
Oscar Nierstrasz

9. Objects, Types and Classes

Based on material by Anthony Simons

class Number

class Integer

type Number

type Integer

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Questions

> What is an object?
> What is a type?
> What is a subtype?
> What is the difference between a class and a type?
> What is the difference between inheritance and

subtyping?
> When is a subclass also a subtype?

3

What is an object? Is it just a dictionary? Is it an autonomous
agent?
What are classes and types? Are they just aspects of the same
thing, or are types fundamentally different? What about dynamic
class-based languages that don't have any formal notion of
“type”?
Are inheritance and subtyping the same thing? Do they always
coincide, or do they express very different things?

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Literature (I)

> Wilf LaLonde and John Pugh, “Subclassing ≠ Subtyping ≠ Is-a,”
Journal of Object-Oriented Programming, vol. 3, no. 5, January 1991,
pp. 57-62.

> Peter Wegner and Stanley B. Zdonik, “Inheritance as an Incremental
Modification Mechanism or What Like Is and Isn't Like,” Proceedings
ECOOP '88 , S. Gjessing and K. Nygaard (Eds.), LNCS, vol. 322,
Springer-Verlag, Oslo, August 15-17 1988, pp. 55-77.

> Barbara H. Liskov and Jeannette M. Wing, “A behavioral notion of
subtyping”, In ACM Trans. Program. Lang. Syst. 16(6) p. 1811—1841,
1994.

> Anthony J. H. Simons, “The Theory of Classification”, Parts 1-3,
Journal of Object Technology, 2002-2003, www.jot.fm.

5

http://www.jot.fm/
http://www.jot.fm/

This lecture is mainly based on Simons’ JOT series, with some
additional material from the other papers. All material can be
found here:

http://scg.unibe.ch/teaching/pl/resources

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Prelude: Subclassing ≠ Subtyping ≠ Is-a

7

Object

Collection

PrivateHashArray

Set

Bag

IntegerSet

(a) Subclassing

incremental modification

Object

Collection

Bag Set IntegerSet

(b) Subtyping

substitutability

Object

Collection

Bag

Set

IntegerSet

(c) Is-A

specialization

This example comes from LaLonde and Pugh (JOOP, 1991).
Subclassing is an incremental modification mechanism.
Subtyping enforces substitutability.
Specialization says that one thing is a special case of another and
does not (necessarily) imply substitutability.
(NB: IntegerSet <: Collection is perhaps debatable …)
This is the simple explanation of the difference between
subclassing and subtyping. As we shall see, Simons presents a
more refined notion of classes as families of types.

The Principle of Subtitutability

An instance of a subtype can always be
used in any context in which an instance
of a supertype was expected.

— Wegner & Zdonik

8

The quotation is from the classic ECOOP 1988 paper,
“Inheritance as an Incremental Modification Mechanism or What
Like Is and Isn't Like.”
The statement can be interpreted in many ways. What does “…
can always be used …” mean? Does it just mean “won’t cause
any unexpected errors”? Or “will yield precisely the same
result”? The choice leads to rather different forms of subtyping.

Components and Compatibility

A compatible
component provides
what the client
requires

A client has certain
expectations of a
component

A supplier provides a
component that should
satisfy these
expectations

9

Simons starts in Part 1 of his series of essays by considering what
is a “component” and what it means for one component to be
“compatible” with the expectations of a client. These expectations
are what a type is meant to express.

Kinds of Compatibility

> Syntactic compatibility — the component provides all
the expected operations (type names, function
signatures, interfaces);

> Semantic compatibility — the component's operations
all behave in the expected way (state semantics, logical
axioms, proofs);

10

Most work published as “type theory” has concentrated on the
first aspect, whereas the latter aspect usually comes under the
heading of “semantics” or “model checking”.

Liskov substitutability principle  

Let q(x) be a property provable about objects x of type T.
Then q(y) should be true for objects y of type S, where S
is a subtype of T.

