
P2 – Exercise Hour
Pascal André

3 April, 2020

Outline

2

• Inheritance

• Exercise 5: Recap

• Exercise 6: Outlook

public abstract class Tile {
public void enter(Player player) {

System.out.println(player + “ enters “ + this);
}

}

public class Floor extends Tile {…}
public class Wall extends Tile {…}

Static and Dynamic Types

3

Wall wall = new Wall(…);
Floor floor = new Floor(…);
Tile tile = wall;

public abstract class Tile {
public void enter(Player player) {

System.out.println(player + “ enters “ + this);
}

}

public class Floor extends Tile {…}
public class Wall extends Tile {…}

Static and Dynamic Types

3

Wall wall = new Wall(…);
Floor floor = new Floor(…);
Tile tile = wall;

wall: Wall
floor: Floor
tile: Tile

The Static Type of the variable…
• is declared in the program
• does never change

public abstract class Tile {
public void enter(Player player) {

System.out.println(player + “ enters “ + this);
}

}

public class Floor extends Tile {…}
public class Wall extends Tile {…}

Static and Dynamic Types

3

Wall wall = new Wall(…);
Floor floor = new Floor(…);
Tile tile = wall;

wall: Wall
floor: Floor
tile: Wall

The Dynamic Type of the variable…
• is bound to the object at runtime
• may change during execution of program

public abstract class Tile {
public void enter(Player player) {

System.out.println(player + “ enters “ + this);
}

}

public class Floor extends Tile {…}
public class Wall extends Tile {…}

Static and Dynamic Types

3

Wall wall = new Wall(…);
Floor floor = new Floor(…);
Tile tile = wall; tile = floor;

wall: Wall
floor: Floor
tile: Floor

The Dynamic Type of the variable…
• is bound to the object at runtime
• may change during execution of program

public class Renderer {
public void renderTile(Wall wall) {

print(wall);
}
public void renderTile(Floor floor) {

print(floor);
}

}

Overloading

4

public class Renderer {
public void renderTile(Wall wall) {

print(wall);
}
public void renderTile(Floor floor) {

print(floor);
}

}

Overloading

4

Methods within a class can have the same
name if they have different parameter lists.

public class Renderer {
public void renderTile(Wall wall) {

print(wall);
}
public void renderTile(Floor floor) {

print(floor);
}

}

Overloading

4

Renderer renderer = new Renderer();

Wall wall = new Wall(…);
Floor floor = new Floor(…);

renderer.renderTile(wall);
renderer.renderTile(floor);

Methods within a class can have the same
name if they have different parameter lists.

public class Renderer {
public void renderTile(Wall wall) {

print(wall);
}
public void renderTile(Floor floor) {

print(floor);
}

}

Overloading

4

Renderer renderer = new Renderer();

Wall wall = new Wall(…);
Floor floor = new Floor(…);

renderer.renderTile(wall);
renderer.renderTile(floor);

Methods within a class can have the same
name if they have different parameter lists.

Method is selected based on the
static type of the arguments.

public class Renderer {
public void renderTile(Wall wall) {

print(wall);
}
public void renderTile(Floor floor) {

print(floor);
}

}

Overloading

4

Renderer renderer = new Renderer();

Wall wall = new Wall(…);
Floor floor = new Floor(…);
Tile tile = floor;

renderer.renderTile(tile);

Methods within a class can have the same
name if they have different parameter lists.

public class Renderer {
public void renderTile(Wall wall) {

print(wall);
}
public void renderTile(Floor floor) {

print(floor);
}

}

Overloading

4

Renderer renderer = new Renderer();

Wall wall = new Wall(…);
Floor floor = new Floor(…);
Tile tile = floor;

renderer.renderTile(tile);

Methods within a class can have the same
name if they have different parameter lists.

Does not compile: Static type of tile is Tile.
There is no method renderTile(Tile tile) that
takes such an argument.

public class Renderer {
public String renderTile(Wall wall) {

return “Wall”;
}
public void renderTile(Wall wall) {

print(floor);
}

}

Overloading

5

Different return types but same signature does not work!
This can not be compiled.

public abstract class Tile {
public void landHere(Player player) {

// define basic landing of player on tile
}

}

public class Floor extends Tile {
@Override
public void landHere(Player player) {

super.landHere(player)
// define additional floor-related details when landing here

