

—Don't over-design
— Implement things once and only once
—First do it, then do it right, then do it fast 

(don’t optimize too early)

> Make your intention clear
—Write small methods
—Each method should do one thing only
—Name methods for what they do, not how they do it
—Write to an interface, not an implementation

Simplicity in design should be a key goal (used in the Apollo project).
Simplicity denotes beauty purity and clarity. Or if code speaks and no one
is around to hear it, does it still make a sound?
Extreme Programming encourages starting with the simplest solution and
refactoring to better ones. The difference between this approach and more
conventional system development methods is the focus on designing and
coding for the needs of today instead of those of tomorrow, next week, or
next month. Proponents of XP acknowledge the disadvantage that this can
sometimes entail more effort tomorrow to change the system; their claim
is that this is more than compensated for by the advantage of not investing
in possible future requirements that might change before they become
relevant. Coding and designing for uncertain future requirements implies
the risk of spending resources on something that might not be needed.
Related to the “communication” value, simplicity in design and coding
should improve the (quality of) communication. A simple design with very
simple code could be easily understood by most programmers in the team.

6

Refactoring

Redesign and refactor when the code starts to “smell”
Code Smells (http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html)

> Methods too long or too complex
—decompose using helper methods

> Duplicated code
— factor out the common parts 

(e.g., using a Template method Pattern)
> Violation of encapsulation

— redistribute responsibilities
> Too much communication (high coupling)

— redistribute responsibilities
Many idioms and patterns can help you improve your design ...

Object-oriented programs live best and longest with short methods. The
payoffs of indirection — explanation, sharing and choosing — are
supported by little methods. Everybody knows short is good.
99% of the time, just use Extract Method to shorten a method. Find a part
that goes together and make a new method.
Parameters and temporary variables get in the way of extracting methods.
Use Replace Temp with Query to remove the temporaries and Introduce
Parameter Object or Preserve Whole Object to slim down the parameter
lists.
If you still have too many temps and parameters, it’s time for the heavy
artillery: Replace Method with Method Object
Look for comments. A block of code with a comment should be replaced
by a method named to match the comment. Even a single line is worth
extracting if it needs explanation.
Look for conditionals and loops. Use Decompose Conditional. Extract
each loop into its own method.

7

Refactoring Long Methods

Short is good!

If you need to
comment then
Extract as Method.

8

What are Idioms and Patterns?

Idioms
Idioms are common programming techniques and
conventions. They are often language-specific.
(http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html)

Design Patterns Patterns document common solutions to design
problems. They are language-independent.

Libraries
Libraries are collections of functions, procedures or
other software components that can be used in
many applications.

Frameworks
Frameworks are open libraries that define the
generic architecture of an application, and can be
extended by adding or deriving new classes.
(http://martinfowler.com/bliki/InversionOfControl.html)

Frameworks typically make use of common idioms and patterns.

Idiom: the peculiar character or genius of a language — a distinct
style or character, in music, art, e.g., the idiom of Bach.
E.g., Interface in Java

A Library is about reusable behavior, a framework is about
reusable architecture.
A library is something you call or inherit from your code.
A framework is something that calls your code to provide
services for your code.

A framework is an abstract design that embodies how an
application works and it has hooks where you can inject your
module or component.

> Idioms, Patterns and Frameworks
—Programming style: Code Talks; Code Smells

> Basic Idioms
—Delegation, Super, Interface

> Some Design Patterns
—Adapter, Proxy, Template Method, Composite, Observer, Visitor,

State

Roadmap

9

10

Delegation

✎ How can an object share behaviour without inheritance?
✔ Delegate some of its work to another object

Inheritance is a common way to extend the behaviour of a
class, but can be an inappropriate way to combine
features.

Delegation reinforces encapsulation by keeping roles and
responsibilities distinct.

Delegation is the handing of a task to another part of the program.
One object, the delegator, defers a task to another object, known
as the delegate.
Delegation is used to separate concerns and distribute
responsibilities. The opposite of delegation is concentration of
responsibilities (as seen in the God class anti-pattern).

Some programming languages, like JavaScript (JS), are fully
based on delegation. JS is based on prototypes rather than classes:
to create a new object, you clone an existing object (a prototype)
instead of instantiating a class. Class-based inheritance is
simulated by delegation: if an object does not understand a
message (i.e., a request) it delegates it to its prototype (and so on).