— Liskov & Wing, 1994

http://en.wikipedia.org/wiki/Liskov_substitution_principle

This well-known principle (also referred to as “LSP”) is not so
much a definition of substitutability as a general framework,
depending on what kind of properties one is interested in.

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Review: Static and Dynamic Typing

A language is statically typed if it is always possible to determine the
(static) type of an expression based on the program text alone.

A language is dynamically typed if only values have fixed type. Variables
and parameters may take on different types at run-time, and must be
checked immediately before they are used.

A language is “strongly typed” if it is impossible to perform an operation
on the wrong kind of object.

Type consistency may be assured by
—compile-time type-checking,
—type inference, or
—dynamic type-checking.

13

See Cardelli & Wegner’s classic 1985 Computing Surveys paper.
All programming languages have some notion of type, so there is
no such thing as an “untyped” languages. The difference is
whether types are declared (and checked) statically, or only
checked dynamically. The term “strongly typed” should be
avoided.

Review: Polymorphism

> Monomorphism — variables hold values of exactly one
type

> Polymorphism — variables may hold values of various
types

All OO languages are polymorphic

14

All OO languages are polymorphic because we can always bind
subclass instances to variables whose expected type is the
superclass.
Recall that subtype polymorphism in OO languages differs from
parametric polymorphism as seen in Haskell. In both cases
variables can be bound to values of different types, but the
underlying rules are rather different. We will explore both forms
in detail in this lecture.

OO Polymorphism

“Beware object-oriented textbooks! Polymorphism
does not refer to the dynamic behaviour of objects
aliased by a common superclass variable, but to
the fact that variables may hold values of more
than one type in the first place. This fact is
independent of static or dynamic binding.”

— Simons, Theory of Classification, Part I

15

I.e., polymorphism has to do with whether single or multiple
types are permitted in a given context. It has nothing to do with
how messages are dispatched!

Review: Kinds of Polymorphism

> Universal:
—Parametric: polymorphic map function in Haskell; nil/

void pointer type in Pascal/C
—Inclusion: subtyping — graphic objects

> Ad Hoc:
—Overloading: + applies to both integers and reals
—Coercion: integer values can be used where reals are

expected and v.v.
— Cardelli and Wegner

16

NB: Haskell supports parametric polymorphism and overloading,
but not subtyping. It is an open problem whether ML style type
inference can be extended to deal with subtyping.
In Java we find all four forms. We can bind variables to values
belonging to a subtype (inclusion), we can define generic classes
with type parameters (parametric), we can define multiple
methods that take different types of arguments (overloading), and
primitive values can be auto-boxed to objects, and unboxed again
(coercion).

Kinds of Type Compatibility

Exact 
Correspondence

The component is identical in type and its
behaviour exactly matches the expectations
made of it when calls are made through the
interface.

Subtyping

The component is a more specific type, but
behaves exactly like the more general
expectations when calls are made through
the interface.

Subclassing

The component is a more specific type and
behaves in ways that exceed the more
general expectations when calls are made
through the interface.

17

Exact correspondence refers to monomorphism.
Subtyping is inclusion polymorphism. As in LSP, we must be
careful what we mean by “behaves exactly like”.
Subclassing in Wegner and Zdonik's view replies on inheritance
as an “incremental modification mechanism”. As we shall see,
“ways that exceed” has to do with how objects are recursively
defined. We focus first on subtyping, with a view to later
understanding subclassing.

Kinds of Types

Bit-interpretation schemas
☞ Based on memory storage requirements

Model-based and constructive types
☞ Types as sets (x: X ⇔ x ∈ X)

Syntactic and existential abstract types
☞ Types as sets of function signatures

Axioms and algebraic types
☞ Types as sets of signatures and axioms

18

Bit schemas are too low-level for understanding objects.
Types as sets are too restrictive, as we shall see.
Types as function signatures is the most practical approach.
The axiomatic approach is more ambitious, and typically goes
beyond what is really needed in practice.

