
P2: Design By Contract

Lorenzo Wipfli
12 March 2021

Contents

• Feedback Exercise 2
• SwapSquare
• WormHoleEntrance
• SkipSquare
• JavaDoc
• Git

• Design by Contract
• Assertions
• Exceptions

• UML
• Exercise 3

Exercise 2: SwapSquare

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 4

Idea:
• Ask yourself, does the player stay on this square or not? Where would you place
the logic?
• Get the target (or next) Player.
• Get the current position of target player.
• Move the target player to the swapsquare.
• Move the current player to the target player’s square.
• Note: Watch out that there is no swapping loop!

Exercise 2: SwapSquare

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 5

@Override
public ISquare landHereOrGoHome() {

if(this.isOccupied())
return game.firstSquare();

//logic to prevent infinite swap loop
...

//Get the next player to change with
Player nextPlayer = game.currentPlayer();

//Get square on which that player is
ISquare changeSquare = nextPlayer.square();

//Tell the next player to move...
...

return changeSquare.landHereOrGoHome();
}

}

Exercise 2: WormholeEntrance

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 6

Idea:
• Ask yourself, does the player stay on this square or not? Where would you place

the logic?
• Get all available wormhole exits.
• Choose one at random (for example with Random().nextInt(int scope) gives a

number from 0 to scope-1.)
• Place the player at the exit.

Exercise 2: SkipSquare

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 8

Idea:
• Ask yourself, does the player stay on this square or not? Where would you place

the logic?
• Tell the game to skip the next player.
• Use a boolean attribute maybe?

/**
* Square that skips the next player.
*/
public class SkipSquare extends Square implements ISquare {

// …
}

JavaDoc: Examples

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 9

Missing details

JavaDoc: Examples

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 10

/**
* The class SkipSquare contains functionality that
* skip the next player.
*/
public class SkipSquare extends Square implements ISquare {

// …
}

Filler words: The class SkipSquare

JavaDoc: Examples

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 11

/**

* Skips the next player after the current one.

*

* Is created and called inside the {@link Game} class.

* Extends {@link Square}.

*

*/

public class SkipSquare extends Square implements ISquare {

// …

}

Git-messages

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 12

https://xkcd.com/1296/

http://xkcd.com/1296/

Git-messages

• No more errors!
• I hate git
• test
• first try
• solving exercise
• Here have some code
• Changes
• Fix
• .
• Remove if
• Do you see this?
• I have seen it yes.
• Its sunny outside.

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 13

Git-messages

• Implemented SwapSquare

• Implemented SkipSquare which skips the next player
of the current Game.

• Added Player.toString() method.

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 14

DBC - Example

/**

* Sets the refresh rate for the current display.

* @param rate new refresh rate

*/

public void setRefreshRate(int rate) {

// what if rate < 0?

}

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 16

DBC - Assertion Example

/**

* Sets the refresh rate for the current display.

* @param rate new refresh rate, must be >= 0

*/

public void setRefreshRate(int rate) {

assert rate >= 0;

}

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 17

DBC – Exception Example

/**

* Sets the refresh rate for the current display.

*

* @param rate new refresh rate

* @throws IllegalArgumentException if rate is not valid

*/

public void setRefreshRate(int rate) throws IllegalArgumentException {

if (rate < 0) {

throw new IllegalArgumentException();

}

}

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 18

DBC – When to use Assertions

• Use when you expect a property to hold
• Calls inside the program
• Use for contracts
• Pre-/postconditions, invariants
• Simplifies design

• Use inside complex code
• For example to make sure an intermediate result holds

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 19

Assertions – Pre-, and Postconditions

/**
* Draw a vertical line, starting from position,
* with a length of steps + 1.
*
* @param position start location of the line, must not be null
* @param steps length of the line
*/
public void drawVertical(Point position, int steps) {

assert position != null; // This is a precondition
// Implementation here
assert(invariant()); //This is a postcondition

}

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 20

DBC – When to use Exceptions

• Favor exceptions for checking method parameters in public/external API
• Can’t trust user to read JavaDoc

• Always use exceptions to check user input!

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 21

Exceptions

• Error handling
• Expected behavior
• Deal with it in try-catch blocks, or
• throw it up to the caller

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 22

DBC – Checked Exceptions

• Declared Exception

• Wrapped inside a try-catch block

• Always use checked exceptions unless there is a very good reason not to!