11

Delegation

Example
> When a TestSuite is asked to run(), it delegates the

work to each of its TestCases.

Consequences
> More flexible, less structured than inheritance.

Delegation is one of the most basic object-oriented idioms,
and is used by almost all design patterns.

12

Delegation example

public class TestSuite implements Test {
...
public void run(TestResult result) {

for(Enumeration e = fTests.elements();
e.hasMoreElements();)

{
if (result.shouldStop())

 break;
Test test = (Test) e.nextElement();
test.run(result);

}
}

}

delegate

Instead of a test suite directly running tests, it delegates the task
to its individual test cases. The form of delegation is also
fundamental to the Composite pattern (discussed later): when a
composite object is asked to perform a task, it typically delegates
the tasks to its components. Here the test suite is the composite
and the test cases are the components.

13

Super

✎ How do you extend behavior inherited from a superclass?
✔ Overwrite the inherited method, and send a message to

“super” in the new method.

Sometimes you just want to extend inherited behavior,
rather than replace it.

Instead of replacing behavior from the superclass, you would like
to extend it. The super construct allows you to override the
inherited method and extend it by invoking that behavior by
calling super. The extended behavior will occur before, after or
around the old behavior.
public T foo() {

T result;

// new behavior before

result = super.foo();

// new behavior after

return result;

}

14

Super

Examples
> Place.paint() extends Panel.paint() with specific painting

behaviour
> Constructors for many classes, e.g., TicTacToe, invoke their

superclass constructors.

Consequences
> Increases coupling between subclass and superclass: if you change

the inheritance structure, super calls may break!

Never use super to invoke a method different than the one being
overwritten — use “this” instead!

NB: It is bad practice to use super to invoke an inherited method when
this will do. Consider the following classes A and B:
class A {

 void m1() { ... }

}

class B extends A {

 void m2() { ... super.m1(); ... } // should use this.m1()

}

Now, if we later override m1() in B, then m2 will call the wrong method!
class B extends A {

 void m2() { ... super.m1(); ... } // calls wrong m1() !

 void m1() { ... } // overrides A.m1()

}

The correct thing to do is to call this.m1().

15

Super examples

public class Place extends Panel {
...
public void paint(Graphics g) {

super.paint(g);
Rectangle rect = g.getClipBounds();
int h = rect.height;
int w = rect.width;
int offset = w/10;
g.drawRect(0,0,w,h);
if (image != null) {

g.drawImage(image, offset, offset, w-2*offset, h-2*offset, this);
}

}
 ... public class TicTacToe extends AbstractBoardGame {

public TicTacToe(Player playerX, Player playerO)
{

super(playerX, playerO);
}

In the first example we extend the behavior of the paint()
method with our specific painting behavior. In general, whenever
you override a method inherited from a framework, it is good
practice to explicitly call the overridden method using super. If
you don’t then you may break the framework behavior. Here, if
you fail to call super.paint(), nothing will work.

In the second example, we explicitly call the constructor of the
superclass. By default classes in Java only inherit the default
constructor of the superclass.
NB: Subclass constructors should always explicitly call a
constructor of the superclass to ensure that the invariant of
inherited state is established.

16

Interface

✎ How do you keep a client of a service independent of
classes that provide the service?

✔ Have the client use the service through an interface
rather than a concrete class.

If a client names a concrete class as a service provider,
then only instances of that class or its subclasses can be
used in future.

By naming an interface, an instance of any class that
implements the interface can be used to provide the
service.

17

Interface

Example
> Any object may be registered with an Observable if it

implements the Observer interface.

> Consequences
> Interfaces reduce coupling between classes.
> They also increase complexity by adding indirection.

Interfaces reduce coupling by removing the need to inherit from a
specific class. If you declare a variable x to be of type A, where A
is a class, then x must be an instance of A or one of its subclasses.
If, on the other hand, you declare x to be of type I, where I is an
interface, then x can be an instance of any class X that
implements the interface X. In the latter case, you reduce coupling
between the class where x is declared and other class hierarchies.
On the other hand, complexity is increased by adding a new
interface I to the system. If the flexibility offered by the interface
is not needed, it is pointless to add it.