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Dimensions of Type-checking

Bit Schemas Interfaces Algebras

Exact C Pascal, C, Ada,
Modula2

Subtyping C++ C++, Java,
Trellis OBJ, Eiffel

Subclassing Smalltalk,
[Eiffel]

20

Simons, Part 2.
The areas we are more interested in are in darker grey. Note that
we cannot really classify languages, since each language must
typically deal with multiple issues. Rather we give some
examples of languages where these issues come out more
strongly.

Type-checking exact interfaces

Start with:
> sets A, B, ..., corresponding to the given primitive types in

the universe; and
> elements a, b, ..., of these sets, corresponding to the

values in the universe; and
> set operations such as membership ∈, inclusion ⊆, and

union ∪; and
> logical operations such as implication ⇒, equivalence ⇔

and entailment
⊥

21

To warm up, we explore exact correspondence and types as
interfaces.
We start with sets of primitive values, such as numbers and
strings, and then we build up more complex values using various
set operations.

Type Rules

Says: “if n is of type N and m is of type M, then we may
conclude that a pair 〈n, m〉 has the product type N × M”

Product Introduction

22

We will be seeing lots of type rules expressed in the form. Read
the bar as implication. Whatever is above the bar expresses our
assumptions, and what follows below expresses our conclusions.
To prove that an expression has a particualr type, we will use a
number of these type rules in combination.
This particular rule expresses how we can build up simple tuple
types from primitive types. Using this rule, if we know that name
is a string and salary is an integer, then the pair
<name,salary> is of type string × integer.

23

Function Introduction

Product Elimination

Function Elimination

If e has type N×M, then π1(e) has type N, π2(e) has type M.
If x has type D and e has type C, then a function λx.e has type
D→C.
If f has type D→C and v has type D, then f(v) has type C.

Record Introduction

24

Record Elimination

If αi are labels and each ei has type Ti, then the record {αi→ei}
has type {αi:Ti} …

Applying the Rules

But what is the Point type?!

Consider:

25

We would like to derive:

We define a JS-like make-point function that takes an pair
containing x and y coordinates, and returns a record containing x,
y and an equals “method”.
We would like to use our type rules to conclude that:

make-point : Integer × Integer → Point

So far so good, but we never said what the Point type is … We
must therefore take a closer look at what we mean by objects.

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Object Encodings and Recursion

> Three answers:
— Existential object encoding

– Objects as data abstractions
— Functional object encoding

– Objects as functional closures
— Object calculus

– Objects as self-bound records

What is an object?

27

Each theory has its pros and cons. We will focus on the functional
view for the type theory.
See Simons, Part 3.

Existential Object Encoding

Says: There is some (hidden) representation that
makes the Point interface work as it should.

28

The existential view is consistent with the principle of
encapsulation. It says that there is some hidden representation,
rep, which objects of type Point have access to. Since clients do
not know what rep is, they can only access the public part,
namely the record containing x, y, and the equals method. Each of
these requires the rep part to work, but the client cannot do
anything with it aside from pass it to the three operations.
The key point is that we do not say what rep is — any rep will do.

An Existential Point

Says: aPoint consists of some concrete representation
and a record of methods for accessing the state.

29

Here is a concrete instance of type Point with its internal
representation consisting of an ⟨x,y⟩ pair. The implementations of
x, y, and equals know how to access this representation.
Note that clients do not know what the representation is. They
simply pass it in to the methods without touching or examining it.

Pros and Cons

> Pros:
—Models private state.
—Don’t need recursive types.

> Cons:
—Clumsy invocation: π2(p).m(π1(p)) to invoke method m of p (!)
—Mutator methods not directly modeled.

30

Simons points out: One way would be to define a special method
invocation operator “•” to hide the ungainly syntax, such that the
expression:

obj • msg(arg)

would expand to:
π2(obj).msg(π1(obj), π1(arg))

However, this has several drawbacks. Firstly, separate versions of
“•” would be needed for methods accepting zero, or more
arguments. Secondly, “•” would have to accept objects, messages
and arguments of all types, requiring a much more complicated
higher-order type system to express well-typed messages.

