
P2 - Exercise hour

Pooja Rani

2020-05-22

Ex. 8 Recap

Identify design patterns
- Builder pattern
- Null Object pattern
- Visitor pattern
- Abstract Factory pattern

Some examples
- Use builder pattern to create complex objects

public class PlaintextParser {

..

Game.GameBuilder gameBuilder = new

Game.GameBuilder(width, height);

..

}

public static class GameBuilder {

...

public GameBuilder(){

....

}

public Game build(){

return new Game(this);

}

}

Builder pattern
- Instantiate the game with the data provided by
GameBuilder
- GameBuilder is a helper class to create Game
instance
- It can validate each Game attribute separately
- Single Responsibility Principle.

Null Object Pattern
- Handle null cases for the objects
- Null object has no side effects as it does nothing
- Used as stub in testing, when certain features such
as database is not available for testing

public class NullRenderer implements Renderer {

@Override

public void render(Game game) { /* do nothing */ }

}

Abstract Factory pattern
- Use generic interface to create the related objects

public abstract class SokobanObjectProvider {

}

public class TestObjectProvider extends

SokobanObjectProvider {

}

public class DefaultSokobanObjectProvider extends

SokobanObjectProvider {

}

Abstract Factory pattern
- Open/Closed Principle.
- You can introduce new variants of products
without breaking existing client code.

Visitor pattern
- Use the pattern when a behavior makes sense only
in some classes of a class hierarchy, but not in
others.
- To visit different entities and tiles

- EntityVisitor

- TileVisitor

- GameVisitor

Visitor pattern
To visit different types of entities such as Box,
Player, ExplosiveEntity.

public interface EntityVisitor {

void visitBoxEntity(BoxEntity boxEntity);

....

}

public class BoxEntity {

@Override

public void accept(EntityVisitor entityVisitor) {

entityVisitor.visitBoxEntity(this);

}

}

Visitor pattern
To visit different types of tiles such as floor, box,
wall.
public interface TileVisitor {

void visitFloorTile(FloorTile floorTile);

....

}

public interface GameVisitor extends TileVisitor {

void visitGame(Game game);

}

public class FloorTile {

@Override

public void accept(GameVisitor gameVisitor) {

gameVisitor.visitFloorTile(this);

}

}

Strategy pattern
- define a family of algorithms and lets you use
depending on the object.
- isolate the implementation details of an algorithm
from the code that uses it.
public interface CollisionVisitor {

void collideWith(Entity entity, Point delta);

..

}

public class BoxEntity {

@Override

public void collideWith(Entity entity, Point delta) {

entity.collideWithBoxEntity(this, delta);

}

}

Singleton pattern
- ensure that a class has only one instance

public abstract class SokobanObjectProvider {

protected SokobanObjectProvider() {}

public static SokobanObjectProvider instance() {

if (instance == null) {

instance = defaultInstance();

}

return instance;

}

}

Other patterns
- Iterator pattern

Pharo

I Pharo is a dynamic typed language

I Style matches to the natural language, English

I A live programming environment

I Supports live debugging

I Inspect objects with custom representations

Basic blocks

2 raisedTo: 30 "1073741824- "

15 / 25 "(3/5)- Fraction"

'Hello Smalltalk' "'Hello Smalltalk' -ByteString"

anArray := #(1 2)

How do you write Loops?
Java
for(int i = 1; i < 10 ; i++)

System.out.print(i);

Pharo
(1 to: 9) do: [:x | Transcript show: x printString]

Detect first odd number from the array?
Java
int[] array = {21, 23, 53, 66, 87};

Integer result = null;

for (int i = 0; i < array.length ; i++) {

if (array[i] \% 2 == 1) {

result = array[i];

break;

} }

if (result == null)

throw new Exception(?Not found?);

Pharo
#(21 23 53 66 87) detect: [:x | x odd]

Note: Note that arrays are 1-based-
that is, the first valid index is 1, rather than 0.

Exercise 10

I Revisit Turtle game from exercise 3

I Move turtle using 4 commands

I Commands are already created

I Understand ‘TurtleModel‘ and ‘BoardModel‘ class and
document the classes

Document the classes

I Document all the details like purpose of the classes, what
they do, instance variables, APIs warnings, observations
etc. that you think is important to understand and extend
these classes

I Pharo use Class comments as a primary source to
document all such details

I Write all the details in comments

I Document ‘TurtleModel‘ and ‘BoardModel‘ class and
document the classes

NOTE

I There are 2 exercise patterns, solve according to your
group number.

I Differences in the class comment template

I See exercise 09.md for more details

I Deadline 29th May, 2020