18

Interface example

public class GameGUI extends JFrame implements Observer {
…
public void update(Observable o, Object arg) {

Move move = (Move) arg;
showFeedBack("got an update: " + move);
places_[move.col][move.row].setMove(move.player);

}
…
}

> Idioms, Patterns and Frameworks
—Programming style: Code Talks; Code Smells

> Basic Idioms
—Delegation, Super, Interface

> Some Design Patterns
—Adapter, Proxy, Template Method, Composite, Observer,

Visitor, State

Roadmap

19

20

Adapter Pattern

✎ How do you use a class that provide the right features but
the wrong interface?

✔ Introduce an adapter.

An adapter converts the interface of a class into another
interface clients expect.

> The client and the adapted object remain independent.
> An adapter adds an extra level of indirection.

Also known as Wrapper

This is one of the most basic and common design patterns.
By defining an adapter around an existing class, you avoid the
need to modify directly the interface of that class. Sometimes you
may not even have access to the source code of the class to be
adapted, or there may be a great deal of existing code that
depends on the old interface. Writing an adapter may be the only
way to avoid rewriting the source code of the adapted class.
The down side is that the adapter introduces an extra level of
indirection. Every access to the old class must go through the
adapter, possibly impacting performance.

21

Adapter Pattern

Examples
> A WrappedStack adapts java.util.Stack, throwing

an AssertionException when top() or pop() are
called on an empty stack.

> An ActionListener converts a call to
actionPerformed() to the desired handler method.

22

Adapter Pattern example

public class WrappedStack<E> implements StackInterface<E> {

protected java.util.Stack<E> stack;

public WrappedStack() {
this(new Stack<E>());

}

public WrappedStack(Stack<E> stack) {
this.stack = stack;

}

public void push(E item) {
stack.push(item);
assert this.top() == item;
assert invariant();

}

delegate
request to
adaptee

Pattern description format

23

Patterns are more than just
programming “tricks” and
can involve considerable
details and tradeoffs.

The basic idea of any given design pattern may be quite simple,
but to fully discuss the pros and cons, implementation strategies
and other tradeoffs may require several pages of documentation.
Each of the design patterns in the original GOF book increases
flexibility of your code at the expense of increased complexity.
Understanding the tradeoffs is critical to applying design patterns
judiciously.

Erich Gamma has a story of a design pattern “fan” who proudly
told him that in his last project he successfully applied all the
design patterns in the book. Erich, of course, was horrified.

24

Proxy Pattern

✎ How do you hide the complexity of accessing objects that
require pre- or post-processing?

✔ Introduce a proxy to control access to the object.

Some services require special pre or post-processing.
Examples include objects that reside on a remote
machine, and those with security restrictions.

A proxy provides the same interface as the object that it
controls access to.

25

Proxy Pattern — UML

Client

Proxy RealSubject

«interface»
Subject

«delegates»

«uses»

26

Proxy Pattern Example

Client

Proxy RealImage
«delegates»

«uses»

displayImage()

«interface»
Image

27

Proxy Pattern Example

public class ProxyImage implements Image {
private String filename;
private Image image;

public ProxyImage(String filename){
this.filename = filename;

}
public void displayImage() {

if (image == null) {
image = new RealImage(filename); //load only on demand

}
image.displayImage();

}
}

delegate request
to real subject

28

Proxies are used for remote object access

Example
> A Java “stub” for a remote object accessed by Remote

Method Invocation (RMI).

Consequences
> A Proxy decouples clients from servers. A Proxy

introduces a level of indirection.

Proxy differs from Adapter in that it does not change the
object’s interface.

Superficially proxies look very much like adapters. Both wrap an
existing class, adding a level of indirection. Their intent, and
consequently the design considerations and tradeoffs are very
different, however.
An adapter exists only to adapt the interface of a class to a
different interface required a by a client.
A proxy, on the other hand, provides the same interface as the
object it is a proxy for. Instead of adapting the interface, it
provides additional pre- or post-processing.

29

Proxy remote access example

:ServiceStub

Machine A

:Service
1:doit() 1.1:doit()

Machine B

30

Template Method Pattern

✎ How do you implement a generic algorithm, deferring
some parts to subclasses?

✔ Define it as a Template Method.

A Template Method factors out the common part of similar
algorithms, and delegates the rest to:
—hook methods that subclasses may extend, and
—abstract methods that subclasses must implement.

This is a behavioral pattern.
It defines a program skeleton of an algorithm. The algorithm
itself is made abstract, and the subclasses of the method override
the abstract methods to provide concrete behavior.

