CallGraph demo

File format:

| <returnType>:<owner+methodName>:<argType>*
|<receiverTypeOrStaticMethod>

| <arguments>

|<callerwWithLineNumber>

Opening files
e open a fresh image (set resolution to 1024x768 AND set fonts to MEDIUM)
e optionally load Freq
Gofer new
url: 'http://smalltalkhub.com/mc/spasojev/FrequentlyUsedMethodsPluginForNautilus/main';
package: 'ConfigurationOfFreQ';

load.
(Smalltalk at: #ConfigurationOfFreQ) loadDevelopment.

o show where the image and changes files are

o copy the Calls.txt file to the image folder
o open the image; demo the Workspace, Transcript and Inspector

e demo “do it”, “print it”, “inspect it” with menu and shortcuts

e open an inspector on the file:

FileStream fileNamed: 'Calls.txt'

o view the contents in the inspector

System Browser — creating packages and classes

e navigate to implementers of fileNamed:
e demo the system browser
e add the CallGraph package

o define the CallGraph class & add a class comment
o define the from: initialization method and the calls accessor

o display the number of calls in the graph

| cg |
cg := CallGraph new from: (FileStream fileNamed: 'Calls.txt') contents.
cg calls size

e define CallGraph class>>fromFile: and simplify the code snippet

Test Cases

now turn it into a test

put a 5-line snippet of the Calls.txt into a class-side example method
write a test CallGraphTest>>testNumberOfCalls

show the test passes both in the system browser and the test runner
show what happens if you break the test

Monticello

e save package with Monticello
e quickly show Smalltalkhub

Modelings Calls and Methods; Collections

e create a Call object for each log line

CallGraph>>from: aString
calls := (Character cr split: aString)
collect: [:each | self createCall: each]

o introduce the Collection classes (slides)
e introduce Booleans

o define the createCall: method

CallGraph>>createCall: callString
| fields callee |
fields := $| split: callString.
self assert: fields size = 5.
self assert: (fields at: 1) size = 0.
callee := self getMethod: (fields at: 2).
* Call new callee: callee
"TODO -- handle the remaining fields!"

e introduce Call and JMethod classes

e initialize methods and define the accessor

CallGraph>>initialize
methods := Dictionary new

e implement getMethod

CallGraph>>getMethod: signature
| fields methodName |
fields := $: split: signature.
methodName := fields at: 2.
” methods at: methodName
ifAbsentPut: [JMethod new name: methodName]

o create the JMethod>>name: and Call>>callee: methods from the debugger

| cg |
cg := CallGraph fromFile: 'Calls.txt'.

cg methods size
Duck Typing

e again see that there is an assertion failure — debug to find that not all log lines are valid

CallGraph>>from: aString
calls := ((Character cr split: aString)

select: #notEmpty)
collect: [:each | self createCall: each]

¢ note that symbols also understand value: so can (sometimes) be used in place of blocks

e show we can now compute the number of methods

(CallGraph fromFile: 'Calls.txt') methods size. 164

Modeling Classes

o create JClass objects for argument and return types

e introduce classes Dictionary

(CallGraph fromFile: 'Calls.txt') classes size. -> 30

task 3: number of methods with >0 args query in inspector: 72
task 4: number of methods with >1 args query: 18

MORE TASKS Number of Static methods Potentially Polymorphic methods Polymorphic call sites (methods called w >1 arg
types) Most frequently called method Depth of call graph Root of call graph Methods called from more than 1 caller

Queries

(CallGraph fromFile: 'Calls.txt') calls size. "-> 2475"
(CallGraph fromFile: 'Calls.txt') methods size. "-> 168"
(CallGraph fromFile: 'Calls.txt') classes size. "-> 75"
((CallGraph fromFile: 'Calls.txt') methods select: #isStatic) size. "-> 10"

((CallGraph fromFile: 'Calls.txt') methods select: [:m | m calls size > 1]) size. "-> 141"

((CallGraph fromFile: 'Calls.txt') methods select: #isPolymorphic) size. "-> 10"

TO DO: - owner field (static/class) - actual argument types - caller w line number