}
}

Overriding

6

@Override indicates that we are redefining an inherited method

public abstract class Tile {
public void landHere(Player player) {

// define basic landing of player on tile
}

}

public class Floor extends Tile {
@Override
public void landHere(Player player) {

super.landHere(player)
// define additional floor-related details when landing here

}
}

Overriding

6

“super” can be used to call the overridden method.

public abstract class Tile {
/**
* Return yourself if argument is same tile, null otherwise
*/

public abstract Tile matches(Tile tile) {…}
}

public class Floor extends Tile {
@Override
public Tile matches(Tile tile) {…}

}

Changing Types when Overriding

7

public abstract class Tile {
/**
* Return yourself if argument is same tile, null otherwise
*/

public abstract Tile matches(Tile tile) {…}
}

public class Floor extends Tile {
@Override
public Floor matches(Tile tile) {…}

}

Changing Types when Overriding

7

Option 1:
Return types can be more specific when overriding methods.
Requirement: Floor must be subtype of Tile.

public abstract class Tile {
/**
* Return yourself if argument is same tile, null otherwise
*/

public abstract Tile matches(Tile tile) {…}
}

public class Floor extends Tile {
@Override
public Floor matches(Tile tile) {…}

}

Changing Types when Overriding

7

public abstract class Tile {
/**
* Return yourself if argument is same tile, null otherwise
*/

public abstract Tile matches(Tile tile) {…}
}

public class Floor extends Tile {
@Override
public Floor matches(Object object) {…}

}

Changing Types when Overriding

7

Option 2:
Accept at least what the inherited method accepts.

public abstract class Tile {
protected int xPosition, yPosition;

public Tile(int x, int y) {
this.xPosition = x;
this.yPosition = y;

}
}

public class Floor extends Tile {
private Game game;

public Floor (Game game, int x, int y) {
this.game = game;

}
}

Calling an Inherited Constructor

8

public abstract class Tile {
protected int xPosition, yPosition;

public Tile(int x, int y) {
this.xPosition = x;
this.yPosition = y;

}
}

public class Floor extends Tile {
private Game game;

public Floor (Game game, int x, int y) {
this.game = game;

}
}

Calling an Inherited Constructor

8

Does not work:
Tile does not have a default constructor.

public abstract class Tile {
protected int xPosition, yPosition;

public Tile(int x, int y) {
this.xPosition = x;
this.yPosition = y;

}
}

public class Floor extends Tile {
private Game game;

public Floor (Game game, int x, int y) {
super(x, y);
this.game = game;

}
}

Calling an Inherited Constructor

8

Call an inherited constructor with super(…).
Note: Must be the first statement.

public abstract class Tile {
private int xPosition, yPosition;

public Tile(int x, int y) {
this.xPosition = x;
this.yPosition = y;

}
}

public class Floor extends Tile {
public Floor (int a, int b) {

super (a, b);
System.out.println(xPosition + “, “ + yPosition);

}
}

Attributes and Inheritance

9

public abstract class Tile {
private int xPosition, yPosition;

public Tile(int x, int y) {
this.xPosition = x;
this.yPosition = y;

}
}

public class Floor extends Tile {
public Floor (int a, int b) {

super (a, b);
System.out.println(xPosition + “, “ + yPosition);

}
}

Attributes and Inheritance

9

Does not compile:
xPosition and yPosition are not accessible.

public abstract class Tile {
protected int xPosition, yPosition;

public Tile(int x, int y) {
this.xPosition = x;
this.yPosition = y;

}
}

public class Floor extends Tile {
public Floor (int a, int b) {

super (a, b);
System.out.println(xPosition + “, “ + yPosition);

}
}

Attributes and Inheritance

9

Now we have access

public abstract class Tile {
private int xPosition, yPosition;

public Tile(int x, int y) {
this.xPosition = x;
this.yPosition = y;

}

protected int getX() {return xPosition;}
protected int getY() {return yPosition;}

}

public class Floor extends Tile {
public Floor (int a, int b) {

super (a, b);

System.out.println(getX() + “, “ + getY());
}

}

Attributes and Inheritance

9

Using inherited getter-
methods works too.

public abstract class Tile {
public String name;
public String getName() {return this.name}

}

public class Floor extends Tile {
public String name;
public String getName() {return this.name}

}

Shadowing Attributes

10

public abstract class Tile {
public String name;
public String getName() {return this.name}

}

public class Floor extends Tile {
public String name;
public String getName() {return this.name}

}

Shadowing Attributes

Floor floor = new Floor();
Tile tile = floor;
tile.name = “floor”;