First a class is created that provides the basic steps of the
algorithm design.
These steps are implemented using abstract methods. Later on the
subclasses change the abstract methods to perform real actions.
Thus, the general algorithm is saved in one place but the concrete
steps may be changed by the subclasses.

31

Template Method Pattern

Example
> TestCase.runBare() is a template method that calls the hook

method setUp().
> AbstractBoardGame’s constructor defers initialization to the

abstract init() method

Consequences
> Template methods lead to an inverted control structure since a parent

classes calls the operations of a subclass and not the other way
around.

Template Method is used in most frameworks to allow application
programmers to easily extend the functionality of framework classes.

The Template Method pattern is fundamental to object-oriented
frameworks, such as the original JUnit. Such a framework defines
the architecture of a generic application in terms of interacting
objects, but leaves open the details of the work to be done by a
specific application.
The generic behaviour of the framework is defined in template
methods, such as the methods that actually run tests and gather
the test results. The details are deferred to hook methods,
containing the actual tests. These are implemented by the specific
application classes that inherit from framework classes, like
TestCase.

hook()
templateMethod()

AbstractClass

hook()

ConcreteClass1

…
hook()
...

hook()

ConcreteClass2

32

Template Method Pattern — UML

The template method
defines the skeleton
of an algorithm.
Concrete methods
override the hook
methods.

33

Template Method Pattern Example

Subclasses of TestCase are expected to override hook
method setUp() and possibly tearDown() and
runTest().

public abstract class TestCase implements Test {
...
public void runBare() throws Throwable {

setUp();
try { runTest(); }
finally { tearDown(); }

}
protected void setUp() { } // empty by default
protected void tearDown() { }
protected void runTest() throws Throwable { ... }

}

34

Composite Pattern

✎ How do you manage a part-whole hierarchy of objects in
a consistent way?

✔ Define a common interface that both parts and
composites implement.

Typically composite objects will implement their behavior by
delegating to their parts.

When working with tree-structured data, a programmer has to
discriminate between a leaf node and a branch. This makes code
more complex, thus error-prone.
A Composite is an object (e.g. a shape) designed as a composition
of one or more similar objects (other kinds of shapes) exhibiting
similar functionality.

This is known as a has-a relationship between objects.
The key concept is that you can manipulate a single object just as
you would a group of them.

35

Composite Pattern

> Composite allows you to treat a
single instance of an object the
same way as a group of
objects.

> Consider a Tree. It consists of
Trees (subtrees) and Leaf
objects.

Leaf
Tree

36

Composite Pattern — UML

operation()

«interface»
IComponent

operation()

Leaf Composite

operation()
addComponent(IComponent)
removeComponent(IComponent)
getChildren() : Collection

Here we see the essence of the Composite pattern: both Leaf
entities and Composites implement the same interface (possibly
inheriting from a common superclass). The Composite is
furthermore composed of entities that implement that same
interface, i.e., the components may themselves be either leaves or
composites.

37

Composite Pattern — Example

size()

Shape

size()

Square

Picture

size()
addShape(Shape)
removeShape(Shape)
getShapes() : List<Shape>size()

Rectangle

size()

Circle

double size() {
 double total = 0;
 for (Shape shape : shapes) {
 total += shape.size();
 }
 return total;
}

Recall the Shapes example from the first lecture. We could easily
redesign it to make a Picture a Composite.

Here we see one of the key implementation considerations of the
Composite pattern: operations defined in the common interface
are often implemented in the composite by invoking those same
operations in the individual components (i.e., possibly
recursively), and combining their results. In this example, the
sizes of the components are added together. In the JUnit example,
tests are executed recursively and their test results are combined
into an overall test report.

38

Observer Pattern

✎ How can an object inform arbitrary clients when it
changes state?

✔ Clients implement a common Observer interface and
register with the “observable” object; the object notifies its
observers when it changes state.

An observable object publishes state change events to its
subscribers, who must implement a common interface
for receiving notification.

We saw the Observer pattern extensively in the GUI lecture.
Observers can, however, be used in any setting where parts of an
application need to be informed about events in another part.
Consider an online shopping platform where users want to be
informed if an items becomes available below a certain price, or
sellers want to be informed if bids are issues for similar items that
they are also selling. Such cases can be effectively handled using
Observers, even though the domain has nothing to do with user
interfaces.

39

Observer Pattern

Example
> See GUI Lecture
> A Button expects its observers to implement the
ActionListener interface. 
(see the Interface and Adapter examples)

Consequences
> Notification can be slow if there are many observers for

an observable, or if observers are themselves
observable!