Functional Object Encoding

Says: a Point is a record of methods, some of
which manipulate Point objects

Recall: µ is a special operator
used for recursive definitions. 

 AKA “fix”, “rec”, “letrec” or “def”.
(µ f.E) e → E [(µ f.E) / f] e

31

This definition has the sense of “let pnt be a placeholder standing
for the eventual definition of the Point type, which is defined as a
record type whose methods may recursively manipulate values of
this pnt type.”
In this style, “µ pnt” (sometimes notated as “rec pnt”) indicates
that the following definition is recursive.

A Functional Point

Says: aPoint is a closure consisting of a record with
access to hidden state xv and yv.

32

Compare this with objects as closures in JavaScript.
Note we do not yet deal with self!

Objects and Recursion

Says: aPoint is an object, with (recursive) access to itself

33

This recursive definition of a point is a functional closure that
also recursively binds self. Note that self is the fixpoint.

Pros and Cons

> Pros:
—Models private state.
—Direct interpretation of methods.

> Cons:
—Requires fixpoints.
—Mutator methods not directly modeled.

34

Unfortunately fixpoints considerably complicate the type system.
So far all our “objects” are immutable values, so we do not
handle mutator methods.

Abadi and Cardelli’s Object Calculus

Says: aPoint is an object with self bound by definition
of the calculus

35

Abadi & Cardelli define a kind of lambda calculus of objects as
records, with a special operator, ς, which binds self references
similar to the way that µ binds fixpoints.
See Abadi & Cardelli’s “A Theory of Objects”.

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Literature (II)

> Luca Cardelli and Peter Wegner, “On Understanding
Types, Data Abstraction, and Polymorphism,” ACM
Computing Surveys , vol. 17, no. 4, December 1985, pp.
471-522.

> William Cook, Walter Hill and Peter Canning, “Inheritance
is not Subtyping,” Proceedings POPL '90 , San Francisco,
Jan 17-19 1990.

> Anthony J. H. Simons, “The Theory of Classification”,
Parts 4-8, Journal of Object Technology, 2002-2003,
www.jot.fm.

37

http://www.jot.fm/
http://www.jot.fm/

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Generators and fixpoints

39

Can be seen as a shortcut for …

We can view µ as a kind of built-in fixpoint operator.

Recursive types

The Point type must also be recursive:

… What does subtyping mean for such types?

40

Which can be seen as a shortcut for …

We use µ not only for objects, but also for types. As with objects,
the µ represents the “unfolding” of a recursively-defined type.
Although this we can easily make sense of this notion of a type as
a specification of a client’s expectations, it is not at all clear what
a “subtype” would be. We need to start over and examine what
we mean by a “type”.

Types as Sets

Sets Types
x ∈ X x : X

x is a member of X x is of type X
Y ⊆ X Y <: X

Y is a subset of X Y is a subtype of X

Caveat: Although this view of types as sets is intuitive and
appealing, it leads to conceptual problems … as we shall see.

E.g., john : Student ⇒ john : Person

41

We start with a simple view of types as sets. If Student is a
subclass of Person, then it is also a subtype, and every student
is then also a member of the set of persons.

Function subtyping

Suppose:

✎ When can fY be safely substituted for fX?

Ask: What relationships must hold
between the sets DX , DY , CX and CY?

42

If fY can be substituted for fX, then it must accept as argument
everything that fX accepts.
Similarly, the result of fY must be substitutable for the result of fX.
Try to draw Venn diagrams for these sets. (Map to Student,
Person, Dog, Pet.)

Covariant types

DX CXfX
DY

CY

fY

A client who expects the behaviour of fX, and applies fY
to a value in DX might get a run-time type error.