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 23

public void fooBar() {
try {

// something that throws a TodoException
} catch (TodoException e) {

// handle exception
}

}

public void matches(String filename) throws NotImplementedException {}

NullPointerException

• Very common unchecked exception
• Often hard to tell where it originated
• Value may be passed around for a while before it is used

• Include null checks where appropriate

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 25

NullPointerException

private void newGame() {

setPlayer(null);

execute();

}

private void setPlayer(Player player) {

this.player = player;

}

private void execute() {

this.player.move();

}
Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 26

Exception in thread "main" java.lang.NullPointerException
at exercise_03.SomeClass.execute(SomeClass.java:79)
at exercise_03.SomeClass.newGame(SomeClass.java:65)
at exercise_03.SomeClass.main(SomeClass.java:7)
...
Process finished with exit code 1

we do not know why player == null

Exceptions

private void newGame() {

setPlayer(null);

execute();

}

/** @param player must not be null */

private void setPlayer(Player player) {

assert player != null;

this.player = player;

}

private void execute() {

this.player.move();

}
Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 27

Exception in thread "main" java.lang.AssertionError
at exercise_03.SomeClass.setPlayer(SomeClass.java:74)
at exercise_03.SomeClass.newGame(SomeClass.java:64)
at exercise_03.SomeClass.main(SomeClass.java:7)
Process finished with exit code

Stacktrace shows where Nullpointer occured

DBC - Example

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 28

/**
* Look up the object at the top of
* this stack and return it.
*
* @return the object at the top
*/
public E top() {

return top.item;
}

DBC - Example

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 29

/**
* Look up the object at the top of
* this stack and return it.
* Returns null if called on an empty stack.
*
* @return the object at the top
*/
public E top() {

if (this.isEmpty()) {
return null;

}
return top.item;

}

/**
* Look up the object at the top of
* this stack and return it.
* @throws EmptyStackException if the stack is empty
*
* @return the object at the top
*/
public E top() throws EmptyStackException {

if (this.isEmpty()) {
throw new EmptyStackException();

}
return top.item;

}

DBC - Example

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 30

UML

• Documentation
• Can be done automatically

• Can be an overkill (next slide)

• Drafts
• Simplify reality
• Understand an existing solution
• Deciding how to build something from scratch
• Capture requirements and discuss your idea with others
• Reduce your effort to test different approaches

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 31

UML - Documentation

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 32

UML - Categories

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 33

structure
class diagram

component diagram

composite structure diagram

object diagram

package diagram

profile diagram

behaviour
activity diagram

comunication diagram

interaction overview diagram

sequence diagram

state machine diagram

timing diagram

UML - Categories

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 34

structure
class diagram

component diagram

composite structure diagram

object diagram

package diagram

profile diagram

behaviour
activity diagram

comunication diagram

interaction overview diagram

sequence diagram

state machine diagram

timing diagram

UML - Example

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 35

UML

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 36

UML – Class annotation

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 37

Access modifiers:
+ public, - private, # protected, static

Attributes:
acessIdentifier: type
Example: - size: int

Methods:
accessIdentifier(parameter: type): returnType

UML - Relationships

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 38

UML - Relationships

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 39

UML – Aggregation vs Composition

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 40

UML – Sequence Diagramm

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 41

UML – Sequence Diagramm

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 42

UML – Sequence Diagramm

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 43

UML - Tips

•Different aspects, different diagram type
•Keep it simple
•Focus on what you want to communicate, forget the rest

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 44

UML - Tips

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 45

Not enough information

UML - Tips

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 46

Too much information

UML - Tips

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 47

Additional Material

• http://scg.unibe.ch/teaching/p2/ (P2 reading material, UML Reference)
• Book: UML Distilled, Martin Fowler

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 48

http://scg.unibe.ch/teaching/p2/

Exercise 3 - Demo

• A hooman that moves around a 48x48 board
• Commands : right, left, up, down
• Leaves a trail

• Input: String representing a hooman program, which denotes where he
should walk.
• Example:

right 5
down 4
left 3
up 10

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 49

Exercise 3 - Tips

• You start with
• CovidRenderer: Handles GUI
• Enviroment: Skeleton class that should handle the whole area
• Area: Enum types of: SAFE, TRAIL, COVID (Infection hotspots)

• You have to
• Parse input program (split lines into commands)
• Execute hooman actions and handle incorrect commands.
• Parsing and executions should be split!
• Keep track of trail and handle quarantines.

• Use the information from the lecture and form these slides to make the two UML
diagrams
• Scan the UML or take a picture and add them both to your repository as a .png or .jpg

Exercise 2 – DBC, Assertions, Exceptions – UML – Exercise 3 50

• git pull p2-exercises master
• Read exercise_03.md
• Happy Coding!