40

Null Object Pattern

✎ How do you avoid cluttering your code with tests for null
object pointers?

✔ Introduce a Null Object that implements the interface you
expect, but does nothing.

Null Objects may also be Singleton objects, since you never
need more than one instance.

The Null Object provides intelligent ﾒdo nothingﾓ behavior.

It shifts the responsibility for “doing nothing” from the client to
the supplier. Instead of having to actively check whether an object
is a valid target for some action, we simply ensure that all objects
support that action, even if it is a no-op. This considerably
simplifies our code and avoids accidental “null object reference”
errors.

41

Null Object Pattern — UML

Client
«uses»

request()

AbstractClass

request()

RealObject

request()

NullObject does
nothing

The Client requires a collaborator.
AbstractObject declares the interface for Client’s
collaborator. It implements default behavior for the interface
common to all classes, as appropriate.
RealObject defines a concrete subclass of
AbstractObject whose instances provide useful behavior
that Client expects.
NullObject provides an interface identical to
AbstractObject so that a null object can be substituted for a
real object. It implements its interface to do nothing. (NB: what
exactly it means to “do nothing” depends on the behavior
Client is expecting.)
When there is more than one way to do nothing, more than one
NullObject class may be required.

42

Null Object

Examples
> NullOutputStream extends OutputStream with an

empty write() method

Consequences
> Simplifies client code
> Not worthwhile if there are only few and localized tests for

null pointers

Factory Method

✎ How can you write code that abstracts which classes to
instantiate?

✔ Define an interface for creating an object, but let
subclasses decide which class to instantiate.

A Factory method lets a class defer instantiation to
subclasses.

43

Factory Method — UML

44

checkGame(…)
makeGame(…)

AbstractBoardGameTest

makeGame(…)

GomokuTestTicTacToeTest

makeGame(…)

public void checkGame(...) {
 ...
 game = makeGame(X,O);
 ...
}

protected BoardGame makeGame(…) {
 return new Gomoku(X, O);
}

Factory Method

Examples
> AbstractBoardGameTest defines an abstract factory

method makeGame() that is implemented in its
subclasses

Consequences
> Abstracts away from which game to test

Factory methods are often combined with AbstractFactories
to encapsulate creation of related objects.

45

Factory methods also reduce coupling by avoiding the need to
explicitly name the classes to be instantiated in the host code.
This can make your code much more easily configurable.
Abstract Factories take this idea further and offer a general
interface for creating objects. Different factories can then be
easily plugged into an application to configure it for one platform
or another. For example, dedicated factories may create UI
widgets for one operating system or another using a common
interface.

46

Some other Design Patterns…

State

The state pattern is a behavioral design pattern, also
known as the objects for states pattern. This pattern is
used in to represent the state of an object. This is a clean
way for an object to partially change its type at runtime.

Decorator that allows new/additional behaviour to be added to an
existing method of an object dynamically.

Visitor

a way of separating an algorithm from an object structure.
A practical result of this separation is the ability to add
new operations to existing object structures without
modifying those structures.

and many more…

47

What Problems do Design Patterns Solve?

Patterns:
> document design experience
> enable widespread reuse of software architecture
> improve communication within and across software development

teams
> explicitly capture knowledge that experienced developers already

understand implicitly
> arise from practical experience
> help ease the transition to object-oriented technology
> facilitate training of new developers
> help to transcend “programming language-centric” viewpoints

Doug Schmidt, CACM Oct 1995

48

What you should know!

✎What’s wrong with long methods? How long should a
method be?

✎What’s the difference between a pattern and an idiom?
✎When should you use delegation instead of inheritance?
✎When should you call “super”?
✎How does a Proxy differ from an Adapter?
✎How can a Template Method help to eliminate duplicated

code?
✎When do I use a Composite Pattern? Do you know any

examples from the Frameworks you know?

49

Can you answer these questions?

✎What idioms do you regularly use when you program?
What patterns do you use?

✎What is the difference between an interface and an
abstract class?

✎When should you use an Adapter instead of modifying the
interface that doesn’t fit?

✎ Is it good or bad that java.awt.Component is an abstract
class and not an interface?

✎Why do the Java libraries use different interfaces for the
Observer pattern (java.util.Observer,
java.awt.event.ActionListener etc.)?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