43

Covariant subtyping means that to subtype a function, we subtype
both domain and codomain. This is often what we want to do in
practice, since when we specialize a class we often specialize all
the operations that manipulate instances.
Unfortunately, a value in DX but not in DY may be rejected by fY.
As a consequence, covariant subtyping is not safe.
This is the Eiffel approach. Actually, the Eiffel compiler flags
these, and performs a run-time type check.

MyPoint subclass: #HotPoint
instanceVariableNames: 'on '

on
^ on

toggle
on := on not

on: boolean
on := boolean

= aHotPoint
^ super = aHotPoint and: [self on = aHotPoint on]

Object subclass: #MyPoint
instanceVariableNames: 'x y '

x
^x

y
^y

= aPoint
^ self x = aPoint x and: [self y = aPoint y]

Covariant type errors

44

We skip the constructors and the initializers for conciseness.
HotPoint specializes Point, and HotPoint’s = also tries to
specialize Point’s =. This is fine, as long as we don’t mix Points
and HotPoint.
Note that a proper = method should accept any object as its
argument, and return false if the argument is not an instance of
the same class.

Contravariant types

A contravariant result type guarantees that the client
will receive no unexpected results.

DX CXfX

DY

CY

fY

45

Contravariant subtyping works in the opposite direction for
arguments — to subtype a function, we need a supertype of the
domain, but a subtype of the co-domain.
fY should accept as argument at least everything that fX accepts,
and return at most everything that fX returns.
A client supplying an argument in domain DX is guaranteed to get
a result in codomain CX, since CY is contained in CX.

Covariance and contravariance

For a function type DY→CY to be a subtype of (I.e.,
substitutable for) DX→CX , we must be covariant in the
result type, but contravariant in the argument type!

46

Use the intuition that DX is a subset of DY etc. Note that Eiffel
does this wrong (but with good justification).
This is a nice, clean rule, but violates our modeling principles —
usually we really do want to specialize both the domain and co-
domain.

Overloading

With overloading, the old and the new methods co-
exist. No type errors arise, but the domains of fX and
fX will overlap, leading to subtle problems …

DX CXfX
DY

CY

fY

47

In theory this looks very nice, and it is a very practical solution
adopted by both Java and C++. The problem, as we shall see in
the example, is that fX and fY are two independent methods whose
domains overlap. Which one will be called depends on the static
type of the target. Furthermore, the view of types as sets is not
really valid, as the following example illustrates.

class Point {

private int x, y;

Point(int x, int y) {

this.x = x; this.y = y; }

int getX() { return x; }

int getY() { return y; }

boolean equals(Point other) {

return (this.getX() == other.getX())

&& (this.getY() == other.getY());

}

}

Example

48

class HotPoint extends Point {
private boolean on = false;
HotPoint(int x, int y) { super(x, y); }
void toggle() { on = !on; }
boolean getOn() { return on; }
boolean equals(HotPoint other) {
return super.equals(other)
&& (this.getOn() == other.getOn());

}
}

class Main {
public static void main(String args[]) {
HotPoint hotpt1, hotpt2;
hotpt1 = new HotPoint(3, 5);
hotpt2 = new HotPoint(3, 5);
hotpt2.toggle();
compare(hotpt1, hotpt2);

}
private static void compare(Point pt1, Point pt2) {
System.out.println(pt1.toString() + " is " +
(pt1.equals(pt2) ? "" : "not ") + "the same as " + pt2);

}
}

HotPoint@7e0df503 is the
same as HotPoint@4650d89c

What went wrong?!

The Point class has an equals() method that only accepts a
Point object as its argument. HotPoint extends Point with
a boolean flag that can be toggled, and defines its own
equals() method that accepts a HotPoint instance.
We create two equal HotPoint instances and toggle the flag of
one of them so they should no longer be equal. However the main
program reports that they are still equal! What went wrong?
Note that equals is covariant in its argument. What we have here
is overloading, not subtyping! If we had strict subtyping, the
example would not even compile!