System.out.println(floor.getName());
System.out.println(tile.getName());

10

public abstract class Tile {
public String name;
public String getName() {return this.name}

}

public class Floor extends Tile {
public String name;
public String getName() {return this.name}

}

Shadowing Attributes

Floor floor = new Floor();
Tile tile = floor;
tile.name = “floor”;

System.out.println(floor.getName());
System.out.println(tile.getName());

→ null
→ null

10

public abstract class Tile {
public String name;
public String getName() {return this.name}

}

public class Floor extends Tile {
public String name;
public String getName() {return this.name}

}

Shadowing Attributes

Floor floor = new Floor();
Tile tile = floor;
tile.name = “floor”;

System.out.println(floor.name);
System.out.println(tile.name);

10

public abstract class Tile {
public String name;
public String getName() {return this.name}

}

public class Floor extends Tile {
public String name;
public String getName() {return this.name}

}

Shadowing Attributes

Floor floor = new Floor();
Tile tile = floor;
tile.name = “floor”;

System.out.println(floor.name);
System.out.println(tile.name);

→ null
→ “floor”

10

Overloading & Overriding

11

• Overloading
▪ Same method name, different signatures

▪ Return types must match

• Overriding
▪ Redefine inherited methods

▪ Use “super.methodName()” (or “super()” in constructors)

▪ Must call a super constructor if there’s no argumentless constructor
available in the superclass

▪ Accept more, return less

Exercise 5 – Recap Stage 1

12

For the first iteration of the Sokoban game, you should have added:

• Initial game setup
• Prepare your game’s representation by setting up required classes

• e.g. create classes like `Game`, `Player`, `Tile` etc.

• Parser
• Reads game specification files and creates game instance

• Tests to check that parser creates game correctly

• Renderer
• Prints a game state to standard output

• Tests to check that renderer prints game state correctly

git tag –a v1 –m “sokoban1”
git push origin --tags

Exercise 5 – Recap Stage 2

13

For the second iteration of the Sokoban game, you should have added:

• Player Movement
• Allow player to move around on the board (not required to be interactive)

• Tests to show that player movement is working

• Game Winning Scenario
• Game should terminate when all boxes are on a goal tile

• Tests
• Add a JUnit test that solves the level `levels/basic1.sok`

• Use parser to create new game; instruct player to move on board to solve
puzzle; use renderer to print each game state incl. game winning message

• Debugger
• In a markdown file describe 3+ cases where you have used the debugger

Exercise 6 – Outlook

14

Fully complete Exercise 5 (1st + 2nd stage) and then tag your final solution:

• Apply the concepts we have covered so far:
• Object-Oriented Design Principles

• Responsibility Driven Design

• Design by Contract

• Unit Testing

• JavaDoc for class and method comments

git tag –a v2 –m “sokoban2”
git push origin --tags

Exercise 6 – Outlook Stage 3

15

For the third iteration of the Sokoban game, you should implement:

• Validation of Player Movement
• Only allow valid moves (do not allow moving through walls)

• Box Movement
• Player can move boxes (if possible in current game state)

• New `C` Tile
• Add new “Completed Tile” that represents goal tile with a box on it

• Update classes: parser can read new tile and renderer can visualize it

• Tests
• Add unit tests to check your implementation of the above three tasks

Exercise 6 – Outlook Stage 3

16

furthermore…

• Interactivity
• Make game interactive by adding main routine to run the program

• Take user input to move the player

• Re-render board after each step so player sees current game representation

• UML: Sequence Diagram
• User writes input command that pushes box onto goal tile

git tag –a v3 –m “sokoban3”
git push origin --tags

Exercise 6 – Outlook Stage 4

17

For the fourth iteration of the Sokoban game, you should add:

• Refactoring
• Write markdown file documenting refactoring process of any class

• Packages
• Create different packages for your classes

• Override `toString()` Methods
• Provide reasonable `toString()` method for all objects (except test classes)

• Minimize Mutability
• Declare instance variables which are unmodified after initialization as `final`

Exercise 6 – Outlook Stage 4

18

furthermore…

• Encapsulation and Information Hiding
• Use appropriate access modifiers for all methods and instance variables

• Check Parameters for Validity
• Write `assert` statements to check method parameters for their validity

• Write JavaDoc comments for all public methods incl. parameter restrictions

Once you have finished, tag your solution:

Deadline: Friday, 24 April, 13:00

git tag –a v4 –m “sokoban4”
git push origin --tags