Overloading

> The static type of pt1 is used to select the message to
send, namely equals(Point)

> This is different from equals(HotPoint), which is only
visible in the subclass
—There are two different equals methods, and the wrong thing

happens

> If equals(HotPoint) could override instead of
overload equals(Point), then we could instead have
run-time type errors (cf. Eiffel “catcalls”)

49

In Java, a subclass method may not change the signature of a
method it overrides. If the argument type changes, it is interpreted
as an overloaded method. If just the return type changes, it is an
error.

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

Record extension

Says: A record (object) with more fields can be safely
substituted for one with fewer fields

Cf. Java
51

Java, Eiffel and C++ apply this rule. Note that we do not change
the type of the common fields.

Record overriding

Says: the type of a record is a subtype of another record, if
each of its fields is a subtype of the same field of the second.

Is this really useful in practice?
52

In practice, few languages support this. Java and C++ do not, and
Eiffel applies a covariant rule. The main reason is that it is not
really useful for practical programming problems. Typically we
want specialization, not subtyping.

Record subtyping

Generalizes the two previous rules

53

This version simply combines the rules for extension and
overriding to yield subtyping.

Recursive subtypes

Says: if knowing that σ is a subtype of τ lets you
conclude that S is a subtype of T, then the recursive type
µσ.S is a subtype of µτ.T.

Looks ok, but … 54

Can we use this to conclude that µ σ.Int < µ τ.Num?
(Where σ and τ are the self types of Int and τ.Num.)

Rule by Cardelli. We need this to deal with the fact that self gets
specialized down the class hierarchy.
Note that σ and τ represent the self-types. This looks reasonable,
but actually poses nasty problems, as we will see shortly …

Types in practice

> Smalltalk:
—overriding (no static type-checking)
—subclass may disable or restrict inherited methods

> C++ & Java:
—overriding + overloading
—exact type-matching for overridden methods
—cast vs. downcast (dynamic_cast in C++)

> Eiffel:
—covariant type rule with CAT-call detection
—contravariant rule for assertions

55

In Smalltalk, FixedSizeCollection is a subclass of
Collection; the subclass may raise an overflow exception in
the add: method.
CAT = Change in Availability or Type ⇒ run-time check. In
Eiffel the HotPoint example will yield a run-time type error.

Roadmap

1. Objects and Type Compatibility
—The Principle of Substitutability
—Types and Polymorphism
—Type rules and type-checking
—Object encodings and recursion

2. Objects and Subtyping
—Subtypes, Covariance and Contravariance
—Checking subtypes
—Classes as families of types

The Problem with Recursive Closure

Consider:
Animal = µ σ. {…, mate : σ→σ, … }
Animal.mate : Animal → Animal

What about Dogs and Cats?
Dog.mate : Dog → Dog
Cat.mate : Cat → Cat Covariance breaks subtyping!

Let’s enforce subtyping …
Dog = µ σ. {…, mate : Animal → σ, … }
Dog.mate : Animal → Dog ?!

Preserves subtyping but breaks nature!
57

In the first case we try to specialize in a covariant way. This
models the world but breaks subtyping.
In the second case we have subtyping, but this does not reflect
our domain.
What is really going on is therefore not subtyping, but something
else, namely … subclassing.

The Problem of Type-loss

Number = µ σ. { plus : σ→σ }
= { plus : Number → Number }

Integer = µ σ. Number ∪ { minus : σ→σ, …}
= { plus : Number → Number,
 minus : Integer → Integer, …}

Consider:

Now: i, j, k : Integer
i.plus(j).minus(k)

fails to typecheck!

58

Here we see how the view of types as sets really breaks down.
Inheritance as set union does not really express well what is going
on.
In Java and C++ we need to perform a run-time type-check to
recover the lost type information.
We are trying to hard to make Integer <: Number. This is
not really what we want or need.

Classes as Type Generators

(no!)

(yes!)

GenNumber = λ σ. { plus : σ→σ }
GenNumber[Number] = { plus : Number → Number }
GenNumber[Integer] = { plus : Integer → Integer }
GenNumber[Complex] = { plus : Complex → Complex }

Now consider:

Integer <: Number

What about subtyping?

Integer <: GenNumber[Integer]

59

Instead of thinking of a class as having a fixed type, we should
think of it as being a generator of types.
GenNumber is the (generic) type of Number, which is
instantiated when we instantiate Number or one of its subclasses.
Integer is not a subtype of Number (since contravariance is
violated) but of GenNumber[Integer]. The Integer type
extends GenNumber[Integer] by ordinary record extension.

F-bounded quantification

Says: the class of Numbers represents
the family of types which are subtypes of
GenNumber applied to themselves.

∀(τ <: GenNumber[τ])

What are the types of the Number class?

60

Note that τ appears on both sides of the subtype equation.
See Canning et al, “F-Bounded Polymorphism for Object-
Oriented Programming”, OOPSLA 1989.
The take-home message is that we should not expect subtyping
and subclassing to always coincide.

Classes as families of types

> So what about Animals and Dogs?

> So:

> But not

GenAnimal = λ σ. { mate : σ→σ }
∀(τ <: GenAnimal [τ]). τ.mate : τ→τ

Dog :< GenAnimal[Dog]

Dog <: Animal

61

Animal represents a family of types, each with the same structure.
But we must not necessarily expect subtype relationships between
the subclasses.
In other words, a Dog is-a kind of Animal (a subclass), but is not
a subtype of animal!

Types and classes

62

class Number

class Integer

type Number

type Integer

“Classes are nested volumes in the space of types. Types are
points at the apex of each bounded volume.”

Inheritance — subclassing without subtyping

GenNumber = λ τ. { plus : τ → τ }

GenInteger = λ σ. (GenNumber [σ]
∪ { minus : σ→σ,

times : σ→σ, divide : σ→σ })
= λ σ. { plus : σ→σ, minus : σ→σ,

times : σ→σ, divide : σ→σ }

Integer = fix GenInteger

63

There is no subtype relation. Inheritance gives you a subclass
relation. Integer is subtype of GenInteger[Integer],
but not of Number!

(Partial) Answers

> What is an object?
—An object is a (functional?) closure.

> What is a type?
—A type is a specification of component compatibility.

> What is a subtype?
—A subtype instance can be safely substituted where its supertype is

expected.
> What is the difference between a class and a type?

—A class is a family of types.
> What is the difference between inheritance and subtyping?

—Inheritance extends a class to yield a new family of types.
> When is a subclass also a subtype?

—In general only when record extension and the contravariant
subtyping rules are obeyed.

64

Part 1 — What you should know!

> What is the difference between subtyping and specialization?
> What is the Principle of Substitutability?
> What does it mean for a component to “satisfy” a clients

expectations?
> What is the difference between syntactic and semantic compatibility?
> In what way are object-oriented languages “polymorphic”?
> Which forms of polymorphism does Java support?
> Why is subtyping a “universal” form of polymorphism?
> Why are there so many different interpretations of types?
> What does the “turnstile” (entailment) mean in a type rule?
> How does the existential object encoding avoid recursion?
> What is the µ operator for?
> What is a closure?
> How is an object like a closure?

Part 2 — What you should know!

> Why does a generator need to take a fixpoint? What does the fixpoint
represent?

> How are types like sets? How are types not like sets?
> What is meant by covariance? By contravariance?
> How can covariance lead to type errors?
> How does contravariance support subtyping?
> Why is contravariance undesirable in practice?
> How does (Java-style) overloading sidestep the covariant/

contravariant dilemma?
> How does Eiffel sidestep the dilemma?
> How does the contravariant type rule apply to assertions?
> What problems do recursive types pose for subtyping?
> What is the difference between a type and a type generator?
> How is a class like a family of types?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

